
Developments in Applied Statistics 
Anuška Ferligoj and Andrej Mrvar (Editors), 
Metodološki zvezki, 19, Ljubljana: FDV, 2003 

Unified Biplot Geometry 

John C. Gower1 

Abstract 

The fundamental geometry is outlined that underlies all biplots of a 
data-matrix X of n cases and p variables. Cases are represented by n points 
and variables by a reference system. The reference system for quantitative 
variables may be orthogonal Cartesian axes, other linear axes or nonlinear 
trajectories. The reference system for categorical variables is a set of 
category-level-points (CLPs) one for each category-level; CLPs for ordered 
categories are collinear. Axes are labelled by a set of graduated numerical 
markers; CLPs are labelled by the names of their category levels. The point 
representing a case is nearer the markers that give the values of its 
variables, than to any other markers. This high dimensional representation 
is approximated in few (often two) dimensions in such a way that the 
approximated reference system gives optimal approximations to the values 
of X. Furthermore, new cases may be interpolated into the approximation 
space. Special cases within this general framework are illustrated by several 
examples of biplots. 

1 Introduction 

Most of the material presented here is based on the book by Gower and Hand 
(1996), where algebraic details may be found; some more recent material is briefly 
reviewed at the end. These notes give some examples and an overview of the 
geometrical underpinning of biplots. 

Biplots are the multivariate analogue of scatter plots. Multidimensional 
Scaling (MDS) is used to approximate the multivariate distribution of a sample in 
a few dimensions, typically two, and superimposed on this display are 
representations of the variables on which the samples are measured. In this way 
the relationships between the individual sample points can be easily seen and 
related to values of the measurements. Like scatter plots, biplots are useful for 
giving a graphical description of the data, for detecting patterns which possibly 
lead to more formal analyses, and for displaying results found by more formal 
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methods of analysis. The bi in biplots denotes that both samples and measured 
variables are represented, not that biplots are necessarily two-dimensional, though 
they usually are. 

Approximations to the relationships between n samples can be achieved by the 
various methods of MDS but, except in the special cases of principal components 
analysis (PCA), multiple correspondence analysis (MCA), and canonical variate 
analysis (CVA), until recently methods for including information on the variables 
have been little developed. In recent years, the theory of biplots has been 
considerably extended, and can now be presented and extended in a unified 
manner that includes biplots for PCA, CVA and MCA as special cases, as well as 
some newer and less well-known methods; there is plenty of room for further 
development. 

The concept of inter-sample distance (dij) is central to all methods of MDS, 
and this is one of two components of the unifying concepts that underpin all that 
follows. In MDS the samples are represented by n points in a low-dimensional 
space that generate approximations δij to the given distances dij. In MDS, different 
methods may be used for calculating the distances- Pythagorean distance for PCA, 
chi-square distance for MCA, Mahalanobis distance for CVA, any Euclidean 
embeddable distance for principal coordinates analysis (PCO), and many others - 
and different methods of MDS use different kinds of approximation. Because 
Euclidean displays, with which most research workers are familiar, form the 
overwhelming majority of published material, attention will be confined mostly to 
Euclidean distances and totally to Euclidean displays; this constraint could be 
relaxed, as it is occasionally in MDS. The other component of unification that is to 
be discussed is strongly based on the familiar notion of coordinate axes. Figure 1 
shows the conventional Cartesian coordinate system for two quantitative variables 
and emphasises the distinction between (i) interpolation: i.e. assigning a point 
with given values of the variables, which is done as a vector-sum, and (ii) 
prediction: i.e. associating values of the variables with a given point, which is 
done by orthogonal projection. As is obvious from the figure, these two operations 
are consistent. Consistency holds only in exact representations and breaks down in 
MDS approximations in fewer dimensions than there are variables. As we shall 
see, these require separate coordinate representations for interpolation and 
prediction. 
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Figure 1: Coordinate axes (two dimensions) (a) illustrates interpolation and (b) 

prediction. 

