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Abstract

The least squares procedure or L2 criterion is in theory and in practice
generally used to estimate the regression coefficients. It is well known that
given the assumptions of the classical linear regression model the least
squares estimates posses some ideal properties. One of the assumptions
underlying the L2 criterion is that the disturbance terms are normally
distributed. But there are many cases where the disturbance terms are not
normally distributed. Therefore, the use of some other criteria could be
legitimate. As reported in the literature (for example Narula and Korhonen,
1994) the least absolute value or L1 criterion is less sensitive to outliers
than the L2 criterion.

With the purpose to illustrate some aspects of differences between L2

and L1 criteria in the presence of switching regression function with a priori
known switch, the Monte Carlo simulation was performed.

The least absolute value criterion has another advantage, especially in
the cases, where the switch is not known in advance. Using the least
absolute value criterion the estimation problem can be formulated and
solved as a linear mixed integer optimisation model. If the switch is known
in advance the optimisation model is linear.

1 Introduction

The main idea for this paper arises from the problem of the piecewise linear sales-
response function with the disturbance terms that are not normally distributed, and
which is to be included into the linear mixed integer optimisation model of the
multiphase business process.
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The optimisation model is linear mixed integer if the objective function and all
the restrictions are linear or piecewise linear functions. The linear mixed integer
optimisation model of the multiphase business process offers a very good
approximation of almost every important business relationships and it can also be
treated by the available computer software very quickly and costless (Mesko,
1994).

In most practical cases the linear mixed integer optimisation model is used
with the purpose to establish the optimal purchasing quantities of all inputs and
selling quantities of all outputs (products and services) of the business process so
that the objective function - the difference between the income and costs (variable
and semi-fixed costs) - is maximal. If none of the regressors in the piecewise
linear sales-response function is the decision variable in the optimisation model,
the sales response function can be estimated separately and the estimated maximal
selling quantity of the product is included into the optimisation model as a
constant. But the piecewise linear sales-response function and the business
optimisation model can not be treated separately, if the maximal selling quantity of
a product is not known in advance and it depends to the value of other decision
variables of the optimisation model (for example advertising expenditure).
Therefore it is important to have the possibility to include the estimation of the
regression coefficients and of the switch of the piecewise sales-response function
directly into the linear mixed integer optimisation model of the multiphase
business process. The problem of the estimation of the regression coefficients and
of the switch of the linear piecewise regression function can be formulated as a
linear mixed integer optimisation model, if the least absolute value criterion is
taken into account (Mesko, 1989). It can be included into the linear mixed integer
optimisation model of the multiphase business process.

The least squares procedure or L2 criterion is in theory and in practice
generally used to estimate the regression coefficients of the linear model as well as
of the linear switching regression model with deterministic and a priori known
switch (Goldfeld and Quandt, 1976). This is because of its analytical tractability,
its highly developed theory and widespread literature. Given the assumptions of
the classical linear regression model, it is well known that the least squares
estimates posses some ideal or optimum properties (Gujarati, 1995: 72): they are
best linear unbiased estimates (BLUE). The parameter estimates follow a normal
distribution where the mean values are equal to the real values of the regression
coefficients. The variance-covariance matrix can be obtained from σ2(X’X)-1,
where σ2 is the homoscedastic variance of the disturbances (also of the responses)
and X is the matrix of K explanatory variables and T observations (Gujarati, 1995:
290). One of the assumptions underlying the L2 criterion is that the disturbance
terms are normally distributed. But there are many cases, and the piecewise linear
sales-response function is often among them, where the disturbance terms are not
normally distributed.
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2 Linear regression function and the L1 criterion

In the literature, the L1 criterion in the linear regression is involved especially in
the presence of large disturbances (outliers) and when the classical assumption of
a normal error distribution is violated due to “contamination “ or “heavy tails”. Let
us mention here some of the facts about the use of L1 estimators, found in the
published literature:

