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Abstract

The purpose of our work is to investigate on the use of L2 distance as
a theoretical and practical estimation tool for parametric regression models.
This approach is particularly helpful in all those situations involving the study
of large data sets, handling large samples with a consistent numbers of outliers,
situations in which maximum likelihood regression models are unstable. We
shall also see how L2E criterion may be applied in fitting mixture regression
models and how it allows to detect clusters of data. Theory is outlined, some
examples on simulated data sets are given and an application to data from
investigation on risks of fire and electric shocks of electronic transformers
is proposed to illustrate the use of the approach. In order to estimate the
parameters of the models we implemented some routines in R computing
environment.

1 Introduction

In applied statistics regression is one of the most used tool in establishing the rela-
tionship between a response and an explanatory variable. In the following we shall
investigate on the use of Integrated Squared Error (ISE), or L2 distance, as a theo-
retical and practical estimation tool for parametric regression models. The approach
based on minimizing the Integrated Squared Error, or L2 minimizing estimate crite-
rion (briefly L2E), is particularly helpful (Scott, 2001a) in all those situations where,
due to large sample size, a careful data preparation is not feasible and hence data
may be heavily contaminated by substantial numbers of outliers or extreme values
(Reiss, 1997). L2E criterion is better suited to treating models as approximation
and it may be viewed as a practical diagnostic tool in building useful models (Scott,
2001b).
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We shall point out how L2E may be used in fitting mixtures of regression models
and how it allows to simultaneously estimate the parameters of each regression
model, the variances of the errors and the probability that data point belongs to
each regression model. For practical purposes, the authors propose a quick rule
for assign data points to each regression model, based on the estimated variance of
errors.

The theory is outlined, some numerical examples are given and an application to
data from investigations on risks of fire and electric shocks of electronic transformers
is presented to illustrate the use of the approach.

2 Genesis of L2 minimizing estimate

The L2E criterion originates in the derivation of the nonparametric least squares
Cross-validation algorithm for choosing the bandwidth h for the kernel estimate of
a density.

In fact, it is well known that in the nonparametric case, given the r.v. X with
unknown density f(x), the latter is estimated on the basis of a random sample
X1, . . . , Xn, by the kernel

f̂h(x) = (n h)−1

n∑

i=1

K

(
x − Xi

h

)

where the optimal bandwidth h is the one minimizing the ISE, i.e.

h = argmin
h

∫

IR

[
f̂h(x) − f(x)

]2

dx =

= argmin
h

[∫

IR

f̂h(x)2 dx − 2

∫

IR

f̂h(x) f(x) dx +

∫

IR

f(x)2 dx

] (2.1)

Observing that in (2.1)
∫

IR
f(x)2 does not depend on h and using an appropriate

estimator, say ÎE
[
f̂h(x)

]
, for IE

[
f̂h(x)

]
=

∫
IR

f̂h(x) f(x) dx, we have the estimate

ĥ = argmin
h

[∫

IR

f̂h(x)2 dx − 2 ÎE
[
f̂h(x)

]]
(2.2)

An unbiased estimate for h may be obtained resorting to the Cross-validation
method (Rudemo, 1982; Wand and Jones, 1995).

In the parametric case, given the r.v. X, with unknown density f(x|θ0), depend-
ing on the unknown parameter θ0, for which we introduce the model f(x|θ), we may
rewrite equation (2.1) with θ replacing h, i.e.
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θ = argmin
θ

∫

IR

[f(x|θ) − f(x|θ0)]
2

dx =

= argmin
θ

[∫

IR

f(x|θ)2 dx − 2

∫

IR

f(x|θ) f(x|θ0) dx

]
=

= argmin
θ

[∫

IR

f(x|θ)2 dx − 2 IE [f(x|θ0)]

]
(2.3)

If we replace the so called expected height of the density IE [f(x|θ0)] with the

estimator ÎE [f(x|θ0)] = n−1
∑n

i=1
f(xi|θ), the proposed estimator for θ0 minimizing

the L2 distance will be

θ̂L2E = argmin
θ

[∫

IR

f(x|θ)2 dx − 2

n

n∑

i=1

f(xi|θ)
]

(2.4)

The following examples may illustrate the situation.

