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Applications of Interactive Markov Models in -
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Abstract

In a Markov model a large population of individuals is distributed over a
finite number of states . If the transition matrix is not constant and depends
on the actual distribution of the individuals, the model is called interactive .
In the paper equilibrium points of this kind of models are studied as well
as stability of these points . Interactive Markov models have a wide choice
of applications in the studies of dynamics of social systems, e .g . consumers'
buying behaviour, families' behaviour in choosing their physician, voting be-
haviour, geographical, social, and occupational mobility . In particular, this
kind of models have recently been gaining more attention in the studies of
social mobility in fast changing societies . A different approach to the study
of interactive voting behaviour of small groups is also presented .

Keywords: Stochastic processes ; Differential growth rate ; Social mobility ;
Interaction within small groups .

1 Introduction
Markov stochastic processes have wide application in the studies of dynamics of
social systems . In these models a population of individuals is considered classified
into k mutually exclusive and exhaustive categories, sometimes also called classes
or states . The probabilities pig that an individual moves from state i to state j
between two consecutive points of time are sometimes called transition probabilities
and form a matrix, called transition matrix . The simplest possible model of the
kind is the homogeneous stationary Markov model, where it is assumed that all the
individuals are moving independently of each other and independently of their pre-
vious "career paths", and that all these probabilities are the same for all individuals
and constant over time . As any individual must either stay within the same state
or move to another, the transition matrix is stochastic, meaning that for all i it
holds that ~k=i pi, = 1 . Such Markov models are sometimes called probabilistic or
stochastic as opposed to the deterministic model in which it is assumed that pij are
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not probabilities, but, relative frequencies, i .e . proportions of individuals from state
i moving in a period of time to state j .

In this paper we will consider a more general model derived from the Markov
model. Namely, the transition probabilities (or rates) will be assumed to depend on
the size of the state towards which the individuals are moving. This approach takes
into account the fact that individuals are following not only their own choices, but,
are also influenced by what others are doing . This kind of models have been widely
studied and for the sake of simplicity, linear dependence has usually been assumed .
The main applications of this model are in the studies of social mobility, where
the population is stratified according to some socio-economic or cultural attribute .
The usual Markov model assumptions described in the previous paragraph may
suffice for the studies of mobility phenomena in stable countries with long-lasting
slow-changing economic political and social system . On the other hand, for the
fast developing countries of the third world as well as lately for the fast changing
societies of the eastern Europe, such models may not be appropriate .

From the wide range of applications of these models let us mention only a few . In
the study of voting behaviour, the categories may be chosen to be political parties,
time points elections, and "individuals in state i" the voters supporting party i .
When studying geographical mobility, the categories may be towns or regions, and
the individuals may be families living there over some specified time period . Buying
behaviour of a certain population may be studied by classifying them according to
the brands of a certain product such as soap or cheese . The time period here may
be two consecutive purchases of the product . One of the most frequent applications
is in the social or occupational mobility. In these cases the population is stratified
in terms of some socio-economic or cultural attribute such as income, education,
religion, etc . A closely related and also very frequent application arises in manpower
planning where employees of a certain institution are classified according to their
position, age, length of service, etc .

In section 2 we present a special type of the so-called interactive Markov models .
It is based on a similar model due to Conlisk (1976,1978) which he refers to as AB-
model. Some apparently new results on the model are given in this section, while
section 3 is devoted to illustrative examples of applications . Kulkarni and Kumar
(1986,1989) recently developed two models based on similar ideas, but assuming
ordinality of the attribute and upwards-only mobility . They also assume different
growth rates for populations in different categories . A slightly more general model is
presented in our section 4 together with some possibly new results on these models .
Section 5 is devoted to an overall different approach to the study of interactive
influence . This approach is illustrated on a study of voting behaviour of a population
grouped in a large number of small closely connected sub populations .