 (1) There are several researches about the properties of L1 estimators if small
samples are taken into account. Let us mention a very extensive simulation
study, which was performed by Rosenberg and Carlson, who investigated
the L1 estimators in multiple regression models with symmetric error
distributions, specifically normal and contaminated normal error
distributions (Rosenberg and Carlson, 1977). A contaminated normal
distribution is a residual distribution where the majority of the disturbances
are taken from a normal distribution with constant variance except for one
or more outliers from a normal distribution with a much larger variance
(Dielman and Pfaffenberger, 1982). After performing over 100.000 L1

regressions, they reported the following results:
a) The L1 estimates had a significantly smaller standard error than the

least-squares estimates for a regression with high-kurtosis
disturbances.

b) The L1 estimators were almost exactly normally distributed in the
presence of high-kurtosis disturbances.

c) The error (the difference between the estimated and a real value of
the regression coefficient) was approximately normally distributed
with mean zero and covariance matrix λ2(X’X)-1, where X is the
matrix of K explanatory variables and T observations, and λ2/T is the
variance of the median of a sample of size T from the disturbance
distribution.

 (2) The most important result is the asymptotic theory for L1 estimators. The
paper of Basset and Koenker (1978) confirms the assumed hypothesis, that
for any error distribution for which the median is (asymptotically) superior
to the mean as an estimator of location, the L1 estimator of the regression
coefficients are preferred to the L2 estimators in the sense of having strictly
smaller asymptotic confidence ellipsoids for the regression coefficients for a
fixed sample size. The asymptotic variance of the median is smaller than of
the mean for example for Cauchy, Laplace and Logistic distribution. Basset
and Koenker prove the result (c) cited above holds true asymptotically.
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 (3) Charnes, Copper, and Ferguson (1955) were the first who demonstrated
that L1 estimates could be produced by linear programming. Nowadays it is
very easy to obtain the L1 estimates with the existing computer software.
For the estimation of regression coefficients of the piecewise linear
regression function it is possible to form the linear mixed integer
optimisation model, as mentioned before (Mesko, 1989).

Although the use of L1 criterion when estimating the piecewise linear
regression functions can not be found in the literature it is assumed that the above
results could hold true also for the piecewise linear regression function. Especially
in the cases, where the switch is known in advance, since the piecewise linear
regression function can be written with the linear function by the use of 0-1
variables. With the purpose to illustrate some aspects of differences between the
L1 and L2 estimators (having in mind the BLUE properties of L2 estimates under
classical conditions) the Monte Carlo simulation was performed. Among several
possibilities for error distribution which could appear, the “contaminated” normal
distribution for disturbance terms was taken into account.

3 The Monte Carlo simulation

The following Monte Carlo experiment was conducted:
    (1) The population piecewise linear function with deterministic and a priori
known switch was chosen for the experiment

y1
(k) = α0 + α1x(k) + u(k)         k ≤ 40

y1
(k) = β0 + β1x(k) + u(k)         k > 40 (3.1)

where k items, k=1,2,...,100, are observed, y1
(40) = y2

(40), and with

α0 = 0          α1 = 1          β0 = −40          β1 = 2

The values of the explanatory variable were selected: x(k) = k, k=1,2,...,100.
The model (3.1) can be written as

y(k) = α0 + α1x(k) + δ1(x(k) − 40)U + u(k) (3.2)

where U is 0-1 variable

U = 0 for          x(k) ≤ 40
U = 1 for          x(k) > 40

with the following relationships between the regression coefficients
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α0 + δ0 = β0          α1 + δ1 = β1          δ0 = −40δ1 (3.3)

Therefore

δ1 = 1 and δ0 = −40

    (2) The disturbances were generated:
a) normal disturbances N(0,1)
b) "contaminated" normal disturbances; the majority of the disturbances

were taken from a normal distribution (0, 1) and five randomly
selected items (out of k=100 items) − the outliers, were taken from a
normal distribution with a much larger variance (0, 100).