Example I: if we suppose that X ∼ U(0, b), then equation (2.4) becomes

b̂L2E = argmin
b

[
1

b
− 2

n b

n∑

i=1

I(xi 5 b)

]

where I is the indicator function.

Example II: if we suppose that X ∼ N (µ, 1), then, letting θ = µ, equation (2.4)
becomes

µ̂L2E = argmin
µ

[
1

2
√

π
− 2

n

n∑

i=1

φ(xi|µ, 1)

]

where φ denotes the normal density.

Example III: if we suppose that X ∼ N (µ, σ2), letting θ = [µ, σ2]t be the vector
of the unknown parameters, equation (2.4) becomes

θ̂L2E = argmin
θ

[
1

2 σ
√

π
− 2

n

n∑

i=1

φ(xi|θ)

]
=

= argmin
µ,σ

[
1

2 σ
√

π
− 2

n

n∑

i=1

φ(xi|µ, σ2)

]

3 Parametric linear regression according to the

L2E criterion

Let us consider the observed data set {(xi, yi)}i=1,...,n, where each (xi, yi) pair stems
from a bivariate random sample drawn from the bivariate r.v. (X, Y ). The regression
model for the observed data set we study is
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Yi = mβ(xi) + εi, i = 1, . . . , n (3.1)

where the regression mean mβ(x) = IE[Y |x] is the object of our interest, β is the
vector of the parameters to be estimated and the error random variables {εi}i=1,...,n

are assumed to be independent with zero mean and unknown variances.
Now, it is well known that if the errors εi are independent and identically dis-

tributed (i.i.d.) as the r.v. ε with normal density φ(ε|0, σε), the Maximum Likeli-
hood Estimate (MLE) is given by

(β̂)MLE = argmin
β

n∑

i=1

[yi − mβ(xi)]
2

and it is important to recall that the estimate of σ2

ε implies the knowledge of β

(and not vice versa) and that the check of the assumptions on the density of the
errors must be conducted by analyzing (through formal and/or informal tools) the
residuals from the regression itself.

We now turn to illustrate how the estimate based on the L2 criterion may be
applied to parametric regression models, observing that it plugs in directly the para-
metric model of the residuals’ density, not necessarily normal, and it simultaneously
provides an estimate for the parameters of the regression model as well as for those
of the density of the errors.

If we now suppose that the random errors εi in (3.1) are independent and

identically distributed as the r.v. ε with density f(ε|0, σ0) and we observe that,
∀i = 1, . . . , n, εi = Yi − mβ(xi), the parameters in β and σ0 may be estimated
simultaneously by L2 criterion resorting to equation (2.4), which will assume the
form

(β̂, σ̂)L2E =argmin
β,σ

[∫
f(ε|0, σ)2 dε − 2

n

n∑

i=1

f(εi|0, σ)

]
=

=argmin
β,σ

[∫
f(ε|0, σ)2 dε − 2

n

n∑

i=1

f(yi − mβ(xi)|0, σ)

] (3.2)

Referring to regression model (3.1), if we assume that the r.vs. εi are i.i.d. as
the r.v. ε ∼ N (0, σ2), then, since

∫
IR

φ(ε|0, σ2)2 dε = (2 σ
√

π)−1, it is easy to check
that equation (3.2) reduces to

(β̂, σ̂)L2E = argmin
β,σ

[
1

2σ
√

π
− 2

n

n∑

i=1

φ(yi − mβ(xi)|0, σ2)

]
(3.3)

If we consider the simple linear regression model Yi = β0 + β1 xi + εi, then
equation (3.3) becomes

(β̂, σ̂)L2E = argmin
β,σ

[
1

2σ
√

π
− 2

n

n∑

i=1

φ(yi − β0 − β1 xi|0, σ2)

]
(3.4)
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Since closed forms for equations (3.2), (3.3) and (3.4) are unlikely to be found,
we have to resort to numerical minimization algorithms (for example the optim or
nlm routines implemented in R environment). Furthermore, in some situations, e.g.
in presence of outliers or contaminated data, there may exist more than one local
minimum. In these cases we shall construct two or more regression models.

