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Collinearity, Heteroscedasticity and Outlier
Diagnostics in Regression. Do They Always

Offer What They Claim?

Germà Coenders and Marc Saez1

Abstract

In this article, some classic collinearity, heteroscedasticity and outlier
diagnostics in multiple regression models are reviewed. Some major
problems are described in the Breusch-Pagan test, the condition number and
the critical values for the studentized deleted residual and cook’s distance.
Alternatives are suggested which consist of computing the condition number
of the correlation matrix instead of the rescaled moment matrix, using the
NR2 statistic for the Breusch Pagan test, setting global-risk-based critical
values for the studentized deleted residual, and drawing graphical displays
for Cook’s distance. Very large differences between the original and
alternative diagnostics emerge both on simulated data and on real data from
a work absenteeism study.

1 Introduction

This article will focus on three types of diagnostics for multiple regression models,
namely collinearity, heteroscedasticity and outlier diagnostics. These diagnostics
are probably the most crucial when analyzing cross-sectional data. For this type of
data, dependence is less likely to occur and difficult to treat. Also non-normality is
less critical as the number of observations (which is often limited in time series
data) increases. Cross-sectional data often combine very small and very large
units, which can be subject to different variability and which can inflate the
correlations among all variables, including, of course, the regressors. Some of
these large units may be outliers.

In this article, several collinearity, heteroscedasticity and outlier diagnostics of
common use are first reviewed. We have detected some major problems in some
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commonly used such diagnostics, namely the Breusch-Pagan test (Breusch and
Pagan, 1979), the condition number (Belsley et al., 1980; Belsley, 1982), and the
commonly used critical values for some outlier statistics such as Cook’s distance
(Cook, 1977) and the standardized deleted residual (Belsley et al., 1980). These
problems are next described and alternatives are suggested. Finally, the classic
diagnostics and the alternatives are compared on a real data set from a work
absenteeism study (Saez et al., in press).

2 Classic collinearity, heteroscedasticity and outlier
diagnostics

We consider a linear multiple regression model with k regressor variables:

yi=β0+β1x1i+β2x2i+...+βkxki+ui (1)

which can be expressed in matrix notation as:

y=Xβ+u (2)

where u → N(0,σ2I)

In multiple regression models, collinearity can be related to the existence of
near linear dependencies among the columns of the X matrix. For each regressor
xj, the tolerance can be computed as Tolj = 1-R2

j , where R2
j is the coefficient of

determination obtained in each of the k auxiliary regressions of the form:

xji=δ0+δ1x1i+...+δj-1xj-1i+δj+1xj+1i+...+δkxki+vi (3)

Thus, Tolj shows the proportion of variance of xj that is not accounted for by
the remaining k-1 regressors and can be used as an index of the degree of
collinearity associated to xj.

Another index of collinearity of xj , called variance inflation factor (Vif), can
be obtained as a measure of the increment of the sampling variance of the
estimated regression coefficient of xj (bj) due to collinearity. Vifj can be computed
as the jth diagonal value of the inverse of the R correlation matrix among the
regressors or alternatively as 1/Tolj . Values of Vifj lower than 10 or values of Tolj

larger than 0.1 are usually considered to be acceptable.
Overall measures of collinearity which take all regressors into account

simultaneously have also been suggested. The most often used overall collinearity
diagnostic is the condition number (Belsley et al., 1980; Belsley, 1982). The
condition number of a matrix is the square root of the ratio of the largest to the
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smallest eigen-values. A large condition number of the X’X augmented moment
matrix, reflects the existence of one or more near linear dependencies among the
columns of X (Belsley et al., 1980).

γ λ
λ

= max

min

(4)

In order to avoid the dependence of eigen values on the scaling of the data it is
common practice to first normalize the X’X matrix by pre and post-multiplying by
a diagonal matrix containing the square root of the moments about zero of all
regressors including the constant term (Greene, 1993). A rescaled augmented
moment matrix can be computed as SX’XS, where S is a diagonal matrix whose jth
element is 1/(x’jxj) where xj is a column vector with the values of the jth regressor.
Values of the condition number of SX’XS lower than 30 are usually considered to
be acceptable.

