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Abstract 

With the help of recent theoretical results, we use the estimates from 
neural network modelling as basis for formal statistical inference. Multi-
layer perceptrons are applied to model biomass in a complex alpine terrain 
with limited amount of variables by combining temporal remote sensing 
with classical field methods from plant physiology. We test the hypothesis 
that the dynamics of the biomass distribution can be captured with the help 
of geo-registered and ortho-rectified colour images from the opposing hill 
slope. Therefore the network model is trained carefully and misspecification 
is tested by the non-linearity tests of Ramsey and of Teräsvirta, Lin and 
Granger. Plausibility and sensitivity analysis as well as ecological 
considerations in respect of content support the validity of our final model. 
With the help of bootstrap techniques the significance of colour patterns for 
modelling phytomass is demonstrated. 

1 Introduction 

Multi-layer perceptrons (MLP) are a widely used class for non-linear modelling. 
Their greatest advantage is that a-priori knowledge of the specific functional form 
is not required. Most applications of feedforward MLP have been concerned with 
the estimation of relationships between input and target variables of interest and 
the superiority of the performance of this approach in comparison to more classical 
methods, but they are not only a ‘black-box’ tool. In fact, they have the potential 
to significantly enhance scientific understanding of empirical phenomena subject 
to neural network modelling. In particular, the estimates obtained from network 
learning can serve as a basis for formal statistical inference. Statistical tests of 
specific scientific hypothesis of interest become possible. Because of the ability of 
MLP to extract complex nonlinear and interactive effects, the alternatives against 
which such tests can have power may extend usefully beyond those within reach of 
more traditional methods, like linear regression analysis.  
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The paper of White and Racine (2001) put a promising theoretical foundation 
for valid inferences regarding input variables with the help of bootstrap 
techniques. We apply their theoretical results to the problem of modelling canopy 
development. The hypothesis that spatial distribution of colours of true-colour 
imageries (remote sensing data) (RGB-colours), despite topographic (stationary) 
variables (horizontal distance, cover of dwarf shrubs, and land-use variables), 
explains biomass distribution is tested in this article. As a first experiment we 
used multiple linear regression analysis and gave empirical evidence for the 
possibility to model spatial-temporal pattern of canopy structure with the help of 
the quoted inputs (Walde et al., 2002). Tests for neglected non-linearity identify 
the correctly specified model. As the obtained relationships are non-linear, the 
importance of the input variables is not simple measurable as the corresponding 
coefficient like for example in linear regression analysis, but both graphical and 
statistical measures identify the importance of influence factors on canopy 
development.  

 
 

 

 

 

 

 

Figure 1: Along two transects from the valley till the ridge data was collected from 
biomass. At each point (1-9) the canopy development was ascertained to each of the most 

important management types. 

2 Material and modelling approach 

2.1 Study area 
 
The study area is situated in the upper Passeier Valley (South Tyrol, Italy) in the 
central eastern Alps. It is a narrow, v-shaped valley with fairly steep slopes. It 
extends over approximately 3 km² and ranges from 1200-2350 m in altitude. The 
area of interest is located on the south exposed hill slope, comprising the alpine 
meadows of the farmers of the village Walten and the adjoining forest below. A 
great part of the meadows, especially on steeper slopes, has been abandoned, 
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whereas other parts have been managed to a greater degree. This has led to a high 
diversity of vegetation (on the study area 21 vegetation units have been 
determined, Tasser et al. 2001). From the scientific point of view, the differences 
in colour distribution and canopy phytomass, which are connected with the patchy 
vegetation and land-use distribution, are the most interesting aspect of this 
landscape. 

2.2 Database 

Biomass (photosynthetically active phytomass and total phytomass) of typical 
stands were analysed at nine times during the vegetation period (04/23/97, 
05/16/97, 05/27/97, 06/15/97, 07/16/97, 07/30/97, 09/15/97, 09/29/97, and 
10/29/97) along two altitudinal transects (1240 – 2200 m a.s.l.) with 21 
permanently marked locations within the study (9 transect points and 1-4 different 
land-use types, cf. Figure 1) that were registered with the GIS database. These 
investigations were accompanied by rough phytosociological assessment of the 
vegetation and estimation of the amount of cover deriving from dwarf shrubs. All 
important vegetation types were included in this inventory. 

Not at each location every management type was available, and observation 
units with missing input values were eliminated. Hence, altogether 167 
observation units were available. 

