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Abstract

We consider some new ideas concerning inference in the proportional haz-
ards model and the broader non proportional hazards model. Recall that
bivariate regression models generally focus in an explicit way on the condi-
tional distribution of one variable given the other. There are always two ways
of doing this but, typically, it is most natural to condition on the explanatory
or design variable. However, as far as concerns inference for proportional haz-
ards regression, it is in fact more natural to condition the other way around.
This simple observation leads to many results. Among these are a natural es-
timator of average effects under non-proportional hazards, a straightforward
and natural way to assess fit and a new estimator of the survivorship function
conditonal on some set of covariates. These ideas all stem from a main theo-
rem which we describe below. All the ideas for the bivariate case, i.e. a single

explanatory variable in the model, generalize readily to the multivariate case.

1 Introduction

Few statistical techniques have had as great an impact on the applied medical and
biological sciences as the proportional hazards model (Cox, 1972). It has become
difficult to find a medical journal in which the method is not referred to at least
once, and usually several, times during the year. In a review article (Andersen,
1991) it was stated that the annual rate of citation of Cox’s paper had risen to

around 540 by the end of the 1980s, the majority of which were in medical journals,
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a statement leading the author to conclude that “Cox’s paper has had an enormous
impact on medical research”. Since Andersen’s review the popularity of the model
has continued to increase, finding new applications and extensions in fields as varied

as economics, sociology and engineering.

The partial likelihood estimator for the regression coefficient 4 in the model
was first shown to be consistent by Cox (1975) and later, more formally, by Tsiatis
(1981). Consistency was established using a martingale approach by Andersen and
Gill (1982). All these papers indicate that consistency is maintained under an inde-
pendent censoring mechanism conditional on the covariate. In more general contexts
than survival analysis modelling, consistency often holds under broader assumptions
than those of the working model, the population value to which the estimator con-
verges coinciding with that for the restricted model when such a model is correct.
The most immediate example of this would be the maximum likelihood estimator of
the mean for i.i.d. normal variates, converging to the mean for distributions other

than normal, providing the mean exists.

For circumstances in which the regression coefficient exhibits some time depen-
dency, expressed as ((t), the partial likelihood estimator converges to some popu-
lation parameter depending in a complex way on the underlying censoring mecha-
nism. This property limits the practical application of the estimator. So, although
the partial likelihood estimator is consistent under the proportional hazards model,
it is not consistent for any meaningful parameter, i.e. one that does not involve
censoring, under broader models in which the regression effect () is not constant
through time. Indeed, the effect of censoring on the partial likelihood estimate can
be considerable (Xu, 1996), whereas, for the estimator proposed here, not only does
censoring not impact the population parameter to which we converge but also the
parameter can be given a concrete interpretation as “average effect”. The proposed
estimator can be seen to be consistent in the more usual situation in which the data
are generated by a mechanism that is not exactly equal to but only approximated

by the working model in which hazard ratios are taken to be constant.

For any regression model, attention focuses on the conditional distribution of a
response variable given the explanatory variables. For survival models we usually
view the response variable as time and the explanatory variables as associated prog-
nostic measurements. In the Cox model, reliance upon inferential procedures which
are invariant to monotonic time transformation, means that attention focuses more
naturally upon the conditional distribution of the explanatory variables given time
rather than the other way around. This observation is implicit in much of the work
carried out on the model and we make it explicit here via Theorem 1. It is our view

that this theorem is very important in understanding the model. Sections 2.1 and
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2.2 outline this reasoning.

This theorem is central to understanding inference in the Cox model. On the
basis of it we can see how to derive the estimate of average effect. But also a very
straightforward way to assess whether or not an assumption of proportional hazards
is reasonable. Another application of theorem 1 concerns the conditional distribution
of survival given that the explanatory variables belong to some set. Solutions have
already been proposed for this question. However it follows from the theorem that
an alternative, in many ways more natural, solution is easily available. The same

theorem can also be used to examine the overall fit of a proportional hazards model.