The most often used heteroscedasticity diagnostics are statistical tests of the
null homoscedasticity hypothesis against the alternative that a function of  the
variance of  the ith disturbance σ2

i can be linearly or non-linearly related to a set
of z variables. Among them, the most often used are the Breusch-Pagan test
(Breusch and Pagan, 1979) and the White test (White, 1980). Some others were
suggested by Harvey (1976) and Glesjer (1969).

The alternative hypothesis in the Breusch-Pagan test is that the variance of the
disturbance is  linearly related to the set of z variables, which may or may not
coincide with the set of x regressor variables:

σ2
ui = η0+η1z1i+η2z2i+...+ηmzmi (5)

The test assesses the joint significance of the η1,...,ηm parameters by first
estimating the model in Equation 1 by ordinary least squares, then squaring the
standardized residuals (divided by the maximum likelihood estimate of σ obtained
assuming that u is normal and homoscedastic). Next these squared standardized
residuals are regressed on the z1,...,zm variables, what we call auxiliary regression.

It can be shown that, if η1=η2=...=ηm=0, then NR2 is asymptotically
distributed as a chi-square with m degrees of freedom, where N is the number of
observations and R2 is the coefficient of determination of the auxiliary regression.
If u is normal and homoscedastic, the asymptotic variance of the squared
standardized residuals is equal to 2 and SSQR/2 is also distributed as a chi-square
with m degrees of freedom, where SSQR is the explained sum of squares in the
auxiliary regression. SSQR/2 is the test statistic suggested by Breusch and Pagan in
1979 and is equivalent to a Lagrangian Multiplier test statistic under normality.
The use of the NR2 statistic was suggested by Koenkar (1981) and Evans (1992).
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The White test is analogous to the Breusch-Pagan test except for two
differences. First, the set of z variables is constituted by the squared x variables
and all possible second-order interactions among them. Second, NR2 is the
suggested test statistic.

From a practical perspective, two types of outliers are problematic in
regression analysis. On the one hand, some observations may fail to be predicted
by the model with a reasonable degree of accuracy. This type of outliers may
reveal the fact that several populations are mixed in the data set or that some
relevant variables have been omitted. On the other hand, some observations may
be influential in the sense that their presence in the data set substantially modifies
the estimates. This type of outliers weakens the conclusions which may be drawn
from the model. Of course it often happens that an observation is an outlier
according to both definitions simultaneously. Robust regression procedures (Chen
and Dixon, 1972) may be used as a safeguard against outliers without needing to
test for their presence, but the potential information given by outliers about mixed
populations or omitted variables will be missed.

A hard to predict observation which is not influential may be detected from its
large residual. However, a hard to predict observation which is influential will
often have a small residual. The studentized deleted residual is then suggested as
an alternative by Belsley et al. (1980). The  studentized deleted residual of the ith
observation is the residual computed from a regression equation estimated without
the ith observation divided by its standard deviation, which is also computed
without the ith observation. This prevents the ith observation from influencing its
own prediction and from inflating the standard error with which it is being
standardized. The studentized deleted residual can be computed as:
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(6)

where $( )y i  is the predicted value from the estimates of the regression omitting the

ith observation, s(i)  is the least squares estimate of σ obtained in a regression
omitting the ith observation and h(ii)  is xi(X(i)’X(i))

-1xi’, where xi is the row vector
of regressors for the ith observation and X(i) the matrix of regressors of all
observations except the ith.

Cook’s distance (Cook, 1977) is the usual statistic which is employed to detect
influential observations. The Cook’s distance associated to the ith observation is a
standardized distance measure between the vectors of regression slope estimates
obtained with and without the ith observation. It can also be computed as a
function of the residual and the so-called leverage value.

1

1 1 2

2

2k

h

h

e

s
ii

ii

i

+ −( )
(7)



Collinearity, Heteroscedasticity and Outlier Diagnostics in... 83

where hii  is the leverage value computed as xi(X’X)-1xi’, ei is the residual and  s
is the least squares estimate of σ.