3.1 Numerical example I

The ideas introduced above may be explained on a simulated dataset of n = 200
points such that they belong to two clusters, more precisely

Cluster 1 y = x + ε n1 = 125 x ∼ U(1, 10) ε ∼ N (0, 1)
Cluster 2 y = 1 + 0.2 x + ε n2 = 75 x ∼ U(3, 9) ε ∼ N (0, 1)
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Figure 1: Panel (a): data points and MLE regression line. Panel (b): histogram of

residuals from MLE regression line and kernel density estimate.

Figure 1, panel (a), shows the generated data points and the MLE regression
line for which β0MLE

= 0.463, β1MLE
= 0.614 and R2 = 0.363, with an associated

p-value of the F statistics < 2.2e − 16.
Figure 1 , panel (b), displays the histogram and the kernel density estimate

of the residuals from the MLE regression line. It clearly suggests that the errors
are not normally distributed and so the simple linear regression model seems to be
inadeguate. Furthermore, the kernel estimate of the density of residuals shows that
we may be in presence of clustered data (the kernel estimated density seems to be
bimodal).

It should be observed that, given the ML estimates β̂0 and β̂1, we have σ̂εMLE
=

2.024, which is quite far away from the true value σε = 1
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Figure 2: Panel (a): data points, MLE and L2E regression lines. Panel (b): histogram

of residuals from L2E regression line and kernel density estimate.

Turning now to the L2E criterion, according to (3.4), we obtain the estimates

σ̂εL2E
= 1.511 β̂0L2E

= −0.146 β̂1L2E
= 0.947

Figure 2, panel (a), shows the estimate of the simple linear regression model
according to L2 criterion (note that estimate of σε is still inflated). Figure 2, panel
(b), shows the histogram and the kernel estimate of the density of residuals from
L2E regression line. It is evident that the distribution of residuals is bimodal and
this suggests that data points belong to two clusters, while L2E gives an accurate
estimate for the simple linear model applied to cluster 1.

Digging a little deeper, it is interesting to have a look at the function

g(β0, β1|σ̂εL2E
) =

1

2σεL2E

√
π
− 2

n

n∑

i=1

φ(yi − β0 − β1 xi|0, σ̂2

εL2E
) (3.5)

which corresponds to the function to be minimized in (3.4) with σ fixed at σ̂εL2E
.

Its “level plot”, displayed in Figure 3, panel (a), suggests that there are two
local minima and hence we may construct two regression lines, one for each cluster.
From numerical minimization of equation (3.4) at σ = σ̂εL2E

, we obtain the two L2E

regression lines

ŷL2E−1 = −0.146 + 0.947 x ŷL2E−2 = 0.947 + 0.147 x

which are displayed in Figure 3, panel (b).
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Figure 3: Panel (a): “level plot” of function (3.5) at σ = σ̂εL2E
. Panel (b): data points,

L2E − 1 and L2E − 2 regression lines.

4 Mixture of Regression Models by L2E

As outlined in Example I, the L2E criterion allows us to detect the presence of two
or more clusters in a dataset, through the analysis of function (3.4) for a given σ̂εL2E

,
and it may lead to the estimate of two or more regression models.

However, it should be pointed out that the regression models are the same for
each cluster and their parameters are estimated assuming a common variance of
residuals while, in addition, we can not have an estimate of the size of each cluster.
These problems may be overcome if we consider fitting mixture of regression models
by L2E.

Let us now consider a more complex model which assumes that each data point
(xi, yi) comes from the k-th regression model; i.e., ∀ i = 1, . . . , n and ∀ k = 1, . . . , K

Yi = mβk
(xi) + εk with prob. pk (4.1)

where
∑K

k=1
pk = 1. This is to say that we assume that the model that best fits the

data is a mixture of K = 2 regression models.
If we furthermore assume that εk ∼ N (0, σ2

k), we may then state that each (xi, yi)
stem from a bivariate r.v. (X, Y ) and that the response Y conditioned on x follows
a mixture of Normal r.vs. In other words, ∀ k = 1, . . . , K, with probability pk such
that

∑K

k=1
pk = 1, we have Y |x ∼ N (mβk

(x), σ2

k), and hence

f(yi|xi, θ) =
K∑

k=1

pk φ(yi|mβk
(x), σ2

k)

We are now able to derive a close form for the estimates of the parameters
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(pk, βk, σk), for a given set of K regression models, according to the ISE criterion as
outlined in Section 2.

