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Statistic Based on Letter Values
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Abstract

This paper deals with an index of skewness (the letter coefficient of
skewness, l.c.s.), proposed in a previous study (Brizzi, 2000), which is
based on a particular set of sample quantiles called letter values, introduced
by Tukey (1977). Some analytical properties of this index are described,
and the sample distribution of this index is simulated under symmetric
(normal and uniform) and positively skewed (exponential, Gamma, Log-
normal and Skew-normal) distribution models. The power of a test based on
the l.c.s. value is then compared with the “classic” test focused on Pearson
third-moment skewness index.

1 Introduction

The problem of checking the shape (skewness and kurtosis) of a population (or set
of data) has been challenging a lot of methodologists and applied statisticians. The

traditional Pearson statistic 1b  (index of skewness) and b2 (index of kurtosis)

based on moments are surely the most diffused indices of shape, but a lot of
alternative indices have been proposed, using the sample information in different
ways. Oja (1981) tries to define partial orderings of distributions by means of
descriptive indices, including indices of shape; Mac Gillivray (1986) gives a
thorough classification of the measures of shape. The works of Ruppert (1987),
Balanda and Mac Gillivray (1988), Zenga (1996) deal with the real meaning of
kurtosis. Many Authors, such as Tukey (1977), Hoaglin (1985), Kappenman
(1988), Moors (1988), Groeneveld (1998), Brizzi (2000) have focused their
analysis on quantiles and order statistics, as worth tools for evaluating the degree
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of skewness or kurtosis of a sample, and making inference about the corresponding
population.

 Let x1, x2, …, xn be a simple random sample from a certain population 3, and
m(x) and s(x) be the sample mean and the sample standard deviation.�Tukey (1977)
defined and Hoaglin (1985) developed a particular set of order statistics, called the
letter values, by considering:

• the sample median (Tukey uses M for median, but we prefer to use H for
half, in order to avoid any confusion with the averaging operator)

• the lower and upper quartiles (F+ and F- for fourth)
• the lower and the upper octiles (E+ and E- for eighth), and so on, halving

the extreme sets of data and going backwards with the alphabet: D, C, B,
A, Z, Y etc.

The last letter values are the sample extremes; then, the number kn of distinct
pairs of letter values is a function of the sample size, and precisely:

 kn = | log2 n | + 1                   (1.1)

For example, we have k10 =4, k40 =6. The average of each pair of
corresponding letter values is called a midsummary (denoted by mid-F, mid-E,
mid-D,… depending on the letter values involved). When the sample is perfectly
symmetric, all the midsummaries are equal to the median; then, is it possible to
use them for checking the skewness of a sample. Tukey and Hoaglin proposed a
graphical study of the midsummaries; Brizzi (2000) defines a coefficient of
skewness based on them. The main aim of this paper is to study, by Monte Carlo
simulation, the behavior of such coefficient and the power of the related test
against some particular alternatives.

2 The letter coefficient of skewness (L.C.S.)

The letter coefficient of skewness (l.c.s. for short), recently introduced by Brizzi
(2000), is a measure of skewness based on letter values, very quick to compute
even when the sample is large.  Supposing that the sample size allows to define kn

distinct midsummaries, and denoting the i-th midsummary by mi (mo = H, m1 =
mid-F, m2 = mid-E, …, up to mk), the l.c.s. is defined as the least-squares estimate
of the slope of the following linear model:

     zi = a + b ti + ei                                                                                               (2.1)

fitted to the set of  kn+1 points (ti , zi),  where:
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The error terms ei in (2.1) are not to be considered i.i.d. as usually; the slope b
is a purely descriptive statistic whose properties are yet to be explored.

It is not difficult to demonstrate (see Brizzi, 1999) that the coefficient b may

be written as a linear combination of the standardized midsummaries zi’s:
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Example. If our data are the squares of the natural numbers from 1 to 21, e.g.,
x1 = 1, x2=4, …, x21 = 441, we have k21 = 5. The midsummaries are: H=121, mid-
F=146, mid-E=177.5; mid-D=202; mid-C=211.5, mid-B = 221. The trend is
increasing, denoting a positive skewness. The l.c.s. is equal to 0.7509. The

Pearson statistic 1b , calculated on the same set of data, is equal to 0.6094.