In this article we will concentrate on studentized deleted residuals and Cook’s
distances. In order to reduce the arbitrariness of the interpretation of these
statistics, the use of some sort of critical values has been suggested. If the
normality assumption holds, then studentized deleted residuals follow a Student’s t
distribution, so that for reasonable sample sizes critical values may be selected
according to the desired percentile of the standardized normal distribution. Critical
levels of ±1.96 or ±2 (5% risk) and ±3 (0.27% risk, typical in process control
charts) have been suggested (Belsley et al., 1980; Greene, 1993).

Critical levels for Cook’s distance are usually based on non-probabilistic
criteria. In order to use probabilistic critical values, a particular multivariate
distribution model should be assumed for X, which would often be unreasonable.
Cook (1977) and Weisberg (1980) suggest using the 50th percentile of the F
distribution with k and N-k-1 degrees of freedom.

In the next section we report some major problems in the condition number,
the Breusch-Pagan test and the usual critical values for Cook’s distances and the
studentized deleted residuals. Alternatives will be suggested.

3 Critique of some classic diagnostics

3.1 Critique of the condition number

In this subsection we show that the condition number of SX’XS is heavily
dependent on the means of the regressor variables. If the means of some or all of
the regressors are high in comparison to their standard deviations, the condition
number will convey an apparently large degree of collinearity, even if the
regressors are in fact orthogonal. This is due to the fact that the off-diagonal
elements of the augmented moment matrix can be very large as  they contain the
product of the means of the variables involved.

We will illustrate this problem with an artificial data set which contains one
dependent variable y and two orthogonal regressors x1 and x2. The data set has not
been generated to follow any specific distribution but only in order to ensure exact
orthogonality and rounded up computations.      

The regressors may be considered to be measured as index numbers (with base
100). They are once considered in their original form (thus having a mean value
somewhere around 100, see Table 1) and once after the constant value 100 has
been subtracted (thus having a mean value somewhere around 0, see Table 2). The
large differences in the SX’XS matrices makes the condition number yield
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completely different values on the same data depending on whether the constant
100 is subtracted from all regressors or not.

Table 1: Original data set, with correlation matrix and rescaled moment matrix.

Raw Data Correlation Matrix (R)

 X1      X2     Y X1    X2
101 101   9 X1 1.0000 0.0000
101 102 10 X2 0.0000 1.0000
101 103 11
102 101   9 Rescaled Augmented Moment Matrix (SX’XS)
102 102 11 
102 103 13     Const X1 X2
103 101   9 Const 1.000000 0.999968 0.999968
103 102 12 X1 0.999968 1.000000 0.999936
103 103 15 X2 0.999968 0.999936 1.000000

Table 2: Data set once 100 has been subtracted from both regressors, with correlation
matrix and rescaled moment matrix.

Raw Data Correlation Matrix (R)

X1      X2      Y X1    X2
1 1   9 X1 1.0000 0.0000
1 2 10 X2 0.0000 1.0000
1 3 11
2 1   9 Rescaled Augmented Moment Matrix (SX’XS)
2 2 11 
2 3 13 Const X1 X2
3 1   9 Const 1.00000 0.92582 0.92582
3 2 12 X1 0.92582 1.00000 1.85714
3 3 15 X2 0.92582 0.85714 1.00000

The results of the ordinary least squares (OLS) estimation on the data in Table
1 are displayed in Table 3 and convey a very good fit and significance of the
variables. Note the huge value of the condition number (most authors suggest that
values above 30 show an extremely high degree of collinearity). On the contrary,
the Vif’s correctly reflect the exact orthogonality of the regressors.

Table 4 shows the same results obtained from the data in Table 2. Once 100
has been subtracted from both regressors, the condition number, while not equal to
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1, takes a value which most researchers would consider to indicate an acceptable
level of collinearity. The estimates, standard errors and t-values of the regressors
are identical and equally good to those in Table 3; only the results for the constant
term change.

Table 3: OLS estimates and diagnostics on the data in Table 1.

General Diagnostics Estimates and Variable-Specific
Diagnostics

Explained sum of squares     30 Variable b  Vif   t
Residual sum of squares       4 X1 1.000   1.000  3.000
R2       0.882 X2 2.000   1.000  6.000
Condition number of SX’XS 374.773 Const        -295.000  -6.135

Table 4: OLS estimates and diagnostics on the data in Table 2.