In fact, if we observe that (Basu et al., 1998)

∫

IR

f(y|θ)2 dy =
1

n

n∑

i=1

∫

IR

f(yi|xi, θ)2 dyi

where

f(yi|xi, θ)2 =

[
K∑

k=1

pk φ(yi|mβk
(xi), σ

2

k)

]2

=

=
K∑

j=1

K∑

l=1

pj pl φ(yi|mβl
(xi), σl) φ(yi|mβj

(xi), σj)

and recalling that
∫

IR
φ(y|µ1, σ

2

1
) φ(y|µ2, σ

2

2
) dy = φ(0|µ1−µ2, σ

2

1
+σ2

2
), then condition

(2.4) becomes

(p̂k, β̂k, σ̂k)L2E =

= argmin
pk,βk,σk

[
1

n

n∑

i=1

K∑

j=1

K∑

l=1

pj pl φ(0|mβj
(xi) − mβl

(xi), σ
2

j + σ2

l )−

− 2

n

n∑

i=1

K∑

k=1

pk φ(yi|mβk
(xi), σ

2

k)

]
(4.2)

4.1 The mixture of K simple linear regression models

An interesting case arises when we consider a mixture of K simple linear regression
models. This is to say that, ∀ i = 1, . . . , n and ∀ k = 1, . . . , K, mβk

(xi) = β0k
+β1k

xi,
with probability pk. Since in this situation equation (4.1), with probability pk,
becomes Yi = β0k

+ β1k
xi + εk, it is easy to check that L2E criterion for the 4 K

parameters (pk, β0k
, β1k

, σk), according to (4.2), leads to

(p̂k, β̂0k
, β̂1k

, σ̂k)L2E
= argmin

p̂k,β̂0k
,β̂1k

,σ̂k[
1

n

n∑

i=1

K∑

j=1

K∑

l=1

pj pl φ(0|β0j
+ β1j

xi − β0l
− β1l

xi, σ
2

j + σ2

l )−

− 2

n

n∑

i=1

K∑

k=1

pk φ(yi|β0k
+ β1k

xi, σ
2

k)

]
(4.3)

If we furthermore think to the mixture of K = 2 simple linear regression models,
then, ∀ i = 1, . . . , n and ∀ k = 1, 2, we have
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Yi = β01
+ β11

xi + εi1 with prob. p1

Yi = β02
+ β12

xi + εi2 with prob. p2 = 1 − p1

Since in this case

f(yi|xi, θ) = p1 φ(yi|β01
+ β11

xi, σ
2

1
) + p2 φ(yi|β02

+ β12
xi, σ

2

2
)

and

∫

IR

f(y|x, θ)2 dy =

=
2∑

j=1

2∑

l=1

pj pl φ(yi|β0l
+ β1l

xi, σ
2

l )φ(yi|β0j
+ β1j

xi, σ
2

j ) =

= p2

1
φ(0|0, 2 σ2

1
) + p2

2
φ(0|0, 2 σ2

2
)+

+ 2 p1 p2φ(0|β01
+ β11

xi − β02
− β12

xi, σ
2

1
+ σ2

2
) =

=
p2

1

2 σ1

√
π

+
p2

2

2 σ2

√
π

+ 2 p1 p2 φ(0|β01
+ β11

xi − β02
− β12

xi, σ
2

1
+ σ2

2
)

then condition (4.3) reduces to

(p̂1, p̂2, β̂01
, β̂11

, β̂02
, β̂12

, σ̂1, σ̂2)L2E = argmin
p1,p2,β01

,β11
,β02

,β12
,σ1,σ2[

p2

1
σ2 + p2

2
σ1

4 σ1 σ2 π
+

2

n

n∑

i=1

p1 p2 φ(0|β01
+ β11

xi − β02
− β12

xi, σ
2

1
+ σ2

2
)−

− 2

n

n∑

i=1

p1 φ(yi|β01
+ β11

xi, σ
2

1
) + p2 φ(yi|β02

+ β12
xi, σ

2

2
)

]
(4.4)

Again closed forms for equations (4.3) and (4.4) are unlikely to be found, so we
have to resort to numerical minimization algorithms.