    (3) Let us by a0, a1, b0, b1, c0 and c1 denote the estimates of the regression
coefficients α0,

α1, α1, β0, β1, δ0 and δ1. Using the equation

y(k) = x(k) + (x(k) − 40)U + u(k)

n = 100 responses (y(k)) were calculated, for each case, (a) in (b), determined in
step (2).

The regression coefficients in the model
y(k) = a0 + a1x(k) + c1(x(k) − 40)U (3.4)

are to be estimated.

(4) Both L2 and L1 estimation techniques were applied to the resulting data.
(5) Steps (1)-(4) of the simulation has been repeated for 10.000 samples with

the computer programme TSP (TSP, 1993).

Results of the simulation – the mean values and standard deviations for a0, a1

and c1 are shown in Tables 3.1 and 3.2.
The comparison is based on the comparison of the standard errors. The results

show that the least absolute value estimates of the regression coefficients have
smaller standard errors than the least squares estimates, when the switching
regression model with “contaminated” normal error distribution is estimated. Also
the mean values of distributions differ less from the real values of regression
coefficients (written in brackets) when L1 criterion is used.
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Table 3.1: Results when the normal disturbances were applied.

Least squares
a0 (0) a1 (1) c1 (1)

Mean 0.002725 0.999903 1.00013
Standard deviation 0.293657 0.010227 0.014708

Least absolute deviations
a0 (0) a1 (1) c1 (1)

Mean −0.002883      1.00001 1.00010

Standard deviation      0.73017 0.012871 0.018410

Table 3.2: Results when the "contaminated" normal disturbances were applied.

Least squares
a0 (0) a1 (1) c1 (1)

Mean 1.53275 0.977529 1.13344
Standard deviation 8.14543 0.221069 0.269247

Least absolute deviations
a0 (0) a1 (1) c1 (1)

Mean 0.014526 0.999884 1.00095
Standard deviation 0.398765 0.013569 0.019303

However, in the case with normal error distribution, as would be expected, the
least squares estimates have smaller standard errors. As mentioned before, under
classical assumptions of the regression model, the parameter estimates follow a
normal distribution where the mean values are equal to the real values of the
regression coefficients. The variance-covariance matrix can be obtained from
σ2(X’X)-1, where σ2 is the homoscedastic variance of the disturbances and X is the
matrix of K explanatory variables and T observations, as mentioned before.

4 Piecewise sales-response function

The estimations of the piecewise linear sales-response function is presented in this
section − an example of the sales-response function of the washing powder
produced by the Henkel-Zlatorog enterprise (Tominc) denoted by the letter A for
the time from July 1993 to March 1996 (monthly data). The function relationship

yA = f(pA, pD, pF, I, t)

where
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yA(t) - selling quantity of the washing powder A in time t
pA(t) - price (deflationed) of the washing powder A in time t
pD(t) - price (deflationed) of the washing powder D in time t
pF(t) - price (deflationed) of the washing powder F in time t
I(t) - average gross wages (deflationed) in time t
t - time

and the piecewise log-linear sales-response function with two linear pieces is
chosen. The data used are in the appendix. The data of the prices (average monthly
prices) of washing powders A, D and F were bought from marketing office ITEO
by the enterprise Henkel Zlatorog Maribor. The bases of ITEO report are data
obtained from the sample of 204 Slovene supermarkets. ITEO office is the most
important source of this kind of data in Slovenia for enterprise Henkel Zlatorog.

This example is presented here with the purpose to illustrate some aspects of
differences between L1 and L2 criteria, therefore the question of choosing
appropriate explanatory variables is not discussed here. Also let us assume, that
the regression function is correctly specified.

The washing powder F is manufactured by Procter & Gamble enterprise. The
washing powder D is also produced by Henkel Zlatorog enterprise and represents
the dominant competitor of the washing powder A in Slovenian market.