The temporal heterogeneity of stand development in the study area was 
captured by photographs. They were taken from the opposing hill slope at the same 
time as the canopy development was analysed. As a capturing system a 35 mm 
single lens reflex camera, namely a Pentax A-3 with Takumar 28 – 80 mm 
objective, was used with Kodak Elite Chrome 100 colour slide films. To be able to 
take photographs automatically an electronic timer was added to the camera. The 
lens aperture and the exposure time were set to automatic to allow adjustment to 
different weather conditions. By means of the timer one photograph was taken at 
noon (12.00h CET). The horizontal distance from the camera position to the area 
of interest ranged between 1250 m and 2350 m. Nine photographs corresponding to 
the harvest dates were georectifed with the JUKE method (Aschenwald et al. 2001) and 
partitioned according to their RGB-colour values (‘red’, ‘green’, ‘blue’).  

Topographic parameters of the study site (e.g. horizontal distance) were derived from a 
digital terrain model with a 5 m pixel resolution (Ostendorf et al. 1999). 

2.3 Multi-layer perceptron 

The RGB-colours as well as the horizontal distance from the camera position to 
the single pixels on the opposite hill slope, cover of dwarf shrubs and land-use 
indices were used as independent variables in order to model phytomass measured 
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on the site (Guisan et al., 2000). Three land-use indices were derived from land 
use types: hay utilization, pasture utilization, and mowing. ‘Hay utilization’ is 
defined as the quotient of all human impacts (mowing, fertilization, irrigation) and 
the frequency of these interferences in years, ‘pasture utilization’ is a binary 
variable, and ‘mowing’ is the number of cuttings per year (for details see 
Tappeiner et al., 1998). 

As analysing tool we used a fully connected, three-layered perceptron (MLP) 
with an additional linear connection from the input layer to the output layer and a 
single output unit corresponding to our dependent variable (total phytomass) (1). 
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where I is the number of input variables, HU is the number of hidden units, w..

(.) 

are the weights, x is the input vector, ( )ˆˆ f=y x,θ  is the network output. 

Theoretical proofs show that standard multilayer feedforward network 
architectures are a class of universal approximators (Hornik et al. 1989). 
Especially in our scientific field with lack of a-priori theoretical explanations for 
functional form of relationships, we expect new knowledgegain about connections 
and influences of variables. The challenge using this highly flexible method is to 
handle the huge amount of degree of freedoms in an appropriate way (especially in 
comparison to our limited amount of data) and hence get reliable and interpretable 
results. We established our MLP with the help of statistical methods and cross-
validation procedures to make sure to detect real relationships and not faked ones.  

To test the hypotheses of misspecification, we used the RESET test and the 
test developed by Teräsvirta, Lin and Granger - TLG (1993). The RESET test 
proposed by Ramsey (1969) postulates an alternative model of the following form: 
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where ty  is the observed value of the dependent variable for unit t, ˆty  is the model 

output for unit t, ia  are parameters and tv  are the residuals. 

The null hypothesis is 0aaa:H k320 ==== K . Denoting ê  the vector of 

estimated residuals from the model under the null hypothesis and ν̂  the vector of 
estimated residuals under the alternative model, the test statistic is 
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which is approximately F(k-1, n-k) when 0H  is true (n is the sample size).  

As a further checking, the test of Teräsvirta, Lin and Granger (TLG) (1993) 
was employed. Studies (Teräsvirta et al., 1993; Anders et al., 1996) show that this 
test is superior to many other existing tests including White’s network test (White, 
1989). The version of the Gauss-Newton regression is given in the following 
equation: 

 

( )ˆˆ ,T
t ijk it jt kt t

i j k

e f , β x x x ν= ∇ + +∑∑∑tα x θ     (4) 

 
where α  is a parameter vector, ∇  is the vector of partial derivatives with respect 

to the weights of the model ( θ̂ ), ijkβ  are parameters, and tv  is the residual for unit 

t. 
The test statistic is the uncentered determination coefficient of this regression 

times the sample size ( 2
unR ) which is asymptotically 2χ -distributed. Theoretical 

arguments and empirical studies (Davidson 1993) demonstrate that the F statistic 
(5) has better finite-sample properties than the 2

unR  statistic based on the same 

Gauss-Newton regression. Hence we used the F statistic too. USSR and RSSR are 
the unrestricted and restricted sum of squared residuals, r is the number of 
restrictions and k the number of parameters: 

 
( )[ ] ( )[ ].knUSSR//rUSSRRSSRF −−=     (5) 

 
To apply these two tests properly, colinearity had to be avoided by forming the 

principal components of k
t

2
t y,,y ˆˆ K  ( ktjtit xxx ), choosing the Q* largest principal 

components (except the first principal component so as not to be collinear with 

tx ), and then regressing ty  on these and tx . The resulting test statistics RESET* 

and F* are F(Q*, n-k) when 0H  is true (Lee et al. 1993). 