2 Interactive Markov models
Here is a model, similar to what was called an AB-model in Conlisk (1976) . We
assume that A and B are real k x k matrices having zeros on the main diagonal .
We also suppose that the entries of A are non negative and that its row sums are
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not greater than one. Let us denote by qi(n) the proportion of the population under
consideration that is in state i at a point in time n . Here, we tacitly assume that
the proportions q;(n) are all non negative and that their sum equals one, so that the
k-vector (q;(n)) ; forms a "probability" distribution . Furthermore, let the interactive
transition proportions p;i(n) between time points n and n + 1 be given by

P;i(n) _ 1'' E,,6,[(a + b;cg1(n)] if i = j

	

(1)

The sequence of proportional distributions then satisfy the following recurrence re-
lations

k

qi(n + 1 ) _

	

q;(n)p ;i(n) .

	

(2)

In order to simplify our approach we shall rewrite these two equations using
matrix notation . From now on let us view all the vectors as columns and let us
denote by T the transpose of vectors and matrices . Thus, XT will stand for the
row vector corresponding to the column vector x . Moreover, let us introduce the
notation Diag x for the diagonal matrix having components of the vector x = (x ;)
on the main diagonal and zeros everywhere else . We will be using throughout the
notation A > 0, respectively x > 0, meaning that all the components of matrix
A, respectively vector x, are non negative . Then, the interactive transition matrix
P(n) = (p;i(n)), defined by (1) can be written as

P(n) = A + BDiag[q(n)] + I - Diag[Ae + Bq(n)],

	

(3)

where we have denoted by q(n) the vector corresponding to the n-th distribution
of proportions (q ;(n)) and by e the vector with all components equal to 1 . Let us
introduce the matrix of "intrinsic" transition proportions Po = A + I - Diag[Ae], in
order to simplify this expression even further

P(n) = Po + BDiag[q(n)] - Diag[Bq(n)] .

	

(4)

Observe that for any vector x it holds that Diag(x)e = x to see that Poe =
Ae+e-Diag(Ae)e = e and therefore, P(n)e = e+BDiag[q(n)]e-Diag[Bq(n)]e = e .
This shows that Po is stochastic and that P(n) is stochastic as soon as its entries are
non negative. It is easy to get sufficient conditions on matrices A and B to ensure
that the matrices P(n) are all stochastic, independently of the choice of distributions
q(n) . Let X+ denote the positive part of a matrix X, i .e . the matrix, having the
same positive entries as X and zeros everywhere else . We can define the negative
part X- of X similarly, or simply by putting X- = X+ - X. Using this notation,
it is easy to see that P(n) > Po - B- - Diag(B+e) . Hence, the condition

Po - B- > Diag(B+e) (5)

forces P(n) to be stochastic automatically for all n . In other words, for those
indices i and j for which b;i < 0 we must have a ;i + b;i > 0, and, denoting /3; _
E{bii Jail j such that b;i > 0}, it must hold that /3; + >i a ;i < 1 for all i .
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Using definition (4) for the matrix P(n), we can also rewrite the recurrence
relation (2) into

q(n + 1)T = q(n)T[Po + BDiag(q(n)) - Diag(Bq(n))] •

	

(6)

Observe that for stochastic matrices P(n), this relation sends non negative columns
q(n) with sum one into non negative columns q(n + 1) of sum one, i .e . it sends
distributions of proportions into distributions of proportions .

The main problem usually considered with the kind of interactive models is to
find critical points of equation (6), sometimes also called stationary or equilibrium
points . By definition, a column q of proportions (i .e . a non negative column with
sum one) is said to be a critical point of this model if q(n) = q forces q(n + 1) = q
by relation (6) . In other words, q has to be a solution of the system of quadratic
equations

qT = qT[po + BDiagq - Diag(Bq)] .

This system has always a solution of the desired kind by the Brouwer's fixed point
theorem, however, the solution is not necessarily unique . Another interesting ques-
tion is, whether a critical point q is stable, this means that there is a neighbourhood
of q such that as soon as a population reaches a distribution q(n) at a certain point
of time n within this neighbourhood, then, the sequence of distributions converges
to critical point q .