The expression of b in (2.4) is a weighted sum of part of data; then, if the
population has at least two finite moments, the Lindeberg-Feller Central Limit
Theorem holds; therefore, the sample distribution of b is asymptotically normal.
Moreover, it can be easily shown that the l.c.s. is invariant under increasing linear

transformations: in fact, all the zi’s satisfy the same invariance property, due to the
standardization (2.3). Then, if p is a positive number and q a real number, we
have:

b(X) =b (pX + q)                                                                                (2.5)

Due to this property, if our data are lengths expressed in centimeters or inches,
or temperatures expressed in degrees Celsius or Fahrenheit, the l.c.s. does not
depend on the scale of measure used.

3 Sample distribution of the L.C.S. under symmetric
models

The l.c.s. may be used for testing symmetry of the population from which the data
are coming. Evidently, it is possible to define an exact sized test only when the
sample distribution of the test statistic a is known (at least approximately) under
the null hypothesis.  We have studied here the distribuiton of the l.c.s. under
normality, and we propose then a quick test of symmetry in a “nearly Gaussian”
environment, supposing that the sample data are approximately unimodal and the
tails are not too heavy. When these conditions hold, we need only symmetry for
normality. With this aim, we have simulated, using the GAUSS package, for each
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sample size (twelve different sizes between 20 and 100), a fixed number  of
samples (30,000) of i.i.d. observations from a standard normal distribution. We
have decided to consider only samples which can give at least five couples of letter
values, but it would have been technically possible also to consider smaller
samples. The invariance property (2.5) ensures us that for Gaussian variables, the
sample distribution of the l.c.s. is the same; therefore, we have no loss in
generality. In Table 1 we have reported the main features of sample distribution of
the statistic. Looking at the table, we can observe that simulated sample
distribution of l.c.s. is almost perfectly symmetric around zero: the corresponding
tail percentiles are very near in absolute value, and the mean and median are very
near to zero, even  when sample size is small.  The tail percentiles may be used as
threshold values for the critical region of the statistic.

Table 1: Sample distribution of the l.c.s.under a N(0,1) distribution.

Left tail percentiles Right tail
percentiles

n   kn Ave-
rage

StD 1% 2.5% 5% 50% 95% 97.5
%

99 %

20 5 0.000 0.411 -0.936 -0.800 -0.675 -0.001 0.680 0.805 0.943
25 5 -0.004 0.401 -0.924 -0.790 -0.666 -0.005 0.654 0.778 0.919
30 5 -0.001 0.388 -0.898 -0.762 -0.638 0.001 0.639 0.757 0.900
35 6 -0.001 0.372 -0.868 -0.736 -0.613 -0.001 0.610 0.728 0.866
40 6 0.001 0.368 -0.855 -0.725 -0.609 0.000 0.603 0.721 0.854
45 6 0.002 0.362 -0.847 -0.710 -0.595 0.003 0.597 0.713 0.846
50 6 -0.003 0.351 -0.834 -0.691 -0.582 -0.003 0.573 0.687 0.821
60 6 0.000 0.343 -0.807 -0.673 -0.566 +0.002 0.566 0.676 0.805
70 7 0.001 0.333 -0.776 -0.657 -0.546 +0.002 0.549 0.658 0.787
80 7 -0.002 0.327 -0.772 -0.646 -0.539 -0.002 0.536 0.642 0.768
90 7 -0.002 0.323 -0.756 -0.637 -0.531 0.000 0.530 0.635 0.760

100 7 -0.002 0.313 -0.745 -0.621 -0.519 -0.002 0.509 0.615 0.737

In Fig.1 we have represented the sample distribution, under normality, of the
l.c.s. for three different values of n. Looking at the figure, we can come to the
same conclusions: the sample distribution is symmetric with respect to zero and
the dispersion slightly decreases when the sample size increases.

The symmetry of the sample distribution of the l.c.s. is quite evident; then, it
has no sense to use different limit values (except for the sign) for the two tails.
Then, we have rewritten the tail values of such distribution by taking the half sum
of the corresponding tail values. The resulting tail percentiles, whose trend seems
to be more regular than in Table 1, have been reported in Table 2, and may be used
as critical values in a test of symmetry.
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Figure 1: Sample distribution of the l.c.s. when sampling from a normal population
(lower line: n=25;  median line: n=50;  upper line: n=100).

Table 2: Modified tail percentiles of the l.c.s.

