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Abstract

The objective of this study was to assess quantitatively the success of three
scaling methods in recovering a known multidimensional configuration. A range of
configuration types was considered, from strictly clustered, through mixed, to purely
random. The multidimensional scaling methods used were metric scaling, ordinal
scaling and metric scaling on ranked input distances. The results indicate that
previous recommendations, which were based on random configurations only, need
to be modified in the presence of clustering.

Keywords: Analysis of variance; Configuration comparison ; Multidimensional
scaling methods ; Procrustes analysis .

1 Introduction

Multidimensional scaling is a popular technique of multivariate analysis in many
areas of application . It is appropriate whenever the available data are in the form of,
or can be converted into, an (n x n) matrix of similarities or dissimilarities between
every pair out of n stimuli or objects . The technique then aims to produce a low-
dimensional configuration of n points in which the points represent the stimuli and the
distance between any two points approximates the similarities or dissimilarities
between the corresponding stimuli.

There are now many variants of the technique (see, e .g. Davidson, 1983), but two
in particular have found favour among statisticians . The first of these is metric scaling
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(MS), also known as classical scaling (Torgerson, 1958) or the principal coordinate
analysis (Gower, 1966) ; in this method the approximation between inter-point distan-
ces 8, and inter-object dissimilarities 8, is such that the value of ITO, - d.)2 is
minimised . Thus in this method the configuration of points is one in which the actual
values Sv are recovered as well as possible . The second approach is non-metric scaling
(Kruskal, 1964), also known as ordinal scaling (OS); in this method the configuration
of points is the one in which the rank order of the d . matches that of the 6 as well as
possible. Details of both methods can be found in most books on multivariate analysis
(e .g . Chatfield and Collins, 1980).

In many applications, non-metric scaling is favoured over the metric version even
when 5, are available in numerical form rather than merely as ranks, because a good
representation can often be found in fewer dimensions than with metric scaling .
However, it is also well known that if the objects or stimuli are clustered and within-
cluster distances are smaller than the between-cluster distance, then non-metric
scaling can lead to degenerate solutions whereas metric scaling is similarly not
affected.

In an attempt to obtain the best of two worlds, Weeks and Bentler (1979) suggested
carrying out metric scaling but on the ranked input distances (MRS), and justified their
recommendation by means of a stimulation study . In this study they generated initial
configuration from a uniform pseudorandom generator . They then calculated Euclid-
ean distances d from these random configurations, added a random error e to each
distance and distorted the result by a known function f, i .e . h = f (d + e). The following
functions f were considered: identity, power, rank and absolute value ; the first three
are all monotone while the fourth is not . All their datasets were then scaled using the
linear model (i .e . MS), the monotone model (i.e. OS), and the 'rank - linear model' (i .e.
MRS). The authors concluded their study with the following remarks :

"The monotone model has the advantage of robustness over the linear model,
since, in this study, it performed better than the linear model for all systematic and
nonmonotone distortions . The linear model has the advantage of conceptual efficiency
and avoids the danger of degeneracy . The rank- linear model appears to offer the
advantages of both. The only computation it requires over the linear model is the initial
ranking of data . The ranking eliminates all systematic monotone nonlinearities,
whereas the linear analysis avoids the potential of degeneracy due to monotone
regression ."

It should be pointed out that only random configurations were included in their
study. However, random configurations are not very likely in the analysis of real data .
On the other hand degenerate solutions can be expected with clustered initial
configurations, as these clusters may collapse into points in reconstructed configura-
tions .

The objective of the present study was therefore to investigate the performance of
MRS on other types of configurations and to compare it more fully with MS and OS .
Does MRS 'offer the advantage of MS and OS' only for random input configurations?
Configurations having particular characteristics were generated by computer and
multidimensional scaling was done using each of three methods. The following
configuration characteristics were varied : number of points, dimension of configura-
tion and configuration type . Details of the study design are given in Section 2, results
are presented in Section 3, and conclusions are summarised in Section 4 .
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2 Design of the study

2.1 Configuration Type

We wished to investigate the three multidimensional scaling methods on a range
of configuration types that included both 'random' and 'clustered' configurations . In
order to do so, we first set up the following definitions . Let a unit (hyper-)cube of given
dimensionality r be divided into a grid of equal subcubes . A'cluster' is defined to be a
set of points allocated at random within one such subcube . For a fixed number k of
clusters, a configuration of N points is called 'strictly clustered' if every point is
allocated to a cluster and clusters lie within strictly non-adjacent subcubes in the grid .