The following theorem is based on a simple observation :

Theorem 1 Let 1 be the only eigenvalue of Po of modulus 1 and let its algebraic
multiplicity be 1 . If B is symmetric and satisfies condition (5), then (7) has a
unique non negative solution q with sum 1 which is the only critical point of model
(6) . Furthermore, this point is stable and for any starting distribution of proportions
q(0) the sequence q(n) converges to q .

This theorem is an extension of a result of Conlisk (1978) . He proves a similar
result under more restrictive assumption that Po is primitive, i .e . that a power of Po
has all the components strictly positive . Note that any primitive stochastic matrix Po
satisfies the conditions of the theorem by Perron-Frobenius theorem (Schaeffer 1974,
Theorem 1 .6.5) . However, the condition is weaker since there are many examples of
non primitive matrices which still satisfy these conditions . To get a simple example,
choose p, 0 < p < 1, and write

p 0 • . . 0 1 -p -
0 p . . . 0 1 - p

Po -
0 0 • . . P l- p
0 0

	

• . . 0

	

1

It is clear that Po and all of its powers are upper triangular so that no one can have
all the components strictly positive . However a simple computation reveals that Po
satisfies the conditions of our theorem .

(7)
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Let us show the validity of theorem 1 . For any two vectors x and y it holds that
xTDiagy = yTDiagx . Therefore, qT Diag(Bq) = (Bq)T Diagq = qT BT Diagq which
implies that equation (6) can be rewritten into

q(n + 1) T = q(n)T [Po + (B - BT)Diag(q(n))],

and, similarly, equation (7) into

qT = qT[Po + (B - BT)Diag(q)] .

(8)

(9)

By the assumption of the theorem, matrix B is symmetric which means that B T =
B . Hence, q(n + 1)T = q(n)TPo and a simple inductive argument yields q(n)T =
q(0)TPo . Denote by A 1 , A2, . . ., A,,, the distinct eigenvalues of Po , where we may
suppose by the assumptions of the theorem that A1 = 1 and that JA < 1 for i > 2 .
Using standard linear algebra techniques such as Jordan form, say, Po can be written
in the form Po = E1 + E2 + . . . + Em , where Ei's are the so-called spectral parts of
P0 , i .e . they are all commuting with Po , the product of any two of them is zero, and
each E; has A, as the only non-zero eigenvalue . This implies by a simple inductive
argument again that Pa = El +E2 + • . .+Em holds for all indices n . Now, as all A
for j > 2 have absolute value strictly smaller than one, the corresponding Ej4 must
converge to zero with increasing n . On the other hand, the algebraic multiplicity
of eigenvalue A1 = 1 of matrix Po is one which forces El to be a projection (i .e .
an idempotent) and, consequently, we must have that E7 = El for all n . It thus
follows that Po converges with increasing n to El and therefore, q(n)T converges to
q(0) TEl . Using again some standard linear algebra, the form of projection El is xyT,
where x and yT are the respective right and left eigenvectors of P o corresponding to
eigenvalue 1 normalized so that yTx = 1 . Recalling that Po is a stochastic matrix,
we can take x = e for the right eigenvector and normalize yT accordingly to get
q(0 )TEl = [9(0)Te]yT = yT . We have thus seen that for any starting distribution
q(0)T, the sequence of distributions q(n)T converges to the limit distribution yT .
This is therefore the only critical point which is also stable .

A somewhat deeper argument shows that practically the same is still valid for
an "almost symmetric" matrix B. The following theorem presents the details :

Theorem 2 1f Po is as in theorem 1, B satisfies condition (5), and B-BT is small
enough, then there exists a unique stable critical point of model (6) . Furthermore,
for any initial distribution q(O) the sequence of distributions q(n) converges to this
critical point.

The exact formulation and the proof of this theorem go beyond the scope of this
work and will be published elsewhere .

3 Some applications of interactive models
in this section we will give a number of illustrative examples from the studies of
dynamics of social systems for which the interactive Markov model, as presented in
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the previous section, may be applied . These models should, of course, not be taken
for granted. Whether and how much does this model fit the particular situation is a
matter of serious empirical and statistical testing . Since the kind of verifying would
go beyond the framework of this paper we will not go into it .