The whole data set was divided randomly into three disjoint samples: training set (T) 
to optimise the network, validation set (V) to control the error during learning process, and 
generalisation set (G) to estimate the quality of the model (|T|=70, |V|=30, |G|=67). Input 
and output variables were normalized (transformed to the interval [-1,1] and [0,1] 
respectively).  

With the help of Levenberg-Marquardt learning algorithm (Bishop, 1996) the 
mean squared error was minimized. For optimising the network with respect to the 
number of hidden units we picked the network with the smallest mean squared 
error on the validation set.  

The final model regarding the input variables was chosen with the aid of the 
Akaike information criterion (Akaike, 1973, 1974), the Schwartz information 
criterion (Schwartz, 1978) and the penalized prediction error (Bishop, 1996 (6)). 
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where MSE is the value of the mean sum-of-squares error, P is the number of 
parameters, n is the sample size, and 2σ  is the variance of the noise on the data 
(which must be estimated). Further, the mean absolute error and the mean absolute 
percentage error were analysed for the suitability of the model. 

2.4 Significance of input variables 

With the help of the optimised network, we wanted to test whether or not the 
colour inputs are significant. White and Racine (2001) investigated the statistic 
and its distribution for the null hypothesis that some input variables are not 
significant. In the following the most important results for this paper are 
summarized. The null hypothesis is framed in the following way: 

 
( ) ( ),210 x,wfx,wf:H =       (7) 

 
where f1 is the network which is optimised with all inputs, and f2 is the MLP 
optimised with input variables except the one of interest, in our case without the 
colour inputs. 

As statistic they used:  
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where *
⋅w  are the optimal weights and µ  is the probability distribution of X.  

The optimal values are replaced with consistent estimators to make the statistic 
feasible. The resulting statistic is: 
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Theorem 2.1 of their paper states that under suitable conditions the statistic is 

distributed like: 
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where N2 is the distribution of n independent 2χ -distributed variables (White 
1994, Lemma 8.2). Fortunately with the help of bootstrap techniques, we can 
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approximate this distribution and hence obtain the rejection region of the null 
hypothesis. 

The corresponding bootstrap statistics are: 
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where ( )TTT
n www 21 ˆ,ˆˆ ≡ , #

tX  are the ‘new’ inputs drawn randomly with replacement 

from the sample of the original ones, #ˆ nw  are the corresponding weights of the 

optimised networks by means of the bootstrap sample. 

They proved (Theorem 2.3) that ( )**
2

# ;,0ˆ MCNA
d

n →  and ( )**
2

# ;,0 MCNA
d

n → . 

The procedure is realized in the following steps: 
1. Using original sample, solve for f1 and f2 to get weights 
2. Draw a sample with replacement from the original sample and compute re-

sampled weights 

3. Compute bootstrap statistics: ## ,ˆ
nn AA  

4. Replicate steps 2) and 3) 100 times 
5. Compute a one sided (1-α)% acceptance region ( �c ) 

6. Reject 0H  if the original test statistic ( nmn ˆ⋅ ) exceeds �c . 

3 Results 

Our main hypothesis is that spatial-temporal distribution of total phytomass relates 
to colour patterns in the photographs. By means of descriptive analysis, the spatial 
differences of total phytomass show a strong elevational gradient and vary strongly 
with land use (Table 1). The results show also temporal change in the structure of 
grass communities (cp. last two columns of Table 1). 

Colour values, horizontal distance (also a measure of altitude), cover of dwarf 
shrubs and land-use variables were used to model and consequently to explain 
phytomass pattern. As benchmark method we used the multiple linear regression 
analysis. The results demonstrate the existence of relationships between the used 
independent variables and total phytomass regarding the determination coefficient 
(cf. Table 2). 
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Table 1: Measured total phytomass under different land-use along an elevational 
gradient (for the position in the transects see Figure 1). n = number of measurements     
in course of the vegetation period, TP = total phytomass, s.d. = standard deviation. 

 TP (kg m-2) 

 
transect 
points 

Mean altitude 
(m a.s.l.) n x  s.d. 