Now suppose that a configuration contains N points . A continuum of configura-
tions ranging from 'strictly clustered' to 'random' can be defined as follows . Let
(1 - g) x N be the number of points that are allocated to a strictly clustered configu-
ration, and let the remaining µ x N points be allocated randomly within the whole unit
cube. When µ = 0 the configuration is strictly clustered, and when µ = 1 the
configuration is random. For 0 < g < 1 it is a mixed configuration, the size of g
determining the amount of structure that it contains .

Figure 1 gives some examples of these configurations in 2-dimensional space .

2.2 Factors under study

In our study, the following factors were varied :
•

	

N, the number of points (N = 30 points and N = 60 points) ;
•

	

r, the dimensionality of the input configuration (r = 1, 2, 3, 4) ;
•

	

g, the type of input configuration (µ = 0, 1/3, 2/3, 1) ;
•

	

the scaling method (MS, OS, MRS) .

3 independent replications were generated for each combination of N, r and µ .
Thus 2 x 4 x 4 x 3 = 96 configurations were processed by each of the three scaling
methods .

2.3 Methods of assessment

Let us denote by S.. the Euclidean distance between the points i and j in the original
configuration in r dimensions, and by d Q the Euclidean distance between the corre-
sponding points in the p-dimensional subspace generated by one of the multidimen-
sional scaling methods (p <_ r) . In order to assess quantitatively the success of this
particular scaling method, a single numerical summary comparing the d, with 8, is
inadequate ; it is necessary to compare the two configurations themselves (Gower,
1971; Sibson et al,1981) . This can be done by Procrustes analysis (Gower, 1971 ; Sibson,
1978) : the recovered configuration is translated, rotated and reflected so that it best
fits the original configuration and the goodness-of-fit is then assessed by the sum of
squared distances M 2 between corresponding points of the two configurations . This
comparison could be done in r dimensions by appending (r - p) columns of zero
coordinates to the (p-dimensional) recovered configuration, or in p dimensions by
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Figure 1 : Examples of a strictly clustered configuration ( p = 0 ), two mixed configurations
(p= 1/3 and p= 2/3) and a random configuration (y= 1) in two-dimensional
space . Number of points is 60 . number of clusters 3, number of points per cluster
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taking the first p principal axes of the (r-dimensional) original configuration . The
former method was adopted here, as it is in most practical applications .

This approach provides a natural way of comparing different methods of scaling
across the different experimental conditions, providing that a suitable standardisation
of data sets is applied so that values of M2 can be compared across conditions. A simple
normalisation is provided by resealing each configuration so that its sum of squared
coordinates is unity before the Procrustes analysis is conducted, and this was done in
the present instance. Having ensured comparability of M 2 values, an approximate
justification for analysing results via ANOVA has been provided by various authors
(e.g . Gower, 1971).

3 Results

3.1 Output configurations

Each original r-dimensional configuration was reconstructed in p-dimensional
subspaces for p = 1 . . .r by each of three scaling methods . Thus, conditioning on r, 2 x 4
x 3 x 3 x r = 72 x r output configurations resulted for fixed r, yielding 720 output
configurations in total . The multidimensional scalings were all conducted by using
ALSCAL options within the SAS computer package, and subsequent Procrustes
analysis were constructed using the ROTATE options within GENSTAT . OS failed to
give an output configuration for 7 out of the 96 input configurations : 3 for dimension
r = 3 and 4 for r = 4 . Input configurations for 3 of these 7 degenerate solutions were
strictly clustered, 3 were mixed and 1 was random. For all of them, however,
reconstructed configurations in subspaces p =1 . . .r-1 existed. 2 out of 4 configurations
for r = 4 (N = 60, µ = 0 and N = 30, g = 0) gave perfect fit in 3 dimensions .