First, let us consider a population of consumers and give a possible model for
studying their buying behaviour with respect to a certain fixed product . Assume
that there are k brands of this product on the market and let the time period be the
time between two successive purchases of the product under consideration . Let us
assume that there is an "intrinsic" probability a, j that a consumer buying brand i
would buy brand j on his next purchase . This probability is based on the satisfaction
of the consumer with the i-th brand, and on the advertisement, price, availability,
and design of the j-th and other brands, and on other facts which are independent
of the actual distribution of the consumers over the brands . However, the other
consumers may have some influence on his choice as well . Namely, another consumer,
already using brand j, may be recommending that product, if he is satisfied with
it, or, he may by trying to turn other consumers away from it, if he is not . The
influence of the consumers of the j-th brand on the next choice of those buying the
i-th brand will grow with their size : the bigger the group, the bigger their influence .
Let us denote by qj the proportion of consumers buying the j-th brand on a certain
purchase . We are assuming for simplicity that the transition probability depends
linearly on qj . Thus, a term bijqj has to be added to the "intrinsic" probability aid
for the transition from the i-th to the j-th brand . Here, the coefficient b id is positive
if the consumers of the j-th brand have an attracting influence on the consumers of
the i-th brand on the average, and it is negative in the opposite case .

Here is a simple numerical example to illustrate this application. Let the con-
sumers be faced with three brands of a product . The first two brands are comparable
and for them the probability that a consumer will stay with the brand is twice as high
as the probability that it will change to the other . The third brand has appeared
recently on the market and due to its low price, attractive design, and noticeable
advertisements, a consumer of the first two brands decides to try it with probability

. However, those who have already tried it are disappointed and will buy on their
next purchase one of the old brands giving both of them an equal chance . The
"intrinsic" model is described by the transition matrix

PO -

which has the left normalized eigenvector equal to J = [3, 3, 3] which means that in
a long run of selling under the same conditions the three brands will split the market
in thirds . Let us now adjust the model for the interaction of unsatisfied buyers of
the third brand . Assume that the coefficients b13 and b23 are both equal to -2 which
is the strongest possible negative influence which is still ensuring stochasticity of the
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matrices P(n) by (5) . We thus have

0 0 -2

	

0 0 -2

B= 0 0 -2 and B- BT = 0 0 -2
0 0 0

	

2 2 0

A simple computation shows that in this case equation (9) has a unique solution,
which can also be computed . We get qT = ( 2(f - 1), 2(\ - 1),2 - ~) _
(0.366, 0 .366, 0 .268) which means that the third company obtains in a long run a
somewhat smaller market share (by 6 .5 %) in this interactive model as compared to
the one, where no interactions between consumers were assumed .

Here is another possible application of interactive Markov models . Assume the
population of all the families of a city choosing their family physician . There are k
doctors available in the city and the families are divided into k classes with respect
to their choice among these doctors . The time period of one observation might be
a year. There is again an intrinsic transition probability ay for the family signed
up with the i-th physician during a period, to become dissatisfied with him and
select j-th one for the next period of time . Again, bi, will denote the corresponding
coefficient of interaction . Thus, bijqj denotes the "aping" part of this transition
probability .

To illustrate this example, let us assume a small town, where there are only three
doctors of approximately the same knowledge and capability . A family, signed up
with a physician in a period, will stay with him for the next period as well with
probability 2 and will give an equal chance to the other two otherwise . Besides that,
an overcrowdedness in the waiting room of any of the three doctors turns away new
patients with intensity - 14 towards any of the other two . Therefore, we have

Po -

1

	

1

	

1
2

	

4

	

4

1

	

1

	

1
4 2 4
1

	

1

	

1
4 4 2

and B =

0

	

- 1 - 114

	

4

I

	

0 _14

	

4

_ 1

	

1

	

0
4

	

4

It is easy to see that PO has the left Perron eigen vector equal to qT = R, 3, 3]
and this must also be the limiting distribution of this model without interactions .
However, when we are taking the interaction into consideration as well, we observe
that BT = B and by the discussion following theorem 1 in the previous section,
we observe, that in this case, matrix B, although it does have an influence on the
transition matrix P(n), it has no influence on the sequence q(n). Therefore, by
theorem 1 we have a unique equilibrium point again and by discussion this point
equals again the point qT = [ 3 ,13 3,11 .