1 + 2 2098 16 0.60 0.52 
3 + 4 1998 16 0.82 0.72 
5 + 6 1834 16 0.91 1.12 

Abandoned 
area 

7 + 8 1742 16 1.08 1.24 
2 2088 9 0.46 0.30 
4 2007 9 0.48 0.36 

Pasture 

7 1773 9 0.61 0.33 
3 + 4 1998 18 0.31 0.76 
5 + 6 1833 17 0.44 0.62 

Lightly used 
hay meadow 

7 + 8 1740 17 0.44 0.91 
4 2007 9 0.16 0.27 

5 + 6 1835 17 0.23 0.66 
7 + 8 1748 18 0.31 1.03 

Intensively 
used hay 
meadow 

9 1214 9 0.30 0.75 
 

 

Table 2: The performances of the multiple linear regression analysis and of the MLP 
with respect to different colour inputs are shown. Sig. is the significance of the non-
linearity tests (RESET, TLG), R2 is the determination coefficient. Beside the colour 

inputs, horizontal distance, cover of dwarf shrubs, mowing, hay utilization, and      
pasture were used as independent variables. 

 Multiple Linear Regression MLP 
Colour 
Inputs 

R2 (%) RESET TLG R2 (%) RESET TLG 

 overall k=2 k=6, 
Q*=1 Sig. overall T V G k=2 k=6, 

Q*=1 Sig. 

red 70.02 0.074 0.037 0.045 78.22 79.18 76.58 78.03 0.981 0.216 0.182 
green 69.64 0.146 0.042 0.000 80.39 82.55 76.45 77.92 0.310 0.101 0.221 
blue 69.59 0.150 0.043 0.000 78.95 85.71 74.02 79.70 0.001 0.058 0.146 

red, green 69.87 0.054 0.016 0.002 77.25 79.69 75.48 76.61 0.059 0.453 0.361 
red, blue 69.81 0.096 0.030 0.002 79.72 81.32 78.80 79.16 0.858 0.207 0.410 

green, 
blue 69.60 0.155 0.044 0.005 84.77 92.66 82.07 81.60 0.171 0.313 0.630 

 
With the help of both statistical tests (RESET and Teräsvirta, Lin and Granger 

test), the null-hypothesis of a well specified model had to be rejected regarding the 
linear model. Concerning the MLP, the results of the non-linearity tests depend on 
the used inputs. The input variable ‘blue’, as sole colour input, is not sufficient to 
capture the non-linearity in the data. Interestingly, this model as well as the 
approach with ‘red’ and ‘green’ as colour inputs required the highest number of 
hidden units. Given the data limitation we should employ parsimonious models. 
The models with the colour input ‘red’ and the model with the inputs ‘green’ and 
‘blue’ are the most parsimonious models with respect to the number of parameters 
(two and three hidden units respectively). The two non-linearity tests agree that we 
can accept the null hypothesis of no misspecification for these models. 
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The Akaike information criterion as well as the penalized prediction error are 
smaller for the model with the inputs ‘green’ and ‘blue’. The Schwartz information 
criterion favour a little bit more the MLP with just the colour ‘red’ as input. 
Furthermore, the smaller mean absolute error and the smaller mean absolute 
percentage error indicate the suitability of this model (cf. Table 3). Consequently, 
we chose the approach with the colour inputs ‘green’ and ‘blue’ for the following 
analyses, although the big difference between the determination coefficient in the 
training set and the determination coefficient in the generalization set may be a 
sign of overfitting (Table 2). 

 

Table 3: With the help of the used criteria, the MLP with the colour inputs ‘green’ and 
‘blue’ was chosen as appropriate model. 

Criteria Colour Input 
 ‘red’ ‘green’ and ‘blue’ 
Akaike information criterion 0.385 0.222 
Schwartz information criterion 0.814 0.875 
Penalized prediction error 0.01767 0.01294 
Mean absolute error 0.0725 0.0608 
Mean absolute percentage error 1.777 1.586 

3.1 Plausibility analysis 

In order to find the importance of each input variable, we optimised the network 
again but without the input variable of interest. The decrease of the determination 
coefficient in the generalisation set defines the importance of the excluded input 
variable.  

The explanation by the model decreases especially if ‘mowing’ is not taken 
into account (cf. Figure 2). The number of human activities per year thus has a 
crucial effect on phytomass distribution within the project area. Cover of dwarf 
shrubs already comes second. If this variable lacks, the coefficient decreases by 
about 6%. The time-dependency, captured by the colour inputs ‘green’ and ‘blue’, 
is the third important relationship. The variables ‘horizontal distance’ and ‘hay 
utilization’ contain considerably less explaining information. Accordingly to these 
results, the fact whether an area is pastured or not has very little impact on 
phytomass distribution. 

