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Bézier Curves:
Simple Smoothers of Noisy Data

Andrej Blejec!

Abstract

In many instances only the approximation curve to experimental or field
data is of interest. Application of Bernstein-Bézier polynomials for smoothing
of noisy data is shown. Bézier curves provide a simple yet efficient way to
approximate (or smooth) arbitrarily spaced vector valued functions without
explicit model specification. To evaluate the efficiency of Bézier curves some
simulated cases are presented.
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1 Introduction

Smoothing of noisy data is a common problem in data analysis. The ability of
human brains to extract the signal from the data, even from substantial noise, is
amazing. But we get into troubles when we want to get rid of noise by calculation.
If one understands the underlying process, the modelling approach is used. It is not
an easy task especially in nonlinear cases. One has to estimate model parameters
and to decide about the complexity of the modelling function.

If model parameters have an explanation as process parameters and the estimates
are used for comparison of different processes, then it is worthwhile to estimate them.
But this is not always the case. Sometimes we want only to drop the noise and plot
what we perceive as the signal, hidden in the noise. In such cases hand-drawn curves
would be sufficient. It seems, that Bézier curves are a sort of formalized hand-drawn
curves.

Approximation with Bernstein polynomials, known from general approximation
theory (Isaacson 1966), was recommended by Schoenberg (1959) : “The Bernstein
polynomials should be used whenever we need polynomial approximation which does
not oscillate more often about any straight line than the function to be approxi-
mated.” He showed that Bernstein approximation is always at least as “smooth”
as the primitive function f where “smooth” refers to the number of undulations
and the total variation of f. The main disadvantage of Bernstain approximation
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is slow convergence to f as the degree of polynomial is increased. Davis (1963)
suggested that Bernstein polynomials would “perhaps ...find application when the
properties of the approximation in the large are of more importance than closeness
of fit”. One such field of applications, referred by Forrest (1972) as computational
geometry is the design of smooth free-form curves and surfaces (Gordon 1974). In
the field of design for the automobile, aircraft and shipbuilding industries modified
Bernstein polynomials, known as Bézier curves, are widely used due to P. Bézier who
introduced them to automobile design. Bézier curves are used in modern computer
design of typefaces for printing (Knuth 1986).

In present article we shall try to show an application of Bézier curves to data
smoothing problem.

2 Bernstein polynomials

Bernstein polynomial of degree n associated to an arbitrary function f:[0,1] — R
is defined as
- k
Balfl) = Y bus(I () 1)
k=0
where the weighting functions b, are the discrete binomial probability density
functions for fixed probability ¢

n

boi(t) = (k)tk(l —t)"* k=0,1,...,n. 2

Regarded as an operator with argument f, B, is linear, B,[af + 8g] = aB,[f] +
BB,lg] for any real numbers a and 8. Bernstein polynomials have variation di-
minishing and convexity preserving properties (Schoenberg 1959). An example of
Bernstein polynomials is shown in Figure 1.

n=1

Figure 1: Bernstein polynomials of degrees n = 1,2,...,10 (lines) for f(z) = 2*
(circles).

3 Bézier curves

Bernstein polynomials were modified by P. Bézier for description of vector valued
functions : curves f : [0,1] — R? or surfaces f : [0,1)> — R3.
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Definition 1 Let P.(k = 0,1,...,n) be n + 1 ordered points in R™ and consider
the polygon formed by joining successive points. The Bézier curve associated with
this polygon is the vector valued Bernstein polynomial B, [P, Py,..., P,] given by

n
Ba[Po,Pry.. oy Pa] =) bas(t) P, ®)
k=0

where b, k() are the binomial probability density functions (2).

In the case of a planar curve Pi(24,y:) € R? one simply treats each coordinate
z and y independently obtaining two equations of (1).

Bufz](t)y =) ba(t)ax )

k=0

and n
Baly)() = ) b (t)ye- (%)
k=0

to illustrate the relation between polygon Py(k = 0,1,...n) and the associated
Bézier curve, Figure 2 shows two plane curves.

Figure 2: Two polygons (thin line) with associated Bézier curves (thick line)

The ordering of data points influences the shape of the associated Bézier curve.
In the example from Figure 2, the relative positions of points on the polygons are
the same but their order is not. Note also that the Bézier curve passes through the
first and last data point with the first and last polygon segment being its tangents.