2 Models and conditional distributions

The applied problem concerns the detection and quantification of association be-
tween a randomly chosen subject’s survival time and some explanatory variable,
possibly in the presence of random censoring. So, in a survival study with n sub-
jects, let T1,T5, ..., T,, be the failure times, and Cy, Cs, ..., C, be the censoring times
for the individuals i = 1,2,...,n. For each i we observe X; = min(7};,C;) and
0 = I(T; < C;), where I(-) is the indicator function. Define the “at risk” in-
dicator Y;(t) = I(X; > t). We will also use the counting process notation: let
N;(t) = I{T; < t,T; < C;} and N(t) = 37 N;(t). The inverse of the function N
written N71() (j = 1,2,...), is defined to be inft : N(¢) = j. The total number
of observed failures is k so that k& = N(oco). The Kaplan-Meier estimate of sur-
vival is denoted S(t) and the Kaplan-Meier estimate of the distribution function by
F(t) =1 — S(t). Usually we are interested in the situation where each subject has
related covariates, or explanatory variables, Z; (i = 1,2,...,n). All of the results
given here hold for an independent censorship model, a common assumption in sur-
vival studies. Many of the results still hold or can easily be extended to apply under
the weaker condition of a conditional independent censorship model. Mostly, for
ease of exposition, we assume the covariate Z to be one dimensional. Z in general
could be time-dependent, in which case it is assumed to be a predictable stochastic

process and we will use the notation Z(t), Z;(t), etc.

2.1 Conditional distribution of 7" given Z

The Cox (1972) proportional hazards model assumes that the hazard function \;(?)

(1 =1,...,n) for individuals with different covariates, Z;(t), can be written

Ai(t) = Ao(t) exp{8Zi(1)}, (2.1)
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where \g(t) is a fixed unknown “baseline” hazard function, and £ is a relative risk
parameter to be estimated. Statistical inference on [ is traditionally carried out
through maximizing Cox’s (1975) partial likelihood

n

L(B) = ]I m(5, X;)”, (2.2)
where
mi(B,1) = K(8)Yi(t) exp{BZi(t)} (2.3)

and K (t) standardizes the m;(3,t) to be probabilities, i.e.

n

K1) = Y _Ye(t) exp{BZ,(t)}

=1
Indeed, under (2.1), m;(3,1) is exactly the conditional probability that at time ¢, it
is precisely individual ¢ who is selected to fail, given all the individuals at risk and

given that one failure occurs. Let

n

£5(Z]t) = eﬁze(tmw, ) = X K(O¥0)Z40) exp (B2} (2.4)

As noted by Andersen and Gill (1982), £5(Z|t) is the expectation of the covariate
Z(t) with respect to the probability distribution {m;(3,t)};. Taking the logarithm

and derivative in (2.2) with respect to [, we obtain the score function
UB)=>_0ri(B), where ri(8)=Zi(X;) —E3(Z]X;), (i=1,...,n). (2.5)
i=1

Setting (2.5) equal to zero, we get the maximum partial likelihood estimate (MPLE)
. Note that the r;(3) are the Schoenfeld (1982) residuals at each observed failure
time X;. Also the expectation £3(Z|X;) is worked out with respect to an exponen-
tially tilted distribution, the stronger the regression effects the greater the tilting
and the more the mean is shifted away from the empirical mean.