We investigated further the plausibility of the functional relationship between 
phytomass and the independent variables. For this purpose, we varied each metric 
variable from its minimum to its maximum in steps of hundredth of its range. 
Ordinal variables were varied exactly according to their parameter values. Apart 
from scanning the variable of interest, all other variables were kept constant at 
their median. We did not have many observations units with values greater than 40 
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regarding the variable cover of dwarf shrubs. Therefore we used all original input 
values of these cases to calculate the output value.  
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Figure 2: Decrease of the determination coefficient (R²) due to the missing input 

variable of interest for the dependent variable total phytomass. Hay utilization = quotient 
of all human impacts (mowing, fertilization, irrigation) and the frequency of these 

interferences in years; mowing = numbers of cuttings per year. 
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Figure 3: The change in the total phytomass due to the variation of one independent 
variable using the MLP. 

The change in the dependent variable due to the variation of one independent 
variable is shown in Figure 3. Changes in independent variables have different, 
non-linear impacts on phytomass. However, not the independent variables 
themselves lead to changes in phytomass, but rather the direct or indirect effects 
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on vegetation and resource availability of plants in ecosystems under different land 
use.  

The number of times the area is mown, fertilization and irrigation thus prove 
to be determinant factors for structure and composition of canopies (Tappeiner et 
al., 1998). At the beginning of the vegetation period, hay meadows have very little 
above-ground phytomass, as plant matter is taken away once or twice a year by the 
farmer. As annual mean phytomass thus decreases. The more intensively an area is 
managed, i.e. the higher the „hay utilization“ value, the lower the phytomass 
according to the results of our study. This is mainly due to the shift of species 
initiated by nitrogen supply and increased mowing. New species appear while 
others are crowded out. The increase in nutrients deprives numerous plant species 
which only flourish on poor soils of the conditions they need to survive. Such 
species accordingly disappear, either because they cannot cope with the effects of 
the fertiliser or because they are suppressed as a result of stimulated growth in 
competitor species. Meadows that are mown regularly but receive no fertiliser 
become low-nutrient meadows. That process is accompanied by a reduction in the 
height of the plants and above-ground biomass. This is also shown by the relation 
between the ‘mowing’ variable and phytomass. But, in case of continuing reduced 
cultivation (mowing every 1-3 years), the area becomes colonised by dwarf shrubs. 
With the increase of dwarf shrubs, i.e. also of lignified plant matter within the 
canopy, phytomass increases considerably. The highest phytomass values are thus 
found in abandoned areas, i.e. where the ‘hay utilization’ value is 0. The major 
part of abandoned areas is covered by the dwarf-shrub rich variant of plant 
communities (Tasser et al., in press). 

The empirical results can be supported with theoretical considerations and 
consequently are plausible and point to a carefully trained, valid non-linear model.  

Finally, we want to test whether or not the colour inputs have a statistically 
significant influence.  

3.1 Statistical inference with respect to colour inputs 

We calculated the bootstrap statistics both by means of the data sets in the 
generalization set and with the entire sample. Limited to the generalization set, we 
obtain significance of the colour inputs (‘green’ and ‘blue’) at a 5%-level. In 
contrast, we can reject H0 only at an approximately 10%-level using all data sets 
(Table 4). 

White and Racine (2001) did not use our distinction of training set, validation 
set, and generalization set in their derivations. Due to the severe problem of 
overfitting especially with the available limited amount of data, we suspect that 
the separation of the data in these disjoint sets is necessary to get reliable results 
and furthermore a better power and an accurate level of the proposed test. For the 
future work we want to show this hypothesis. 
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Table 4: Empirical significance of the colour inputs calculated with the help of the 
bootstrap approach. 

 Empirical significance 

 G T+V+G 
#ˆ
nA  0.044 0.108 

#
nA  0.044 0.102 

 
However, even the results do not agree completely, they support the hypothesis 

that spatial-temporal distribution of stand structure relates significantly to colour 
pattern in the photographs. 

4 Conclusion 

We modelled biomass distribution in a complex alpine terrain with limited 
amount of variables by combining temporal remote sensing (geo-registered and 
ortho-rectified colour images from the opposing hill slope) with classical field 
methods from plant physiology. The non-linear approach was based on multi-layer 
perceptrons. Faced with the limited amount of data, we trained the network model 
carefully and tested misspecification. Additionally, plausibility analyses and 
ecological considerations in respect of content support the validity of our final 
model. With the help of sensitivity analysis, and bootstrap techniques the 
significance of colour patterns for modelling phytomass was demonstrated. We 
showed that multi-layer perceptrons can be used for enhancing scientific 
understanding of relationships. 
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