The phenomenon used in the proof of theorem 1 and illustrated by this example
may need some more comment . We have seen that a symmetric matrix of "aping
trends" has no influence on the actual sequence of distributions of the population .
We could describe the reason why this happened very simply. Namely, if j-th class
of population is attracting the i-th one with intensity bi3 , while the i-th one is
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attracting the j-th one with the same intensity b, 1 = b,5, then, this attraction is
causing more actual individuals of the population to be moving from the i-th to the
j-th class as well as the other way around . However, in the average, the "aping"
effects are in this case cancelling each other and the next size of either i-th or j-th
class is the same as if there were no effects of the kind at all .

In the third example consider a population of people living in a small town
commuting every day to the near-by bigger city to work . They have k modes of
travel to choose among . Here, the transition probabilities are given, similarly as in
the previous two examples, by a ; j +bijq,(n) . For a concrete numeric example assume
k = 3 and let the three possible choices for commuting be train, bus, and car . The
intrinsic transition probabilities are given by

1

	

1

	

1
2 3 6

PO = 1 1 1
2 3 6
1

	

1

	

1
3 6 2

We have assumed here that non-car commuters rarely change to car. However, a
car commuter finds it hard to decide for some other way of travel, but if he does, he
prefers the train . The stationary distribution of this non-interactive model is qT =
(24 , za , 9) = ( 0 .458, 0 .292, 0 .250) . Now, let us introduce some interaction into this
model. Assume that an increasing amount of car commuters causes overcrowdedness
of the roads which is discouraging train commuters from changing to car travel
with intensity -6 . On the other hand, when the proportion of train travellers is
increasing, the railway company may offer a better and more attractive train service
for a more affordable price . This is causing car commuters to be attracted to the
train with intensity 6 . The matrix of the "aping trends" is therefore given by

0 0 -'-6
B= 0 0 0

s 0 0

and because it is skew-symmetric, we necessarily have B - BT = 2B . A simple
computation shows that the critical point is again unique and is given by qT =
(2 , -1, s) = (0 .5,0 .3,0 .2) . A comparison with the non-interactive stationary point10
shows that taking into account the above described interaction in the long run causes
5 % of population that belongs to car commuters to change their mode of travel to
work. Most of them are taking the train, but some of them decide for the bus .

Very many other applications in the studies of dynamics of social systems could
have been proposed here : various socio-cultural and occupational mobilities, regional
migration, political and other affiliations, etc . In some of these the above described
model may turn out to be useful . However, there are many other ways of taking into
account interactive effects . In the next section we will describe an improved model
of the kind, while in section 5 a completely different approach will be presented .



Applications of Interactive Markov Models in the Dynamics of Social Systems 85

4 Models with differential growth rates
In this section we will study a model proposed by Kulkarni, Kumar (1986,1989) .
In those papers, an interactive model is introduced, similar to the one presented
in section 2, in connection with some applications to social mobility. The main
difference between the two models is the possibility that different states may have
different growth rates . The kind of models may have some advantages in applications
over the ones presented in section 2 especially in studies of dynamics of social systems
in rapidly changing societies . Just for the flavour of possible applications assume
a study of buying behaviour of a new product, which has been introduced lately
through a number of brands . The consumers are being recruited from the population
of people who have not been using this product before . But, different brands may
have substantially different success in attracting new customers to the product, so
that the population of buyers of a certain brand may grow at substantially different
rate as the group of buyers of some other brand . Let us improve the above presented
model in such a way that it will include the interactive model of Kulkarni and Kumar
(1989) . As we shall see the improved model will differ only slightly from the already
presented one and similar methods may apply.