In practice the proportional hazards assumption may fail to be met in a number
of ways (Schoenfeld, 1980; Lagakos and Schoenfeld, 1984). Inadequacies in the
chosen covariate structure or time dependent effects will result in non-proportional
hazards. What is more, unlike the set up for normal linear regression, we even
have a theoretical impossibility of exactly meeting the assumption of proportional
hazards for nested models. This latter example has been reported in a number of
studies since the early 80’s (Lancaster and Nickell, 1980; Gail et al., 1984; Struthers
and Kalbfleisch, 1986; Bretagnolle and Huber-Carol, 1988; Anderson and Fleming,
1995; Ford et al., 1995). In fact, suppose that we have

)\(t‘Zl, ZQ) = Ao(t) exp{ﬂlZl + IBQZQ}. (26)
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where Z,, Z, are vectors of time-invariant covariates, then
S(t|Z1, Zo) = So(t)PtOr#ath22}

where Sg(t) is the survivorship function corresponding to Ao(¢). The survivorship
function S(t|Z1, Z,) is of the right form to belong to the proportional hazards class.
However, for some partition H over the domain of definition of Z; and where p(-) as-
sociates probabilities to the subsets 2o, € H, it follows by the law of total probability
that;

S(tl1Z1) = > S(t|Z1, 22)p(22)

z€H
so that, generally, we would not anticipate S(¢|7Z;) to also belong to the proportional
hazards class. In consequence were we to fit a submodel to data generated via a
broader model then we anticipate inconsistency (sometimes referred to as asymptotic
bias) in the estimates. This has attracted particular attention in the context of Cox
regression where authors have pointed out the dangers of overlooking covariables
which may be associated with survival. We do not see this viewpoint as being very
helpful and prefer simply to view all models as approximations to more complex
realities.
We can nonetheless find a simple expression for this more complex reality. For
a single binary covariate the true mechanism generating the data can be written,

without loss of generality, as

Ai(t]Z(#)) = do(t) exp{5(t) Zi(1) }, (2.7)

We can describe this model as a non proportional hazards model in order to situate
it alongside the proportional hazards model in which 3(¢) = 3, a constant. However
it is more a representation of reality than a model since no restriction at all, apart
from the necessary one of being positive, is imposed on \;(¢|Z(t)). The same level of
generality also holds for more complicated situations than that of the simple binary
covariate, for example p groups being represented by p — 1 indicator variables.

For continuous covariates full generality no longer holds but the above model
would still be richer than (2.1). Also by dividing continuous covariates into cat-
egories the model can be made as general as we wish, the only limitation being
sample size and sparse cells. It is then helpful to see the above expression as a rep-
resentation of reality, the proportional hazards model then imposing a well defined
restriction upon this reality. The relevant question, when fitting a model in which
[ is not allowed to vary through time, is what meaning can we give to such a j.

Models making weaker restrictions on (3(¢) than being constant for all ¢ have
been looked at by Moreau et al. (1985), O’Quigley and Pessione (1989, 1991),
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Liang et al. (1990), Zucker and Karr (1990), Murphy and Sen (1991), Gray (1992),
Hastie and Tibshirani (1993), Verweij and Van Houwelingen (1995), Lausen and
Schumacher (1996), Marzec and Marzec (1997), and references therein. The main
emphasis of these papers was to estimate the regression effect ((¢) as a function of
t, under the particular model chosen. Other approaches, in particular smoothing
techniques, can also be used to estimate (). Such analyses can be involved and we
limit ourselves here to the simpler question of estimation of average effects without
necessarily investigating the whole of 3(¢) through time.

2.2 Conditional distribution of 7 given T

Although most studies, whether following some experimental design or not, view Z
as fixed and 7" as being random, it turns out to be very helpful to also consider fixing
certain values of T', notably the observed failure times, and to study the distribution

of Z at these times. The following theorem provides a central result.

Theorem 1
Under model (2.8), and where 3(t) is any consistent estimate of 3(t), the conditional
distribution function of Z(t) given T =t and C >t is consistently estimated by

Fyalt) = P(Z() <2T=t,C>t) = > m{B(t),t}.