4.2 Numerical example II

Let us consider a simulated dataset of n = 200 points, 100 of which come from
model y = 1 + 0.5 x + ε1 and the remaining from model y = 5 − 0.2 x + ε2, where
ε1 ∼ N (0, 1) while ε2 ∼ N (0, 0.5) and x ∼ U(1, 10).

Figure 4, panel (a), shows the data points as well as the estimate of the simple
linear regression model for which β̂MLE = [2.9195, 0.1593]t and R2 = 0.1026 with
an associated p value of the F statistics equal to 3.784e − 06, and σ̂ε = 1.219.

Clearly the MLE regression line seems not to be satisfying in fitting the data
and we may think that, for a fixed x, the response Y comes from a mixture of two

simple linear regression models, i.e.
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Figure 4: Panel (a): data points and MLE regression line. Panel (b): data points,

L2E − 1 and L2E − 2 regression lines.

Yi = β01
+ β11

xi + εi1 with prob. p1

Yi = β02
+ β12

xi + εi2 with prob. p2

In this case we simply have to find the solutions of (4.4) with respect to seven
parameters p1, β01

, β11
, β02

, β12
, σ1 and σ2, since p2 = 1 − p1. From numerical mini-

mization, we obtain the following L2 estimates

p̂1 = 0.415 β̂01
= 1.043 β̂11

= 0.511 σ̂1 = 0.961

p̂2 = 0.585 β̂02
= 4.996 β̂12

= −0.191 σ̂2 = 0.541

Data points and L2 regression lines are displayed in Figure 4, panel (b). Figure 5,
panel (a) and (b), displays the histogram and the kernel density estimate of the
distribution of residuals from each L2E regression lines, i.e.

εi1 = yi − 1.043 − 0.511 xi with prob. p1 = 0.415

εi2 = yi − 4.996 − 0.191 xi with prob. p2 = 0.585

It is worthwhile to observe that the range of residuals is quite wide and at the
same time the behaviour of the ties of the kernel density estimates is “bad”. This
is due to the fact that the errors are calculated over all the sample points.
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Figure 5: Panel (a): histogram and kernel density estimate of residuals from L2E − 1

regression line. Panel (b): histogram and kernel density estimate of residuals from

L2E − 2 regression line.

5 Clusters identification

In the previous sections we outlined how L2E may be used in fitting mixtures of
regression models and how it allows us to simultaneously estimate the parameters of
each regression model, the variances of the errors σ2

εk
and the frequency pk of data

points belonging to each cluster.

Wishing to highlight which data point (xi, yi) belongs to each cluster we suggest
a “quick rule”, based on Tchebychev’s inequality.

With regard to a mixture of two regression models, we state the following

if |εi1| 5 γ σε1
and |εi2| > γ σε2

→ (xi, yi) ∈ Cluster I

if |εi1| > γ σε1
and |εi2| 5 γ σε2

→ (xi, yi) ∈ Cluster II

if |εi1| 5 γ σε1
and |εi2| 5 γ σε2

→ (xi, yi) ∈ Unknown cluster

if |εi1| > γ σε1
and |εi2| > γ σε2

→ (xi, yi) ∈ Outliers cluster

Figure 6 shows how the previous rule may work in practice, applied to data set
of the two numerical examples of Section 3.1 and 4.2.

For completeness, if we apply condition (4.4) to the dataset of Example I, from
numerical minimization we obtain the following estimates
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Figure 6: Clusters identification with data of Example I, panel (a), data from Example

II, panel (b).

p̂1 = 0.521 β̂01
= 0.085 β̂11

= 0.953 σ̂1 = 0.800

p̂2 = 0.479 β̂02
= 1.354 β̂12

= 0.141 σ̂2 = 1.078

Clearly, the more the regression lines are far away from each others the less are
the data points we are not able to assign. In other to highlight exactly two clusters
a deeper analysis of phenomena under study is needed that eventually takes into
account other explanatory variables.

6 The case study

A firm operating in the field of diagnosis and decontamination of electronic trans-
formers fluids gives a judgment about risks of fluid degradation, electric shocks,
firing or explosion, PCB contamination and decomposition of cellulosic insulation.