Mention of PCA and MCA indicates an interest in both continuous and 
categorical variables. While a continuous variable will be represented by a biplot 
axis which is a continuous curve (not necessarily linear) labelled by values of the 
variable, a categorical variable will be represented by a biplot "axis" which is a 
simplex of points, the category level points (CLPs), labelled by category names. 
Both types of representation may occur in the same plot and the set of such 
generalised axes is termed a reference system. Much multivariate analysis is 
concerned with canonical axes of one kind or another. The diagrams shown will 
not contain the usual rectangular canonical axes (indeed; there are more "axes" 
than displayed dimensions) but the reference system of biplot axes (including 
CLPs) serves a similar purpose. In the unified approach, interpretation of biplots is 
firmly based on coordinate axes representing the original variables, at the same 
time extending the notion to include representations of categorical variables. 
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Figure 2: G is the centroid of all n points and lies in L. Qi and Qj are the orthogonal 
projections of Pi and Pj onto L  and ri and rj are the residuals from L. 
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Figure 3: Representation of a coordinate axis ξk by a biplot axis βk in the space L 
(plane) of approximation.  
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Figure 4: Relationship between the markers for prediction and interpolation. ξk is one of 
the axes in R  and βk is the corresponding biplot axis in L. The marker µ projects to I for 

interpolation and back-projects to P for prediction. 
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2 Principal components biplots (classical biplots)  

In PCA observed distances dij are replaced by approximate distances δij using 
orthogonal projection, as shown in Figure 2. The approximation in L is obtained 
by minimising the sum of squares of the residuals and L is a subspace of the exact 
representation. In PCA dij is the Pythagorean distance between Pi and Pj.  

Figure 3 shows what happens to a coordinate axis ξk. This too is projected 
onto L to become the biplot axis βk. The plane N contains all points with 
coordinate xk on the axis ξk. In particular, the intersection L∩N contains all points 
in L that predict the value xk.The biplot axis βk is orthogonal to the intersection 
and hence the projection of the point P onto βk gives the correct prediction, 
provided a suitable scale is marked on βk. All the information necessary for 
prediction is contained in the approximation space L. Things are different for 
interpolation where βk remains in the same direction but the marker for xk is now 
obtained by orthogonal projection from ξk onto βk. Figure 4 shows the relationship 
between the markers for interpolation and prediction.  
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Figure 5: Interpolation, using the vector-sum method, of the point (2,-3,4). G is the 
centroid of the markers 2,-3 and 4 on the biplot axes β1,β2, and β3 (respectively). The 

interpolated point P is at three times OG. 
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Figure 5 shows how interpolation may be obtained as a vector-sum. Rather 
than "completing parallelograms", it is simpler to find the centroid of the relevant 
markers and extend p (the number of variables) times from the origin. Here p = 3 
so we have a reference system for three variables in a two dimensional 
approximation; the biplot axes are necessarily non-orthogonal. 
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Figure 6: A fictitious example illustrating some of the faults often to be found in biplot 

representations. 

 
Figure 6 shows some of the faults often found in published biplot diagrams. 

Unequal scaling of the axes, use of E-formats, ugly scale divisions, no scales on 
biplot axes, one-standard error lengths of vectors, scales given unnecessarily for 
canonical axes and no scales for the original variables, separate canonical scales 
for samples and for variables.  



Unified Biplot Geometry 9 

 

B

BB

B

B

BB

B
B B

B
BB

B

B

B

B

B
B

B

B

1
0

2
3

4
5

6
7

8
90

1

2

3

4

SPR

RGF SLF

3

4

5

6

F-111A

g

s

ab

c

d

e
f

h i

j

k
m

n

p

r

q

vu
t

w

B10
2

4
5

6
7

8

0

1

2

4
5

4

3

6

BB

B

B

BB

B
B B

B
BB

B

B

B

B

B
B

B

B

SPR

RGF SLF

F-111A

a
b

c

d
f

e

h i

j

km

n

p q

r

u v

w

g t

s

 
Figure 7: Interpolative PCA biplots without and with a translation so that the value "3' 

coincides at the origin. The small open square represents the centroid from which  
vector-sum interpolation is appropriate in both cases. 
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Figure 8: Predictive PCA biplots for the same data as in Figure 7. 