Let again pij(n) denote the interactive transition proportions and let they be
defined by (1) . But, now, let vi denote the growth rate of the i-th class and let us
improve the recurrence relation (2) into Ei vigi(n)p;1(n) . However, the so obtained
k-vector is not a distribution of proportions any more . If P(n) satisfies condition
(5) it is still positive, but, may not sum to 1 anymore . Actually, the sum of its
components equals Ei vi gi (n) . Therefore, in order to get a distribution, we have to
normalize it by dividing it by this sum. In this way we get the improved relation
(2)

~; '	qi(n		vigi(n)pii(n)

	

(10)1) _	[ k	

L.Ji_i vigi(n)
To rewrite this main equation of the model in matrix notation we have to introduce,
in addition to what has already been introduced in section 2, the matrix of growth
rates N = Diagvi . Thus, P(n) can be given by (3) and (4), while q(n) has to follow
the recurrence relation

q(n+ 1 ) T =[q(n)TNe] -i q(n)TNP(n),

	

(11)
or, if we expand, using (3) :

q(n + 1)T = [q(n)TN,]-'q(n)TN [I + A + BDiag(q(n)) - Diag[Ae + Bq(n)]] . (12)

We are again interested in similar questions as in section 2 .
Let us first give some sufficient conditions for existence and stability of critical

points of the model, given by (12) . The following two theorems are based on similar
observations as theorems 1 and 2 . Namely, we can again rearrange equation (12) to
obtain

q(n +
1)T = [q(n)TNe]-'q(n)T [NPo + (NB - BT N)Diag(q(n))] .

	

( 13)

Using this relation we can prove the following two theorems :
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Theorem 3 Let the Perron-Frobenius eigenvalue of the matrix NPo be the only
one of that absolute value and let it have algebraic multiplicity 1 as well as a strictly
positive right eigenvector. If NB is symmetric and B satisfies condition (5), then
(12) has a unique critical point q . Furthermore, this point is stable and for any
starting distribution of proportions q(O) the sequence q(n) converges to q .

Theorem 4 If PO is as in theorem 3, B satisfies condition (5), and NB - BTN is
small enough, then there exists a unique stable critical point of model (12) . Further-
more, for any initial distribution q(O) the sequence of distributions q(n) converges
to this critical point.

5 Interaction within small groups
In this section we will consider a substantially different approach to interaction
which may be useful in situations where members of the population are not all in
similar contacts with each other, but the interaction is much more intensive within
some smaller groups of population than it is between these groups. In situations
where this is true for only a part of the population, we may use these methods for
this part and some other for the rest of population, of course .

The situation usually assumed in these models will be described in terms of a spe-
cific example, namely, the study of voting behaviour, however, these methods may
be useful for some other applications, such as consumers' buying behaviour . The
assumption is that the voting population (or a part of it) splits into a large number
of small groups of individuals having substantial impact on each other, while com-
munications between individuals of different groups are minimal and their influence
is negligible as compared to the mutual influence within the group . Examples of
this kind of situation are easy to find . Groups might be workers employed in small
plants or shops or maybe inhabitants of small villages . The model presented here is
a discrete time modification of the continuous time model given in Coleman (1964) .

To develop the model let us first assume that there is no interaction within a
group of size k . We are interested in their perspective vote with respect to a fixed
candidate A . Let us split the campaign time into smaller time units and assume
that the "intrinsic" probability that an individual decided not to vote for candidate
A at a certain point of time will change his mind during one period of time is a .
Similarly assume that an individual decided to vote for candidate A will change
his mind between two consecutive points of time is Q . The states of the Markov
chain are the total number of individuals decided to vote for candidate A . We will
compute the transition matrix of this chain as well as its stationary distribution .