The log-linear piecewise linear sales-response function

y1 = ln yA = ln a0 + a1 ln r + a2 ln r1 + a3 ln I + a4t ln r1 ≤ 0,1271

y2 = ln yA = ln b0 + b1 ln r + b2 ln r1 + b3 ln I + b4t ln r1 > 0,1271
  (4.1)

was used, where
r- relative price pA(t)/pF(t)
r1- relative price pA(t)/pD(t)

and y1 = y2    if    ln r1 = 0,1271.
The switch between the two linear pieces is assumed, since the dynamic

models, lately used in the literature (Narasimhan and Ghosh, 1994) can prove, that
the selling quantity of the product is affected by its ‘relative price’, ‘relative
quality’ and ‘relative advertising rates’, where the comparison (without loss of
generality) is assumed to be made with a dominant competitor. In our example we
assumed, that the value of the proportion between the price of the washing powder
A and the price of the washing powder D (denoted by r1), influences two different
log-linear function relationships between the selling quantity of the washing
powder A and the explanatory variables.

The price of the washing powder D is, for all units t, t=1,2,...,33 smaller than
the price of the washing powder A. But, if the price of the washing powder D is
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high, so that it is almost as high as the price of the washing powder A the selling
quantity of the washing powder A is affected differently as if the prices of the
washing powders A and D differ a lot. This is the assumption, which was made
together with the marketing managers in Henkel Zlatorog. They assumed the
switch to be approximately at r1 = 1,15. By using the least absolute deviation
criterion, the linear mixed integer optimisation model was formed and the switch
of the piecewise linear function

                                                                                                                                           __

ln yA = c0 + c1 ln r1 ln r1 ≤ ln r1

                                                                                                                       __
ln yA = d0  + d1 ln r1 ln r1 > ln r1

                      __
was found at ln r1 = 0.1271 (r1 = 1.13) and it was used as known in advance in the
further analysis.

When estimating the regression coefficients of the regression function (4.1), it
was first expressed by the dummy variable U

    ln yA = ln a0 + a1 ln r + a2 ln r1 + a3 ln I + a4t + a5U(ln r1 − 0.1271)     (4.2)

and the results, which follow in Table 4.1 were calculated, if the least squares
method is used.

The Jarque-Bera test for normality of regression disturbances was used (Jarque
and Bera, 1987). The test statistic is

JB = n[(S/6 + (K – 3)2/24]

where
         _

√S - coefficient of skewness
 K - coefficient of kurtosis

of the distribution of disturbances. If the disturbances are normally distributed, it
can be proved that JB is asymptotically distributed as χ2(2).

The assumption that the disturbance terms are normally distributed is rejected,
since the JB test statistic is JB = 6,8129 and P(χ2 > JB) = 0,033.

If the 3 outliers (items t=8, t=9 and t=16) are excluded from the sample, the
assumption that the disturbance terms are normally distributed is not rejected,
since the JB statistics is JB = 2,48085 and P(χ2 > JB) = 0,289.

With the purpose to compare L2 and L1 estimates in this case also the least
absolute value criterion was used. The results in Table 4.2 were obtained.
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Table 4.1: Regression function (4.2) − least squares method.

Estimate Standard
error

t-statistic p-value

ln a0 −19.1308 6.99983 −2.73307 0.011
a1 −1.03995 0.211136 −4.92551 0.000
a2  −4.52831 1.00279 −4.51573 0.000
a3    2.32134 0.639858   3.62790 0.001
a4  −0.02900 0.006456 −4.49250 0.000
a5    5.23240 1.33001   3.93411 0.001

Adj. R2 = 0.874

Table 4.2: Regression function (4.2) − least absolute value method.