With the aid of well known mathematical models, based on the results of chemical
analysis of the oil, the firm’s staff achieve risk’s values on continuous scales.

To verify that their methods of assigning risk’s values are independent of specific
characteristics of transformers (age, voltage, fluid quantity, ...) we investigated on
the relation between risk’s values.

In order to achieve this goal, we worked on a database of 1, 215 records of diag-
nosis, conducted on mineral oil distribution transformers, containing: oil chemical
analysis, transformers’ technical characteristics and risk’s values.

Considering the risks of fire and of electric shocks, we obtained the scatterplot
displayed in Figure 7. It was natural to suppose a linear dependance between the
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Figure 7: Panel (a): data points and MLE regression line. Panel (b): data points L2E

regression line.

two variables. Figure 7, panel (a), displays the MLE regression line while panel
(b) displays the L2E regression line. The lines estimated with the two methods are
different and it can be noted that the one obtained with the L2E criterion has a
slope greater than the MLE’s one.

A simple analysis on residuals from MLE regression line (Figure 8 panel (a))
suggests that errors are not normally distributed and, since the kernel estimated
density is clearly bimodal, we may argue to be in presence of clustered data.

For this reason we supposed that the model that best fits our data is a mixture of
two linear regression models. The results, according to the L2E criterion introduced
in Section 4, told us, Figure 8 panel (b), that about 43% of the data points follow the
model y = −0.369+1.568 x (L2E −1), for which σ̂ε = 0.078 and that the remaining
data points follow the model y = −0.373 + 1.750 x (L2E − 2), for which σ̂ε = 0.054.

At this point, resorting to the rule proposed in Section 5, we were able to classify
the data points according to the fact that they may follow the first or the second
regression model. The results are summarized in Figure 9, panel (a). In this way,
using γ = 3, we assigned 453 points (37.3%) to the L2E − 1 regression line (cluster
1), 488 points (40.2%) to the L2E − 2 regression line (cluster 2), 4 points were
classified as outliers and 270 (22.2%) were the points we were not able to assign.

To assign this 270 points to one of the two clusters we had to investigate on
specific characteristics of transformers. We observe that in our database 40% of
the transformers had an amount of fluid 5 500 kg and that the L2E criterion gave
us an estimate of 43% of point for L2E − 1 regression line. Furthermore, in our
classification 423 out of the 453 points belonging to cluster 1 had an amount of fluid
less (or equal) than 500 kg and all 488 transformers belonging to Cluster II had
an amount of fluid greater than 500 kg. We thought to use the amount of fluid as
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Figure 8: Panel (a): residuals from MLE regression line. Panel (b): data points and

the two L2E regression lines.

stratification variable and so we assigned the transformers with an amount of fluid
less (or equal) than 500 kg to the L2E − 1 regression line and the transformer with
an amount of fluid greater than 500 kg to the L2E − 2 regression line as shown in
Figure 9, panel (b).

These results allowed us to say that, for a fixed level of risk of electric shocks, the
risk of fire was evaluated in a different way for the two groups of transformers. This
is to say that the relationship between the two variables depended on the amount
of fluid contained in the transformers. The chemical staff of the firm did not find
any realistic justification in explaining the different behaviour of risk of fire for the
two type of transformers, so they decided to change the model used to give the risk
of fire assigning different weights to hydrocarbon variable.

Considering the L2E regression line of Figure 7 we are now able to understand
why its slope is greater than the one of MLE regression line. Accordingly to Scott
(2001b) this is due to the fact that L2E regression line best fits the high dimension
cluster.

7 Conclusion

In this paper we outlined an approach in diagnostic and building useful regression
models based on L2 estimate, investigating also on fitting mixture of regression
models. This procedure allows to simultaneously estimate the parameters of each
regression model, the variances of the errors and the probability that data point
belongs to each regression model. Furthermore, we proposed a simple rule based on
Tchebychev’s inequality to identify the presence of clusters in the data.
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Figure 9: Panel (a): clusters identification. Panel (b): data clustering.

We found that this approach well suits a preliminary phase of data analysis. In
our case study we have been able to suggest to chemical staff that the population
of electrical tranformers had to be treated in different way.

The same framework in model building may be extended to complex forms, such
as Generalized Linear Models and functional data analysis.
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