3.2 Analysis

For each true dimension r we had a 2 x 4 x 3 (i.e. N, g, method) factorial experiment
with 3 replications . As the output configurations resulted in subspaces of dimension
p=1. . .r, and the results for different p were correlated, a split-plot design with repeated
measurement constraints was appropriate for the analysis . The Greenhouse and
Geisser (1959) 'e-adjusted F-tests' were carried out in hypothesis testing of subplot
interactions with dimension p (see also Kenward, 1981) .

An analysis of variance table was obtained for each value of r using GENSTAT .
Values of M2 for degenerate solutions were treated as missing. Table 1 presents the
analysis of variance of M2 for r = 4 .
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Table 1 : Analysis of variance of M 2 when r = 4

SOURCE OF VARIATION

	

DF

	

SS

	

SS%

	

MS

	

F

N 1 0.045243 0.22 0.045243 5 .558
METHOD 2 0.052074 0 .25 0.026037 3 .199
CONFIG 3 3.470308 16.94 1.156769 142 .105
N.METHOD 2 0.001459 0 .01 0.000729 0 .090
N.CONFIG 3 0.041949 0 .20 0.013983 1 .718
METHOD.CONFIG 6 0.069430 0.34 0.011572 1 .422
N.METHOD.CONFIG 6 0.001302 0 .01 0.000217 0 .027
RESIDUAL1

	

48

	

0.390732

	

1.91

	

0.008140
TOTAL1

	

71

	

4.072495

	

19.88

	

0.057359

DIM 3 13 .081988 63 .86 4.360662 1632 .188
N.DIM 3 0 .032157 0 .16 0.010719 4.012
METHOD.DIM 6 0 .043029 0 .21 0.007171 2 .684
CONFIG.DIM 9 2 .867780 14.00 0.318642 119.267
N.METHOD.DIM 6 0 .000478 0 .00 0.000080 0.030
N.CONFIG.DIM 9 .0 .071679 0 .35 0.007964 2 .981
METHOD.CONFIG.DIM 18 0 .013124 0 .06 0.000729 0.273
RESIDUAL2

	

158

	

0.422123

	

2.06

	

0.002672
TOTAL2

	

212

	

16.53233

	

80.70

	

0.077983

GRAND TOTAL

	

283

	

20.604828

	

100.58

3.3 Results

The following features emerge from the analysis .

Main effects
The quality of recovery for 30 points is better than that for 60 points .

MRS performs significantly worse than MS or OS .

The more random the configuration, the worse is the recovery .

Interactions
OS and MS have the same profiles in p dimensions, for all p = 1 . . .r: the quality of

recovery worsens as g increases. The more clustered is the configuration, the better are
the results . For p = r, perfect fit is always obtained with MS, while for OS perfect fit
or no fit are the two alternatives .

MRS reflects the same pattern for the subspaces of lowest dimensions, but as p
increases the behaviour reverses : the more random the configuration the better are the
results. It should be pointed out that in the subspace of true dimensionality very bad
fit is obtained for strictly clustered and mixed configurations, while for random
configurations the results of all three methods are very similar .

Figure 2 illustrates these interactions .
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Figure 2: Mean values of M2 plotted against p jor p a 1 . . .4 and for each of the scaling

methods MS . MRS and OS . Missing values were eliminated in the calculation of

the means.

4 Conclusions

Our study revealed that Weeks and Bentler's conclusions should be modified as
follows: MRS inherits the advantages of MS and OS for random configurations, but the
disadvantages of OS for strictly clustered and mixed configurations . The disadvantage
of MRS becomes evident in the subspace of true dimensionality for strictly clustered
and mixed configurations . The phenomenon is due to the fact that MRS inflates small
differences in distances in clustered configurations by ranking them . Distances in
random configurations are less affected by ranking, which explains the high quality of
recovery .
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=3
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