 
Figure 7 shows an interpolative classical biplot for data on four variables 

relating to fighter aircraft. The right-hand figure differs from the left-hand only in 
that the axes have been translated so that a whole number (here, 3) occurs at the 
origin. This kind of simplification is possible for interpolation so long as the 
vector-sum of the translations is null; it is not permissible in predictive biplots. 
The fourth variable PLF has a very small range and contributes only marginally to 
the display so is not exhibited. Figure 8 shows the corresponding predictive biplot 
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which involves all four variables; note that the axes have the same directions as in 
Figure 7 but different spacing for the scalings of the markers. 
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Figure 9: Biplots for least-squares metric multidimensional scaling (minimisation of 
stress). Predictive biplot using Procrustean embedding, Approximate interpolative biplot 

using minimum error projection Procrustean embedding and a predictive biplot using 
regression embedding. 
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3 Other linear biplots 

Now we assume that dij remains defined by Pythagorean distance but is 
approximated by other methods of metric MDS, in particular by minimising the 
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The example shown in Figure 9 relates to wheat yields at twelve centres in 
four years. Interpretation is very similar to that of the classical biplots. The special 
interest is that L is not now a subspace of the full exact representation and must 
somehow be embedded in the full space. Three ways of doing this are: (i) By 
orthogonal Procrustes fitting, (ii) By multiple regression and (iii) By projection. If 
X is the data-matrix and Z the coordinates in L that generate the δij, then these 
may be represented by minimising ||X - ZA|| where A is, respectively an 
orthogonal matrix, a general matrix and a projection matrix. All three methods 
give the same result when Z is obtained by PCA. Once L is embedded by one of 
these methods, the geometry of Figure 3 remains valid and prediction proceeds as 
with PCA, merely using a different sub-space L. The first (Procrustean) and last 
(Regression) biplots are both predictive and can be seen to be very similar. 
Because of technical difficulties, geometric (as opposed to algebraic) interpolation 
with general methods of metric scaling seem to be beyond reach. An 
approximation can be found by choosing L to be the subspace for which the 
projections of X onto L best match Z; this is the minimum error projection 
Procrustes method and is shown in the middle plot of Figure 9. The asterisked 
points are obtained by projection and, for comparison, the hash-symbols reproduce 
the Procrustean embedding of the first plot. Of the three methods considered, 
Regression must minimise the prediction error but it is not clear whether this 
optimal property necessarily extends to other choices of distance, especially to 
non-metric MDS. 

4 Categorical variables: multiple correspondence 
analysis and related methods 

The data-matrix X now consists of categorical variables but the algebra may 
continue to be presented as a PCA of quantitative data. Each category-level is 
represented by a single variable and in X is replaced by the square root of its 
frequency in the sample. dij is now chi-squared distance. L is a diagonal matrix 
giving the frequencies of all the categories. The rows of L-1/2 give the coordinates 
of the CLPs and may be projected like linear biplot axes but, rather than a 
continuum, they give a single point for each level. 
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Figure 10: Multiple Correspondence Analysis. The biplot axes are now category-level-
points represented by the letters; numbers refer to farms. This is an interpolative biplot 

and shows the interpolation of farm number 1. 

Interpolation by the vector-sum method proceeds as before but rather than 
"extending by p times the centroid", the configuration of sample points may be 
multiplied by p and the centroid itself used for interpolation as is shown in Figure 
10 which relates to environmental variables (Moisture, Management, Grass use 
and Manure use) recorded for 20 farms on the Dutch island of Terschelling. In this 
representation, every sample is nearest the CLPs for the category-levels it actually 
has than to any other CLPs. Thus, rather than the normal plane containing all 
points that predict xk as in Figure 3, all points that predict a category-level lie an a 
region of space; where this region intersects the approximation space L defines 
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prediction-regions. The dominant concept is nearness which with axes is 
associated with projection but with CLPs induces neighbour regions. 
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Figure 11: Diagram to explain CLPs, neighbour-regions and prediction regions. 

 
Figure 11 illustrates the geometry for a categorical variables colour with three 

levels (blue, green, red) represented by the appropriately labelled CLPs. The 
planes bisecting the joins of all pairs of CLPs define regions of space within which 
one or other category-level is predicted - these are the neighbour regions. Where 
the neighbour-regions intersect the plane of approximation L, defines the 
prediction regions. In the figure, the prediction region for red is mostly hidden 
behind two of the bisecting planes.  
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Figure 12: For categorical variables predictive biplot axes become prediction regions. 
The MCA prediction regions for four categorical variables are shown. 