{£:2,(t)<z}

Proof: See Xu (1996).
In the light of the above theorem, and letting

E4(Z¥1t) = 3 ZEO)mAB(L) 1} = eiK(t)Ye(t)Zé“(t) exp{ B Z(t)}, £=1,2,.(28)

1=1

we have that £;(Z*|t) provide consistent estimates of E(Z*(t)|T = t,C > t), under
the assumptions. In particular a consistent estimate of the variance Var(Z(t)|T =
t,C >t),1is V4(Z|t) where

Vs(ZIt) = E5(2°]1) - E2(Z11) (2.9)

The multivariate generalization is straightforward. To see this consider for example

a model with two covariates,
Ai(t) = Ao(t) exp{B1(t) Z1;(t) + Ba(t) Zai(t) }. (2.10)
We would then have

mi{ B1(1), Ba(t), 1} = K (1)Yi(t) exp{01(f) Z1(t) + Ba(1) Z2s(t) } , (2.11)
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where K (t) is essentially the same as in (2.3) generalized in an obvious way. This
then leads to expressions such as

n

gﬂlﬂQ Zk|t ZZ{CZ 7-‘-Z{ﬂl( ) ( ) } k=1,2,.., (2'12)

gﬁlﬁg Z1Z2|t Z le ZZZ ﬂ—l{ﬂl (t)7 ﬁ?(t)a t} ) (213)

as consistent estimates, conditional upon (7" = t,C > t), for the marginal moments

and cross product terms respectively.

3 Inference for the regression coefficient

3.1 Estimating equations

Firstly introduce the function Z(t), a step function with discontinuities at the points
X;, 1 =1,...,n, where it takes the value Z;(X;). Next consider F,(t), the empirical
marginal distribution function of 7. Note that F,(t) coincides with the Kaplan-
Meier estimate of F(t) in the absence of censoring. When there is no censoring, an

estimating equation arising as the derivative of the log partial likelihood, is;

/{z — E5(ZID)}dF(t) = 0 (3.1)

The above integral is simply the difference of two sums, the first the empirical mean
without reference to any model and the second the average of model based means.
It makes intuitive sense as an estimating equation and the only reason for writing
the sum in the less immediate form as an integral is that it helps understand the
large sample theory when F,(t) 2 F(t). Since the increments, 1/n, in the above
equation are all the same size, we can cancel them and rewrite the equation as;

/{z — E5(ZIDYN () = 0 (3.2)

which is now the more classic representation in this context, being expressed in terms
of the counting processes V;(t). In the presence of censoring it is the above equation
that is used to define the partial likelihood estimator, especially since F,(t) is no
longer available and thereby U; () undefined. Before discussing the above equations

let us consider a third estimating equation which we write as;

/{z — &5(ZID)}dF(t) = 0 (3.3)
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Note that, upon defining the predictable stochastic process W (t) where

5(t)

W= v

we can rewrite (3.3) in the usual counting process terminology as

Us(B) = /W(t){Z(t) — E5(Z[t)}dN(t) = 0. (3.4)

When there is no censoring then clearly U, (3) = Us(8) = Us(3). More generally
U;(B) may not be available and solutions to Uy(f8) = 0 and U;(f8) = 0 do not
coincide or converge to the same population counterparts (see below). Many other
possibilities could be used instead of Us(3), ones in which other consistent estimates
of F(t) are used in place of F(t), for example the Nelson estimate. Although we
have not studied any of these we would anticipate the desirable properties described

in the next section to still hold.

3.2 Large sample properties

The reason for considering estimating equations other than (3.2) is because of large
sample properties. Without loss of generality, for any multivariate categorical sit-
uation, model (2.7) can be taken to generate the observations. Suppose that for
this more general situation we fit model (2.1). In fact this is what always takes
place when fitting the Cox model to data. Under the conditions on the censoring
of Breslow and Crowley (1974), essentially requiring that, for each ¢, as n increases,
the information increases at the same rate, then nW (t) converges in probability to
w(t). Under these same conditions denote the probability limit as n — oo of E5(Z|t)
under model (2.7) by Eg(Z|t), that of E5(Z%|t) by Ez(Z?|t) and that of V4(Z|t) by
Vs(Z|t). The population conditional expectation and variance, whether the model
is correct or not, are denoted by E(Z|t) and V (Z|t) respectively.