Right tail percentiles
n   kn 95% 97.5% 99%

20 5 0.678 0.802 0.940
25 5 0.660 0.784 0.921
30 5 0.638 0.760 0.899
35 6 0.612 0.732 0.867
40 6 0.606 0.723 0.855
45 6 0.596 0.712 0.846
50 6 0.578 0.689 0.828
60 6 0.566 0.675 0.806
70 7 0.548 0.658 0.782
80 7 0.538 0.644 0.770
90 7 0.530 0.636 0.758

100 7 0.514 0.618 0.741

We have also simulated the distribution of the l.c.s. under another symmetric
model, with a markedly different shape: the uniform distribution. With no loss of
generality we simulated uniformly distributed values from zero to one. The results
are reported in Table 3.

The uniform-generated distribution is evidently symmetric and the mean-
median value is zero. If we make a comparison between Table 1 and Table 3, we
notice that the latter has less dispersion (indeed, the standard deviation takes lower
values), therefore the tail percentiles are closer to zero.
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Table 3: Sample distribution of the l.c.s.under an uniform U(0,1) distribution.

Left tail percentiles Right tail percentiles
n   kn Average StD 1%  2.5% 5%     50%  95% 97.5% 99 %
20 5 0.0012 0.335 -0.764 -0.651 -0.548 -0.0007 0.553 0.656 0.763
25 5 0.0005 0.317 -0.726 -0.617 -0.521 0.0014 0.522 0.615 0.727
30 5 0.0006 0.288 -0.663 -0.559 -0.474 0.0007 0.473 0.559 0.667
35 6 -0.0008 0.262 -0.608 -0.514 -0.432 0.0004 0.426 0.509 0.601
40 6 0.0012 0.243 -0.566 -0.477 -0.400 0.0020 0.400 0.475 0.567
45 6 -0.0015 0.235 -0.551 -0.461 -0.386 -0.0025 0.383 0.457 0.545
50 6 0.0002 0.219 -0.508 -0.426 -0.361 0.0015 0.358 0.426 0.506
60 6 0.0001 0.203 -0.469 -0.397 -0.332 -0.0010 0.337 0.397 0.469
70 7 -0.0002 0.181 -0.417 -0.354 -0.298 -0.0012 0.300 0.358 0.432
80 7 -0.0003 0.170 -0.395 -0.330 -0.281 0.0017 0.279 0.333 0.390
90 7 0.0002 0.160 -0.377 -0.317 -0.265 0.0003 0.265 0.316 0.373

100 7 -0.0004 0.152 -0.354 -0.298 -0.250 -0.0003 0.250 0.299 0.354

4 Power of the L.C.S. test  against  particular
alternatives

Supposing that the data we are dealing with are coming from a continuous and
unimodal distribution, we can test symmetry by using the Gaussian as the null-
hypothesis distribution. We have tested the power of the a test of symmetry based
on the statistic b (l.c.s.), using Table 2 “modified” tail percentiles as critical
values. We considered four positively skewed different alternatives, evaluating
their degree of skewness in terms of the classic Pearson parameter of skewness

3
3

1 σ
µβ =  ( 3µ = third moment about the expected value, σ = std. deviation).

We chose these alternative models:
• X1 : Exponential distribution with parameter λ=1/2, which is the same as a

χ2 with 2 degrees of freedom. This distribution has a value of 1β  equal to

+2.

• X2 : Gamma distribution with α=4, β=2. The skewness is 1β = +1.

• X3 : Log-normal distribution, derived by  exponentiating a normal
distribution with µ=0 and σ=1/6. The resulting distribution has

approximately 1β = +0.5.

• X4:  Skew-normal distribution (see Azzalini, 1985, 1986) with ρ=2/3, with

1β  approximately equal to +0,18.
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Table 4: Average, standard deviation and power of the l.c.s. statistic for exponential and
gamma alternatives.

Exponential alternative                  Gamma alternative
n Ave-

rage
Std.
dev.

Power
α=5%

Power
α=2.5%

Power
α=1%

Aver-
age

Std
dev.