General Diagnostics Estimates and Variable-Specific
Diagnostics

Explained sum of squares     30 Variable b Vif    t
Residual sum of squares       4 X1 1.000 1.000   3.000
R2          0.882 X2 2.000 1.000   6.000
Condition number of SX’XS   7.425 Const 5.000     5.095

We then discourage the use of the condition number whenever some of the
regressors have a high mean. As an alternative one can still use other usual
collinearity diagnostics as the Vif, and the Tol. One drawback of these diagnostics
is the fact that they only evaluate regressors one by one. If one is willing to use
one single global measure of collinearity we suggest to compute the condition
number of the R correlation matrix among the regressors instead of SX’XS. In our
example, the correlation matrix is a 2×2 identity matrix. Both eigen-values are
equal to 1 and the suggested condition number is also equal to 1, thus indicating a
total absence of collinearity. This procedure is easier than, for instance, the
generalised collinearity diagnostics suggested by Fox and Monette (1992) and the
signal-to-noise test (Belsley, 1982).
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3.2 Critique of the Breusch-Pagan test

In this subsection we review the strong dependence of the Breusch-Pagan test on
the normality assumption of the  disturbances (Evans, 1992). If  u is
homoscedastic but non-normal, the variance of the squared standardized residuals
will be different from 2 (larger under leptokurtosis and lower under platykurtosis)
thus distorting the test results when using the SSQR/2 statistic (Greene, 1993). In
particular, the Breusch-Pagan test often leads to the rejection of the true
homoscedasticity hypothesis when u is leptokurtic.

To illustrate the sensitivity of the Breusch-Pagan test on the kurtosis of u, we
carried out a limited Monte Carlo experiment. We simulated a simple regression
model and carried out the standard Breusch-Pagan test and a modified test using
NR2  including the same x1 regressor in the main and auxiliary regressions. x1 had
a discrete uniform distribution, taking 5 consecutive integer values. The R2 of the
main regression was 80% and the number of replications 500. The simulation was
carried out under a number of different conditions:

1. The disturbances of the main regression could be  homoscedastic,
moderately heteroscedastic (variance proportional to x1 where x1 ranged
from 11 to 15) or strongly heteroscedastic (variance proportional to x1

where x1 ranged from 4 to 8).
2. The distribution of u could be platykurtic (uniform), mesokurtic (normal),

moderately leptokurtic (Student’s t with 5 d.f.) or strongly leptokurtic
(Student’s t with 3 d.f.).

3. The number of observations could be N=500 or N=100.

The dependent variables in the experiment are the percentage of times the
SSQR/2 and NR2  statistics exceed the 5% critical value of the chi-square
distribution with one degree of freedom. The results are displayed in Table 5. The
first column of Table 5 contains the rejection rates when the null homoscedasticity
hypothesis is true. There we see that the NR2 statistic always yields a rate which is
close to the theoretical 5%, even when u is not normal or the small number of
observations might make the asymptotic approximation suspect. On the contrary,
the original Breusch-Pagan test only approaches the theoretical rejection rate if u
is normal. The rejection rate approaches 0 when u is platykurtic, and gets very
large when u is leptokurtic, specially when kurtosis is high. The Breusch-Pagan
test is then very sensitive to leptokurtic disturbances. As a matter of fact, the test
could even be used to test for kurtosis, even if there may be better alternatives
available (Mardia, 1974).

The remainder of Table 5 represents the case where the alternative hypothesis
holds, under various degrees of power arising from different sample sizes and
degrees of heteroscedasticity. The  power is larger for NR2 when u is platykurtic



Collinearity, Heteroscedasticity and Outlier Diagnostics in... 87

and larger for SSQR/2 when u is leptokurtic, although the latter is in some sense
fallacious, as both hypotheses against which the test is sensitive are
simultaneously false, so that not all of the rejection rate can be attributed to power
against heteroscedasticity. The fact that the power of both statistics seems to be
the about the same when u is normal, is a further argument for using the NR2

statistic.

Table 5: Results of the Monte Carlo experiment. Percentage of replications in which the
SSQR/2 and NR2  statistics exceed 3.84.