Some category-levels need not appear in the prediction-regions, being hidden 
behind the other regions. For example this has happened for the variable 
management which has four levels (SF, BF, HF, and NM) but BF does not occur in 
Figure 12. 

Categorical variables need not necessarily be analysed by MCA. One could 
choose the CLPs differently, and perhaps better. Figure 13 shows the prediction 
regions when the CLPs are chosen as the rows of the unit matrix I where distance 
now corresponds to the Extended Matching Coefficient, which is a generalisation 
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of the Simple Matching Coefficient for binary variables. Figures 12 and 13 do not 
differ greatly but Figure 13 has the greater number of correct predictions. Whether 
this is a generally true or how to choose the CLPs and L to maximise the number 
of correct predictions are unresolved questions. 
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Figure 13: Prediction regions for the same four categorical variables as in Figure 12 but 

now using the Extended Matching Coefficient as the basis for calculating distance.  

With quantitative variables, all the linear biplot axes may be shown 
conveniently on a single diagram. In Figures 12 and 13, each categorical variable 
is shown in a separate diagram; this is to avoid confusion. All four variables could 
be shown simultaneously and this is done in Figure 14 both for Chi-squared 
distance (MCA) and for the Extended Matching Coefficient. Such diagrams can be 



16 John C. Gower 

useful for detecting associations between categorical variables but are best done in 
an interactive computing environment. 
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Figure 14: Superimposition of the prediction regions of Figures 12 and 13 respectively. 
These types of diagram are the equivalent of illustrating four quantitative variables by 

four linear biplot axes on the same diagram, e.g. Figure 8.  

5 Canonical biplots 

We are now concerned with data grouped between and within populations. 
Distance between populations is measured by Mahalanobis D2. Both interpolative 
and predictive axes remain linear but, even in exact representations, have different 
directions as well as different scales. The reason from this follows from the 
following algebraic results. The data-matrix X now represents the group means 
and let W be the within-group dispersion matrix and B = X'X be the within group 
dispersion. Then we require solutions to the two-sided eigenvalue problem: 
 BL = WLΛ normalised so that L'WL = I. 
The r-dimensional weighted least-squares approximations to X is given by Xr = 

XLrLr where Lr represents the first r columns of L and Lr represents the first r 

rows of L-1. This a simple way of representing the generalised Eckart-Young 
theorem for weighted least-squares approximation to a matrix. The rows of Lr give 

the directions of the interpolative axes and the columns of Lr give the directions 
for prediction. In PCA W = I and L is orthogonal so that then L-1 = L' and the 
interpolative and predictive axes are the same; in the general case the two matrices 
differ. Figure 15 shows interpolation which remains by calculating vector-sums 
while Figure 16 shows prediction, which remains by orthogonal projection. Similar 
biplots exist for canonical correlation. 
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Figure 15: Interpolative biplot axes for Canonical Variate Analysis. 
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Figure 16: Predictive biplot axes for Canonical Variate Analysis. 
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Figure 17: Interpolative non-linear biplot axes, With classical scaling/principal 
coordinates analysis; the vector-sum method remains valid. 
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6 Non-linear and generalised biplots. 

The biplot ideas may be extended to other forms of distance. Starting with the 
data-matrix X we define a set of Euclidean embeddable distances dij which are 
generated by a set of coordinates Y. The original axes may be represented in the 
same space but the axes become non-linear trajectories and markers for equal steps 
in the original variables become unequally spaced. This gives an exact 
representation in which coordinates remain given by the nearest markers on the 
trajectories. Approximations in L may be found by PCO and then interpolation by 
the vector-sum method remains valid as illustrated in Figure 17, where 
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method remains useful. Predictive non-linear biplots are also available. The 
geometrical basis for prediction is similar to that of Figure 4 but the axis ξk is now 
non-linear. This induces non-linear biplot axes βk in L. Prediction is either by 
circular projection, which is numerically simple to compute but which is 
somewhat cumbersome to use, or by normal projection, which requires the 
numerical solution of differential equations but which is easy to use. 
 