Power
α=5%

Power
α=2.5%

Power
α=1%

20 1.147 0.386 88.10% 81.06% 70.75% 0.604 0.403 43.26% 31.68% 20.87%
25 1.281 0.388 94.06% 89.42% 81.97% 0.674 0.402 51.46% 39.17% 27.24%
30 1.382 0.392 96.95% 94.05% 88.68% 0.737 0.395 59.52% 47.71% 33.86%
35 1.437 0.385 98.51% 96.74% 92.62% 0.766 0.379 64.95% 52.67% 38.76%
40 1.510 0.390 99.22% 98.09% 95.58% 0.812 0.378 69.79% 58.16% 44.34%
45 1.586 0.394 99.57% 98.99% 97.49% 0.856 0.382 74.39% 63.53% 50.08%
50 1.627 0.392 99.85% 99.47% 98.57% 0.878 0.370 78.61% 68.28% 53.45%
60 1.731 0.401 99.95% 99.84% 99.43% 0,941 0.372 84.40% 75.72% 62.67%
70 1.794 0.403 99.98% 99.93% 99.76% 0.975 0.363 88.75% 80.47% 68.70%
80 1.874 0.415 99.99% 99.98% 99.94% 1.021 0.365 91.92% 85.85% 74.60%
90 1.951 0.421 100.00 99.98% 99.95% 1.064 0,364 94.19% 88.85% 79.65%

100 1.979 0.413 100.00 100.00 99.99% 1.086 0.355 96.05% 92.11% 84.60%

We evaluated the power corresponding to three different significance levels
(α=5%, α=2.5% and α=1%) by performing a series of Monte Carlo simulations.
For each alternative distribution and sample size (from 20 to 100, as before), we
simulated 20,000 samples and registered the number of them leading to reject the
null hypothesis in an α-sized one-tailed test. The frequency of rejection may be
regarded as an unbiased estimation of the power of the test. In Table 3 we have
represented the average,  standard deviation and power of the l.c.s. test for the
“highly skewed” alternatives X1 and X2, while in Table 4 we reported the same
information for the “slightly skewed” alternatives X3 and X4.

Looking at Tables 4 and 5, we can notice that the average values of the l.c.s.
are increasing  with n, for all the alternatives considered here. The standard
deviation shows a slightly increasing trend for an exponential variate, and a
slightly decreasing trend for the remaining alternatives. The power of the test,
obviously, depends on the sample size and the degree of skewness of the
alternative. For Exponential alternative we have a very high power even for small
values of n; when considering a Gamma alternative we need a larger sample to
reach the same power: a sample of size 70 for Gamma alternative is almost equally
powerful than a sample of size 20 for Exponential alternative. The same happens
with Gamma and Log-normal: we observed almost the same power by considering
n=20 for Gamma and n=70 for Log-normal. The difference between Log-normal
and Skew-normal is just a little bit greater: n=20 for Log-normal has the same
power than n=75 for Skew-normal.

The power of the test based on the l.c.s. has been then compared with the

power of  the test based on the sample Pearson index 1b . For determining the tail

values of 1b  under normality, we made an analogous simulation, generating
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30,000 standard normal samples for each value of n. We tested our results by
comparing them with the tabulated values specified in D’Agostino and Tietjen
(1973), for n less or equal to 35: the simulated tail percentiles, reported in Table 6,
seem to be consistent with the corresponding tabulated ones.

Table 5: Average, standard deviation and power of the l.c.s. statistic for log-normal and
skew-normal alternatives.

               Log-normal alternative                Skew-normal alternative
n Ave-

age
Std.
dev.

Power
α=5%

Power
α=2.5%

Power
α=1%

Aver-
age

Std.
dev.

Power
α=5%

Power
α=2.5%

Power
α=1%

20 0.298 0.416 18.91% 11.84% 6.28% 0.156 0.407 10.32% 5.73% 2.52%
25 0.342 0.410 21.98% 14.22% 7.86% 0.172 0.398 11.18% 6.00% 2.80%
30 0.369 0.401 25.40% 16.77%  9.75% 0.189 0.387 12.44% 6.96% 3,28%
35 0.386 0.385 28.02% 18.63% 10.74% 0.200 0.372 13.48% 7.67% 3.56%
40 0.410 0.380 29.53% 20.23% 12.30% 0.214 0.364 14.12% 7.98% 3.78%
45 0.433 0.376 32.98% 22.87% 14.00% 0.218 0.359 14.52% 8.64% 3.99%
50 0.444 0.368 35.27% 24.75% 14.75% 0.223 0.347 15.00% 8.89% 4.16%
60 0.473 0.361 38.58% 27.98% 17.62% 0.232 0.344 16.02% 9.48% 4.58%
70 0.492 0.351 42.46% 30.58% 19.77% 0.245 0.330 17.56% 10.53% 5.41%
80 0.520 0.350 46.76% 35.19% 23.03% 0.253 0.325 18.68% 11.34% 5.79%
90 0.545 0.350 49.34% 37.69% 25.93% 0.260 0.324 19.35% 12.11% 6.18%

100 0.554 0.338 52.83% 40.56% 27.52% 0.264 0.309 20.47% 12.44% 6.33%

Table 6: Limit values for the test based on Pearson 1b  statistic.