 Homoscedasticity Moderate Strong
Heteroscedasticity Heteroscedasticity

N u Distr. NR2 SSQR/2 NR2 SSQR/2 NR2 SSQR/2

500 uniform .042 .002a .794 .360 1 .992
500 normal .034 .032 .388 .388 .950 .946
500 t with 5 d.f. .042 .200a .224 .468 .678 .894
500 t with 3 d.f. .044 .470a .104 .526 .296 .738

100 uniform .072a .006a .208 .028 .668 .264
100 normal .046 .040 .100 .086 .330 .326
100 t with 5 d.f. .046 .162a .082 .236 .220 .430
100 t with 3 d.f. .038 .314a .058 .326 .138 .432

a Rates significantly different (α=5%, two tailed) from the theoretical .05 value in
the homoscedasticity case.

 The original Breusch-Pagan test will then be particularly misleading if u is
leptokurtic and homoscedastic. If a considerable number of replicates are available
for some combinations of values of the regressors, normality can be tested prior to
using the original Breusch-Pagan test. Otherwise, we suggest that the alternative
NR2 statistic should generally be used, thus bringing the Breusch-Pagan test closer
to White’s without suffering the problems of White’s test when k is large (e.g. if k
= 10, White’s procedure implies that 55 regressors be included in the auxiliary
regression, which can lead to a substantial reduction in power). The use of the NR2

statistic does not assume zero kurtosis but just that kurtosis is constant for all
observations (White, 1980).
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3.3 Critique of critical values for outlier statistics

The main critique about probabilistic limits, such as those for studentized deleted
residuals is that they are usually based on individual risk and not on overall risk.
In other words, the distribution of an individual observation cannot be used to
assess the characteristics of extreme values (Barnett and Lewis, 1994). For
instance, if we use the ±1.96 limits, then the individual risk of αi=5% but the
global risk can be much larger for large N. For instance, if N=1000 we will expect
around 50 residuals to be larger than the critical value even if no outliers at all are
present. The risk that there will be at least one residual above the critical value
under these circumstances is nearly αg=100%.

Under the normality assumption, the squared studentized deleted residuals are
asymptotically distributed as a chi-square with one degree of freedom and
asymptotically independent. In this case, the global risk can be computed as

αg=1-(φ(l2))N (8)

where φ is the distribution function of a chi-square with one degree of freedom and
l is the critical value for the studentized deleted residual. We suggest always
using critical values that yield a reasonable global risk αg selected by the user.
Such limits can be computed as:

l = −−φ α1 1( )g
N (9)

where φ-1 is the inverse of the distribution function of a chi-square with one degree
of freedom. Tests based on studentized deleted residuals have been proven to be
likelihood ratio tests for normally distributed disturbances (Barnett and Lewis,
1994). For small samples, independence of the residuals of different observations
is not warranted and critical values based on Bonferroni’s inequality are available
(Lund, 1975).

As regards Cook’s distance, we suggest not using any limits at all but drawing
a scree plot of Cook’s distances ordered from highest to lowest. This plot will be
useful to separate the few most influential observations from the many least
influential ones. A sensitivity analysis of the estimates should then be carried out
by hand by sequentially dropping the identified observations and qualitatively
evaluating the extent to which the conclusions to be drawn from the model change.
This is what ultimately counts when evaluating influence of the observations and
is far more useful than blindly using a fixed critical value. Alternatively, for each
parameter’s conficence interval one could report the lowest value for the lower
limits and the highest value for the upper limits found when dropping different
observations (Leamer, 1979).
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4 Illustration of the classic and alternative diagnostics

In this section we illustrate the use of all reviewed collinearity and
heteroscedasticity diagnostics on real data and compare them to those suggested as
an alternative to the classic ones. The illustration is carried out on a data set from
a work absenteeism study (Saez et al., in press). The aims of the study were to
determine the factors that explain work absences due to illness or accident at the
working place in the public transport company in Barcelona, Spain between 1994
and 1996. The data were measured for the whole population of over 5,000
employees. The data presented in this article do not exactly coincide with those
used in Saez et al. In order to bring statistical power within the boundary of usual
standards, we drew a random sample of 500 employees, which were reduced to
431 after list-wise deletion of missing cases. For the sake of simplicity we
restricted ourselves to a subset of the variables (the ones which proved to have the
most theoretical and statistical significance in the original study) and we grouped
the categories of some qualitative regressor variables. This grouping was made by
collapsing categories which were similar from a theoretical point of view and
which had a similar effect on the dependent variable in the original study.