4 Bézier curves and smoothing of noisy data

Bézier curves were applied to the problem of noise reduction in noisy set of data:
Let o < 7, < ... £ z, be a set of ordered arbitrarily spaced points on a finite
interval and let yo,41,...,¥n be a corresponding set of noisy observations given by

yk=f(.’tk)+€k, (k=0,1,...,n) (6)
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where f is smooth, but unknown, function of z and the ¢, are random errors with
E(¢) =0 and E(e?) = o? for some unknown o? (E denotes expectation).

One wishes to find a smooth approximation { or regression curve ) for the set of
points (zx, yx).

As “Bernstein approximation is always at least as smooth as the primitive func-
tion” (Gordon 1974, p. 296), one can expect to gain such smooth approximation by
finding the Bézier curve (4),(5) for the set of points (zx,yx), (¥ =0,1,...,n) and
approximate them by the corresponding set of points (B,[z](t), Ba[y](t)), t € [0, 1].
From linearity of B,, and definition of y (6) we have

Bo[y](t) = Ba[f(2)](8) + Balel(?), t€[0,1].

As one can expect B,[f(z)] to be close to f, goodness of approximation depends
on variation of By[e]. From general properties of Bernstein polynomials we can
expect, that variance of the error term ¢ is reduced i.e. E(B.[e?]) < E(e%)(see
Figure 3).

Figure 3: Bézier curve (thick line) for the error term ¢ (thin line) (n = 100,02 =
20,40,80). Notice the susceptibility of approximation to change in variation. Small
circles represent mean value of the error term.

Bézier curves are mean value preserving and variance diminishing (Blejec 1992).
{Mean value preserving property is very important in design applications, since
the center of gravity is the same for the control polygon and the corresponding
Bézier curve/surface.) The mentioned properties enable us to use the proportion
of explained variance r} = Var(B,ly])/Var(y) (Var stands for variance) as the
measure of goodness of approximation of f from (6). However, it is not expected
for r} to be close to 1, if variance of the error term is large. In the best case, r% is
comparable to determination coefficient r% for f from (6), if the later is known.
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Figure 4: Logistic function (small circles) with added error term (thin line) and
associated Bézier curve (thick line) (n=400).

5 Simulation

In order to test the efficiency of Bézier curves for data smoothing, several simulations
with known function f and known variance of ¢ were run. Some results are plotted
on Figures 3 to 8.

A computer program for generation of sequences of points [(z¢, yi), k = 0,1,...,n]
according to (6) was prepared. Bézier curves were calculated from (4) , (5) and
plotted against the original data. For a large number of points (n > 200), Normal
approximation of Binomial probabilities was used. Poisson approximation was used
instead of Normal for low (¢t < 0.1) and high (¢ > 0.9) values of . From the defini-
tion of Bézier curve ( (3) and (4) ) it is clear that data may be arbitrarily spaced
on z. Different numbers of data points were used in simulations. Bézier curves were
efficient regardless of the number of data points in original data. However, when the
variance of the error term is large, it is desirable not to have too few measurements.
The calculation scheme is efficient enough to be used with large datasets (several
thousand points).

Even if equations (4) and (5) indicate, that all data points contribute to the
calculated points on the Bézier curve, it is not the case for large data sets since b i(t)
vanish while k/n diverge from . The distribution of weights b, x(¢) is different for
each ¢, being highly asymmetric at the endpoints of the data sequence. We can treat
calculation scheme for Bézier curve as a moving average with adaptive weights by, &
for each t. No data points have to be abandoned, and we are able to calculate the
approximation from the first data point to the last one. As a disadvantage we may
count, that Bézier curve starts at the first and ends at the last data point. But in
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experiments, the beginning and end of a set of measurements are seldom of interest.

6 Conclusions

In our experiments, the residual variance Var(y — B,[y]) was always close to known
variance of the error term ¢ and r} was close to 3. From this we conclude, that
Bézier curves are good and simple approximations for the true regression curves f.

Due to slow convergence of Bernstein polynomials, an underestimate of curvature
was found if original function was highly curved. But this slow convergence ensures
the averaging property of Bézier curves.

Figure 5: Sine function (small circles) with added error term (thin line) and associ-
ated Bézier curve (thick line) (n = 400).

Figure 6: Growth curve (n=17).

We found interesting results in applying Bézier curves to some strange situations
that are very common in practice. One such simulated function is shown on Figure
7.

In spite of some inefficiencies we found Bézier curves quite satisfactory in many
applications.
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Figure 7: Step function (small circles) with added error term (thin line) and associ-
ated Bézier curve (thick line) (n=400).

Figure 8: Spike function (small circles) with added error term (thin line) and asso-
ciated Bézier curve (thick line) (n=500).
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