Limit values for  1b

(tabulated)

Limit values for  1b

(simulated)
n  α =5%  α =2.5% α =1% α =5% α=2.5% α =1%

20 0.777 0.951 1.152 0.776 0.943 1.152
25 0.714 0.876 1.073 0.710 0.869 1.060
30 0.664 0.804 0.985 0.667 0.810 1.003
35 0.624 0.762 0.932 0.630 0.760 0.941
40  - - -  - - -       - - - 0.584 0.712 0.868
45  - - -  - - -       - - - 0.558 0.679 0.822
50  - - -  - - -       - - - 0.529 0.640 0.780
60  - - -  - - -       - - - 0.491 0.595 0.726
70  - - -  - - -       - - - 0.456 0.547 0.658
80  - - -  - - -       - - - 0.428 0.521 0.628
90  - - -  - - -       - - - 0.405 0.488 0.586

100  - - -  - - -       - - - 0.389 0.467 0.567
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We have then calculated the power of the test based on 1b  by executing an

analogous simulation of 20,000 samples the same size and compared, for each

alternative, the power of the l.c.s. and 1b  statistics. In Figures 2, 3, 4, 5 we give a

graphical representation of such a comparison: we have plotted the ratio

),( 
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).(

α
αα

nPM

nPL
nR = , where PL(n,α) is the power of the l.c.s. test (L stands for

Letter values), referred to a sample size n and a significance level α, and PM(n,α)

is the corresponding the power of the classic 1b  test (M stands for Moments).

When R(n,α) is greater than one, the l.c.s. test is more powerful; when it is less
than one, the new test is less powerful.
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Figure 2: Ratio between the power of the l.c.s. test and the standard 1b  test against an

exponential alternative.

The simulation results show that the l.c.s. test is more powerful for  such a
strongly  skewed alternative, for each value of α and n considered. This is due to
the particular stress that l.c.s. gives to the tail behavior. The difference between
the statistics is greater for small values of n; when 60≥n , the two tests have
virtually the same power.
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Figure 3: Ratio between the power of the l.c.s. test and the standard 1b  test against

a Gamma (4,2) alternative.

Looking at the graph, we notice for this alternative that the l.c.s. test is more
powerful (especially when the significance level α is small), for a reduced sample
size (from 20 to 50). When n is equal to greater than 60, there is not a marked

difference in power;  however, the test based on 1b  is slightly more powerful.

Figure 4: Ratio between the power of the l.c.s. test and the standard 1b  test against a

Log-normal alternative.

Here, with a not-too-skewed Log-normal alternative, the two tests have almost
the same power for n=20, 25, while the l.c.s. test results to be more powerful  for n
= 30, 35. When the sample size is larger,  the classic test based on moments is
sensitively more powerful than the l.c.s. test.
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Figure 5: Ratio between the power of the l.c.s. test and the standard 1b  test against a

Skew-normal alternative.

With a slightly-skewed skew normal alternative, the l.c.s test has almost the
same power as the classic test, but the ratio R(n,α) becomes very low when the
sample size increases.

Then, the l.c.s. works well when the alternative is strongly skewed, especially
when the sample is not too large and for small values of α. Therefore, the l.c.s. test
seems to be suitable as a quick test for detecting if the sample comes from a
markedly skewed population.

5 Concluding remarks

The l.c.s., as pointed out in the title, has the advantage to be easy (and quick) to
calculate: it needs only to detect a reduced number of order statistics, to
standardize such values and to make a least squares linear interpolation. As
described in Section 4), the test based on this index of skewness, being focused on
sample tails, seems to be more powerful than the standard test based on Pearson

statistic 1b  , whenever  the sample comes from a population with a certain

degree of skewness, and particularly when the sample is not too large (from 20 to
50). Moreover, the l.c.s. is invariant under linear transformations of the data, with
the only condition that the slope is positive. This allows to make comparisons
between different sets of data, regardless of the scale of measurement.

There are still many things to do on this topic. The next step of this research
could be the definition of a robust version of the index, by trimming the sample
data or the set of letter values, in order to reduce the influence of the extremes. In
Brizzi (2000) there is a proposal in this sense. The power of the test, standard and
robustified, may be compared with other tests of symmetry, e.g., the tests
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described in Antille et al. (1982); moreover, it would be important to study the
sample distribution, finite and asymptotic, by an analytical point of view, in order
to support the simulated results.
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