The maximum partial likelihood estimator 3 from the score function (3.2) was
shown by Struthers and Kalbfleisch (1986) to converge to the population value Bpy,

which solves the equation

[ w0 (B2l - Es(Zin} dF ) =, (3.5)

Should the data be generated by model (2.1) then Bp; = 3, but otherwise the
value of Bp;, would depend upon the censoring mechanism in view of its dependance
upon w(t). Simulation results (Xu, 1996) show a strong dependence of [p; on
an independent censoring mechanism. Of course, under the unrealistic assumption

that the data are exactly generated by the model, then, for every value of ¢, the
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above integrand is identically zero, thereby eliminating any effect of w(t). In such
situations the partial likelihood estimator is efficient and we must anticipate losing
efficiency should we use different weights as in equation (3.3).

Viewing the censoring mechanism as a nuisance feature of the data we might
ask the following question - were it possible to remove the censoring then to which
population value do we converge. We would like an estimating equation that, in
the presence of an independent censoring mechanism, produces an estimate that
converges to the same quantity we would have converged to had there been no cen-
soring. The above estimating equation (3.3) has this property. This is summarized
in the following theorem of Xu and O’Quigley (1998), which is an application of
theorem 3.2 in Lin (1991).

Theorem 2
Under model (2.8) the estimator B, such that Us (ﬁ) = 0, converges in probability to

the constant 3*, where 3* is the unique solution to the equation

| B - By(Zin)} dF (1) = o, (36)
provided that A((B*) is strictly greater than zero where
@) = [ {Bs(221) - By (21} ar o), (37)

None of the ingredients in the above two equations depend upon the censoring
mechanism. In consequence the solution itself, 3 = (*, is not influenced by the
censoring. Thus the value we estimate in the absence of censoring, 3*, is the same
as the value we estimate when there is censoring. A visual inspection of equations
(3.5) and (3.6) suffices to reveal why we argue in favor of (3.3) as a more suitable
estimating equation than (3.2) in the presence of non proportional hazard effects.
Furthermore the solution to (3.3) can be given a strong interpretation in terms of

average effects. This is described in the following paragraph.

3.3 An interpretation for 8* as average effect

Since we can consider the full model 2.6 as generating the observations, then this im-
plies that, for every ¢, there exists some value of 3(t) such that E(Z|t) = Egw) (Z|t).
On the basis of this we can write;

0, (21 e [ PEs(21)
e NS LRk {Tﬁ?}ﬁzg(?"“

where £ lies strictly between ((t) and §*. Using the above and recalling the defini-

B(2lt) = By~ (211) + {6(t) - )} {

tion of #* we have, as a Taylor series approximation

J1B(t) - 5}V (ZI)dF (2) ~ 0. (3.9)
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Rearranging the above formula we have that

| B)Vs-(Z|t)dF (t)
[ Ve (ZIt)dF (t)

and, if the conditional variance of Z changes relatively little with time, or depends on
time such that Cov{3(T"), V(Z|T)} = 0 then we can make the further approximation;

B / B(t)dF(t). (3.11)

Our experience with some data sets as well as a large number of simulations (Xu

6*(\4
~

(3.10)

1996) suggest that this approximation ought work well in many practical situations.
This enables a concrete interpretation to be given to 5* as average effect over some
time interval upon which §(¢) is defined. Since it is also helpful to estimate to what
extent ((t) is changing over the interval, we can reason in an analagous way to the
above to obtain:
vari w [{EZ = Es (2100’

[t - sryarw~ [{PEL B0 ap )
The size of §(t) and thereby 3* depend on the units of Z and it would be helpful
to have some measure of the extent of departure from proportionality that does not

depend on the units. The ¢ coefficient defined via:

6 =1og [ Vi (ZIt/{B(1) ~ BYdF (1) ~ log [ { Zvjﬂ"zf)'t)‘t) }dF(t) (3.13)

may be worth investigating for this purpose. Under the proportional hazards model
¢ = 0. Negative values for ¢ suggest overfitting and values greater than 1 ought
correspond to departures from the proportional hazards assumption. In practice we

would replace ¢ by the estimate q§ where

— log / Vi ZINZ() — E5(2Z10) Y dE (1) (3.14)

More work is needed on this to obtain insight into what constitues a large positive
or negative value. It is not clear at this time that, despite some intuitve appeal for
the index, it measures what it is we would like it to measure. More study is needed

before any recommendations could be given.

4 Testing for proportional against non propor-

tional hazards

The literature on goodness of fit tests for the Cox model is quite vast and we do
not propose any kind of a review here. A fairly extensive review of the most com-

monly used approaches can be found in O’Quigley and Xu (1998). One of the most
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satisfactory tests, against non specific non proportional hazards alternatives, was
the test developed by Wei (1984). Wei’s test is attractive since it avoids arbitrary
subdivisions of the time scale as suggested by other authors. The idea of Wei was
to view the score statistic of equation 2.5, as a stochastic process, behaving like a

Brownian bridge for large n. Specifically he considered the partial scores;
¢ _
Ux8,1) = [ {Z(5) = £5(Z1s)}aN(s) (41)

and took as test statistic sup, UQ(B, t), large values indicating departures away from
proportional hazards in the direction of non proportional hazards. Further work
on this approach (Lin, Wei, and Ying, 1993) investigated more general processes
than the score statistic, so that a wide choice of functions, potentially describing
different kinds of departures from the model, are available. Rather than appeal to
a large sample theory based on the Brownian bridge, in view of difficulties in the
multivariate case, the authors developed a theory stemming from the martingale
central limit theorem and the simulation of Gaussian processes.

Theorem 1 of this present paper can throw more light on the approach of Lin,
Wei, and Ying (1993) and can, in particular, enable us to once again lean upon the
large sample approximations based on the Brownian bridge. The increments of the
process [ Z(s)dN(s) at t = X; have mean E(Z|X;) and variance V (Z|X;). We can
view these increments as being independent (Cox 1975; Andersen and Gill, 1982).
Thus only the existence of the variance is necessary to be able to appeal to the
functional central limit theorem. Standard results can then be applied, specifically
those based on the supremum of a Brownian bridge over the interval (0,1).

To see this, consider the process U*(3,u), (0 < u < 1), in which

(g _ L (¥ —1/ -
U (ﬂ,k> - \/E/o Vs(Zs)"V2dUs(B,s), j =1, k. (4.2)

where t; = N~1(j). This process is only defined on k equispaced points of the interval
(0,1] but we extend our definition to the whole interval via linear interpolation so

that, for u € (%, %) we write;

vt (Bu) =0 (8,3) + wh =3 {r (5.55) -0 (8.9)) @y
As n goes to infinity, under the usual Breslow and Crowley conditions, then we
have that U* (3, u) converges in distribution to a Gaussian process with mean zero
and variance equal to u. This is Brownian motion. Replacing by a consistent

estimate leaves asymptotic properties unaltered. For the purposes of inference we

can consider the transformation
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and note that Uz (3, u) converges in distribution to a Brownian bridge whereby;

Pr {s%p U (8, u)| < a} —1-2 i(—l)’“rl exp(—2k*a®), a>0 (4.4)

k=1
The multivariate case does not present any real additional complexity. Consider for
example a two variable model as given by 2.11. Then we can extend the definition
of Z(t) to two dimensions in an obvious way, i.e. a vector with components Z;(t)
and Z,(t), step functions with discontinuities at the points X;, ¢ = 1,...,n, where
they take the values Z;(X;) and Zy;(X;) respectively. For this two dimensional case

we consider the increments in the process

/Ot {B12:1(s) + BaZa(s)} AN (s)

at t = X, having mean
BLE(Z1|Xi) + B E(Z] X5)

and variance
B2V (21| X;) + B2V (Zy| X;) + 21 B2Cov (21, Zo| X,).