In order to compute the transition matrix, let us assume that candidate A has
at a certain time point i out of k potential votes in the group and let us see what
are his chances on the next point of time, concretely, let us compute the probability
that he will then have j potential votes . This can happen in a number of disjoint
ways, namely, he can loose i - r votes and gain j - r votes, and, since r cannot
exceed neither i nor j and must not be negative, while j - r must not exceed k - i,
we have that r goes from coax{0,i + j - k} to mini, j} . For any particular r the
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lost votes may be chosen in (T) ways and the gained ones in (~=r) ways, while the
probability of any of these ways equals aj-r(1 -a)k+r- i -j/3i -r (1 -j3)r . Therefore,
the transition probability equals

min{i,j} CI)
r(r)a-r(1 - _)k+,-i-i qi-r(l _E

	

/3)r .

r=max{0,i+i-k}

A straightforward computation shows that this matrix is stochastic . It is a matter
of simple observation that it is also primitive and must have a left strictly positive
eigenvector which must represent the stationary distribution of this chain, if properly
normed. It turns out that this distribution is given by

k aif3k-i
qi = ~ i~ (al+~p)k ,

which can be checked out by a not so long computation . Note that this is a binomial
distribution for parameter a+,, .

Let us now generalize this model for the case of mutual interaction . The influence
of one person on a chosen person will be measured by a parameter y . Thus, if a
person is not voting for candidate A and if there are i individuals voting for this
candidate and k - i - 1 people besides the considered one not voting for him, then
the probability that the observed person will change his or her mind during one
period of time is (a + iy)/(1 + (k - 1)y) and the probability that he or she will stay
with the same decision is (a + (k - i - 1)y)/(1 + (k - 1)7) . Similarly, if somebody
believes to vote for candidate A together with i - 1 other individuals, while k - i
are decided otherwise, the probability that this person will change his or her mind
is (Q + (k - i)-y)/(l + (k - 1)7) and the probability that the individual will stick
with the decision for the next period is (a + (i - 1)y)/(1 + (k - 1)y) .

When computing the transition probabilities we have to take into account the
fact that the decisions of individuals are not being taken independently . To illustrate
the complication, let us compute the probability in a three-person group that-no-
one will be willing to vote for candidate A at the end of the period, provided that
nobody has been at the beginning. This probability is equal to the one that no one
of the three voters are changing their minds . One voter is not changing his or her
mind with probability (1 - a + 2y)/(1 + 2y) . However, once knowing that one of
the voters hasn't changed for candidate A, the conditional probability for one of the
rest becomes (1 - a + 7)l (1 + y) . Finally, after we already know that two of them
remained of the same opinion, the third one's probability to stick to the same choice
becomes 1 - a. Thus, the wanted probability is the product of the three :

(1 -a)(1 -a+y)(1 -a+27)
(1+7)(1 +27)

We would, of course, like to compute all the transition probabilities and it turns
out that they are all quotients of products of similar expressions . Thus, to simplify
these expressions we introduce the following notation :

if j < i
otherwise

pij =
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Using it, the probability, computed in the previous paragraph, becomes

113(l -a)
I1 3 (1)

We will omit all the details of the tedious and involved considerations leading to the
development of transition probabilities of this model. Here is the final result, using
the above notation:

i

	

k - i H;-'(a) Hkr+i' (1 - a)	
Ilk--r,
	 (/3)Hi(1 - /3 )Pi)

		

r

	

r

	

Hk 1
r=mu{o''+7-k} ()

	

) 1( )

It is not so easy to check that this defines a stochastic matrix, but, it is true . And,
it is even harder to find out its positive left eigenvector corresponding to eigenvalue
1, which represents the equilibrium point of this Markov chain . However, such an
eigenvector exists and it is even possible to compute it . The stationary distribution
is given by probabilities :

- (k)Hi(a)Hi-'(/3)9; - i

	

Ilk,(-+P)
We can easily recognize in the above equilibrium distribution the well-known

Polya's distribution for k draws from an urn with parameters a+P and a+p . The
same distribution was obtained as stationary by Coleman (1964) in his continuous
time model treating a similar problem . He also claims that this distribution has
been confirmed by some experimental data .

6 Conclusion

Although the theory of Markov models has been often used in the studies of dynamics
of social systems, there are many questions left unanswered . One of the area which
may be gaining in its popularity and where many problems are yet unsolved are
the interactive Markov models . This calls for a more systematic treatment of the
subject .
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