Estimate Standard
error

t-statistic p-value

ln a0 −19.49792 4.56081 −4.27537 0.000
a1 −1.06287 0.137568 −7.72614 0.000
a2 −3.50321 0.653375 −5.36171 0.000
a3   2.34542 0.416906   5.62578 0.000
a4 −0.02919 0.004207 −6.93925 0.000
a5   4.19148 0.866579   4.83682 0.000

Adj. R2 = 0.869

All of the regression coefficients are significant at α < 0.05 when using least
squares and when using least absolute value criterion but the L1 estimates have
smaller standard errors than the L2 estimates. Also the adjusted R−squared in both
cases is significant. The regression function (4.2) could be used for practical
purposes.

5 Conclusion

This paper tries to highlight some aspects of differences between the least squares
or L2 estimates and the least absolute deviation or L1 estimates in the linear
switching regression. The results reported in the literature as well as of the Monte
Carlo simulation that was performed suggest, that in the presence of large
disturbances (outliers) and when the classical assumption of a normal error
distribution is violated due to “contamination “ or “heavy tails”, the use of L1

criterion could lead to the smaller standard errors of regression coefficients.
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The disturbance terms are often not normally distributed, when the sales-
response functions are estimated, as well as when other, micro economic and
business relationships are estimated. In the example of the piecewise linear sales-
response function presented in the paper the assumption of normality of error
distribution was rejected. The regression coefficients estimated by L1 and L2

criteria were compared. Although the results were statistically significant in both
cases, the L1 estimates had smaller standard errors.

The least absolute value criterion has another advantage, especially in the cases,
where the switch of the piecewise linear regression model is not known in
advance. Using the least absolute value criterion the estimation problem can be
formulated and solved as a linear mixed integer optimisation model (Mesko,
1989). If the switch is known in advance (a priori) the optimisation model is
linear.
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Appendix

yA(t) pA(t) pD(t) pF(t) I(t)
 1 441.0 252.356 234.952 387.962 54369.101
 2 495.0 259.608 249.456 387.962 54946.300
 3 417.0 250.901 226.387 385.724 56310.699
 4 421.0 259.339 222.701 381.465 56807.500
 5 474.0 257.673 228.408 385.438 59154.898
 6 471.0 245.626 223.932 381.385 61191.000
 7 488.0 263.927 246.518 383.008 58298.101
 8 541.0 262.647 252.252 353.430 60375.601
 9 882.0 260.481 254.295 343.642 61177.300
10 447.0 269.073 211.171 348.773 61057.898
11 494.0 268.342 237.771 402.173 61962.601
12 470.0 265.993 228.956 404.040 61962.300
13 454.0 231.233 215.147 408.847 52519.398
14 478.0 230.153 214.142 364.909 63759.800
15 872.0 226.526 219.960 490.479 64930.398
16 455.0 253.916 197.780 383.159 67323.796
17 357.0 252.761 190.383 279.402 68074.101
18 360.0 250.967 187.741 265.806 69192.296
19 331.0 252.252 185.328 263.835 68893.796
20 258.0 249.681 183.439 231:847 67978.296
21 307.0 245.448 174.513 247.959 68780.296
22 246.0 244.222 173.641 246.720 67791.398
23 311.0 225.806 171.836 236.972 69052.703
24 275.0 224.969 171.199 236.093 68344.898
25 213.0 226.124 174.368 229.821 68467.000
26 227.0 225.429 173.832 229.115 69345.796
27 251.0 237.050 174.893 226.081 68315.101
28 175.0 236.330 174.362 195.018 69945.601
29 256.0 241.798 169.501 227.217 72402.203
30 265.0 241.358 169.193 226.804 72793.796
31 231.0 201.086 160.628 221.618 72288.000
32 243.0 229.066 159.090 219.497 71718.296
33 241.0 226.190 145.834 228.571 71508.601

Data (monthly).
Source of yA(t), pA(t), pD(t) and pF(t): ITEO office - Henkel Zlatorog Maribor.
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