The remaining steps now follow through just as in the one dimensional case, [;
and [, being replaced by 51 and BQ respectively, and the conditional expectations,
variances and covariances being replaced using formulae 2.13 and 2.14. It should
now be clear how to deal with yet higher dimensions. It would also be possible to
consider functions other than simple ones of the covariate Z. For time dependent Z
we would need respect a requirement of predictability, in other words at time ¢ we
only use information available at all times strictly less than ¢, but, otherwise, great

generality is possible.

5 Estimating survival given Z € H

Although interest focusses mostly on estimation of the regression coefficients we are
also interested in estimation of survival, especially survival conditional upon the
covariable Z being restricted to some given subset H. When we wish to ignore
any restrictions on Z as imposed by H then this is the marginal survival, most
often estimated non parametrically via the Kaplan-Meier estimate. This appears to
be a natural starting point to survival estimation, from which we can see how the
Kaplan-Meier estimate is modified as we condition on Z € H. In view of the earlier

theorem 1, this turns out to be particularly simple to do.
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A direct application of Bayes’ formula gives,

J®P(Z € H|t)dF(¢)

“MGH)tg P(Z € H)dF(1)’

(5.1)

Theorem 1 implies that P(Z € H|t) can be consistently estimated by

. Yot 3(t)Z
{j:Z,cH} > Yi(t) exp{B(t) Ze}
Again let F'(t) = 1 — S(t) be the Kaplan-Meier estimator of F(t). Let 0 =ty < t; <
.. < tx, be the distinct failure times, and let W (¢;) still be the stepsize at ¢; of the
Kaplan-Meier curve as in Section 3. If the last observation is a failure, then

(t|Z€H) e (ZEHW (t) Zt>t (ZEH\t) (t:)

. (5.2)
J5° P(Z € HIt)dF(t) ¥, P(Z € H|t)W (t:)

Note also that conditioning further upon having already survived to time s, we

obtain an equally simple expression

Jivs {3(Z € Hlu)dF(u) _ Syoris P(Z € H|t)W (t:)

Stt+s|Ze HT>s)= I P(Z € HlwdE(u) Yo, P(Z € H|t)W (t:)

(5.3)

When the last observation is not a failure and >¥ W (¢;) < 1, an application of the
law of total probability indicates that the following quantity should be added to
both the numerator and the denominator in the above formula.

P(Z € H|T > t)S(t). (5.4)

In addition, using the empirical estimate over all the subjects that are censored after
the last observed failure, we have

Su Yi(tht)

P(Ze HIT > 1) = : 5.5
where t;+ denotes the moment right after time t;. Therefore we can write
P(Z € H|t, P(Z € HIT > t;){1 - W (t;

Sz e m - Do PZ e HW() + P(Ze HIT > 1){1 - SEW() o o

St P(Z € HIt)W (t;) + P(Z € HIT > ty){1 - ZF W(t:)}

The above estimate of the conditional survival function is readily calculated,
since each term derives from standard procedures of survival analysis to fit the
Cox model. In practice we use an estimate of the log-relative risk in the above
computation. Note that when H includes all the possible values of z, S(t|Z € H)

simply becomes the Kaplan-Meier estimate of the marginal survival function.
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Extension to the multivariate case takes place via the prognostic index. Rather
than view H as some subspace of p dimensional space when we have p covariables,
it makes more sense to transform everything to the real line via the linear combi-
nation Y (;Z;. We can then consider different partitions of the real line and the
consequences upon survival for groups of subjects having a prognostic index lying

in any given interval.
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