a

b

c

d

e

f

g

h

i

j k

l

m

n

o

2.0

1.0

1.0

-1.0

-1.0

-1.0

-0.5

-0.5

-0.5

0.5

0.5

0.5

0.5

0.5

1.5

G

5

5

7

7

9

9

12

12

 
Figure 18: An example of an interpolative non-linear biplot. Four variables of amounts 

of trace elements at 15 sites in Glamorganshire. 
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Generalised biplots extend non-linear biplots to include categorical as well as 
quantitative variables. The concept of nearness remains the basis of interpretation. 
Numerical variables generate non-linear trajectories while categorical variables 
generate CLPs. With PCO, explicit algebraic results are available for the CLPs and 
their projections. Figure 18 shows vector-sum interpolation with a mixture of 
categorical and quantitative variables. For prediction, the concept of prediction-
regions remains in force.  
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Figure 19: A generalised interpolative biplot showing the vector-sum method in use with 
categorical variables represented by CLPs simultaneously with quantitative variables 

represented by non-linear axes. 

7 Further developments 

The above has given the briefest of overviews. We have not covered biplots for 
two-way tables that include biadditive models for quantitative variable and 
correspondence analysis of contingency tables. In the two-way table context, 
biplots may be found after adjusting for one or more covariates; this has close 
links with redundancy analysis. Neither have we discussed biplots for special 
classes of matrix (e.g. covariance and correlation matrices) or biplots for 
symmetric and skew symmetric matrices. Associating biplots with non-metric 
scaling is straightforward and in some cases leads to  linear  axes  with  irregularly  
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Figure 20: Two dimensional representations of the configurations for seven assessors 
rotated to best fit their group average. The rotations were done in the maximal space of 

26 dimensions. Everything is referred to the principal axes of the group average. 
Quantitative variables are labelled at their higher values. Nine brands of coffee are 

denoted by the symbols 
�  ∗ + × �  �  ◊ �  ���  
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spaced markers that are necessarily monotonic scales only for ordered categorical 
variables (see Gower, Meulman and Arnold, 1999). When all the variables are of 
the ordered categorical type, we may represent the prediction regions in terms of 
what look like ordinary linear biplot axes; then the simultaneous representation of 
all the categorical variables presents no problem (Gower, J.C. and Ngouenet, R.F., 
1998). Further information and applications of prediction regions are given by 
Gower and Harding (1998). The concept of CLPs with associated neighbour and 
prediction regions has been developed further to suggest new methods of MDS 
that optimise correct prediction rates but these seem to require difficult 
combinatorial algorithms (Gower, 2002). The ideas may also be extended to three-
mode analyses - at least in some cases. Figure 20 illustrates the possibilities, 
showing generalised interpolative biplots for a Generalised Procrustes Analysis of 
seven assessors of packaging for nine brands of coffee; there are 11 variables of 
which six are quantitative contributing to Pythagorean distance and the remaining 
five are categorical, contributing to the extended matching coefficient. The lower 
right-hand diagram refers to the group-average, obtained by averaging the other 
seven diagrams, the averages of the linear axes for quantitative variables has been 
omitted. 

As with most modern statistical developments confident interpretation depends 
on experience and experience depends on the availability of user-friendly software. 
Most biplots given here have been produced by Genstat 5. Many are 
computationally straightforward but good graphics properly labelled and with 
sensible scales are hard to produce. 

References 

[1] Gower, J.C. and Hand, D.J. (1996): Biplots. Monographs on Statistics and 
Applied Probability,  54. London: Chapman and Hall, 277 p. 

[2] Gower, J.C. and Ngouenet, R.F. (1998): Some new types of biplot. 
Proceedings of the Fourth Sensometrics Conference, Copenhagen. 60-63. 

[3] Gower, J.C. and Harding S.A. (1998): Prediction regions for categorical 
variables. In J. Blasius and M.J. Greenacre (Eds): Vizualisation of 
Categorical Variables. London: Academic Press, 405-419. 

[4] Gower, J.C., Meulman, J.J., and Arnold, G.M. (1999): Non-metric linear 
biplots. Journal of Classification, 16, 181-196. 

[5] Gower, J.C. (2002). Categories and Quantities In S. Nishisato, Y. Baba, H. 
Bozdogan and K. Kanefuji (Eds.): Measurement and Multivariate Analysis. 
Tokyo: Springer, 1-12. 