The dependent variable is labelled spells and measures the number of work
absences of the employee during the period ranging from 1994 to 1996. Even if it
is a discrete count variable, it varies over a range which is reasonably wide in
order to be used as dependent variable in a standard regression model (see
histogram in Figure 1).

Figure 1: Histogram of the dependent variable for the whole population.

Std. Dev = 2,09
Mean = 2
N = 5481,00

Number of absence spells
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The regressor variables were:

1. Age (in years).
2. Tenure (in years).
3. Ocup: dummy (1: electricians, drivers and mechanic; 0: others).
4. Shift: dummy (1:day; 0: night or mixed).
5. Study: dummy (1:primary or less; 0: secondary or higher).
6. Tobacco: dummy (1:smokers and former smokers; 0: never smoked).
7. Disease: dummy (1:one or more serious illnesses; 0: none).
8. Gender: dummy (1:female; 0 male).
9. Selfper: dummy (1:bad perceived health; 0: good perceived health).
10. Company: dummy (1:Underground; 0 Bus).

Table 6: Distribution of the regressor variables.

Variable Cases Mean Std Dev

Age     470 43.65 11.31
Tenure  470 16.85 10.82
Ocup    470    .51     .50
Shift            470    .44     .50
Study   470    .65     .48
Tobacco  470    .58     .49
Disease 470    .44     .50
Gender  470    .10     .30
Selfper 431    .01     .12
Company 470    .45     .50

Correlation Coefficients

 Age Tenur Ocup Shift Study Tobac Disea Gend     Selfp   Comp

Age    1.00  .88 -.14  .23  .66  .02  .20 -.10    .08    .13
Tenur   .88 1.00 -.20  .32  .58  .00  .23 -.07    .08    .12
Ocup  -.14 -.20 1.00 -.51 -.06 -.04  .08 -.33   -.01   -.63
Shift  .23  .32 -.51 1.00  .16 -.01  .03  .16    .10    .50
Study  .66  .58 -.06  .16 1.00  .02  .16 -.12    .05    .07
Tobac  .02  .00 -.04 -.01  .02 1.00 -.12 -.06    .03    .07
Disea  .20  .23  .08  .03  .16 -.12  1.00 -.13    .05   -.11
Gend -.10 -.07 -.33  .16 -.12 -.06 -.13 1.00   -.04    .22
Selfp  .08  .08 -.01  .10  .05  .03  .05 -.04      1.00    .09
Comp  .13  .12 -.63  .50  .07  .07 -.11  .22    .09   1.00
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The distribution of the regressor variables is shown in Table 6. Some
correlations are substantial but none is extremely high (the highest is .88), which
suggests that collinearity is not extreme. Note that the mean of the variable age is
relatively high compared to the standard deviation, which is likely to inflate the
condition number of SX’XS with respect to that of R.

Table 7: Estimates and diagnostics of the regression model (n=431).

Variable    b Se(b)  Tol Vif t

Age    .004  .024  .159 6.264    .171
Tenure  .009  .025  .168 5.937    .382
Ocup  1.005  .310  .491 2.037     3.238
Shift  .368  .281  .607 1.647 1.310
Study  .120  .302  .550  1.817   .398
Tobacco  .288  .221  .974  1.027 1.302
Disease  .351  .232  .878  1.139 1.510
Gender    1.161  .408  .840  1.190     2.843
Selfper   2.847  .939  .973  1.027     3.031
Company   1.205  .306  .511  1.959     3.941
Const -.282  .735      -.384

Diagnostics:

R2       .114
Condition number of SX’XS:   30.480
Condition number of R:      5.799
Kurtosis of residuals:   31.033
SSQR/2 Breusch-Pagan test statistic: 164.523 (p-value: 0.00000)
NR2 Breusch-Pagan test statistic:   10.611 (p-value: 0.38956)

Studentized deleted residuals larger than the critical value:

Critical valueCount αi αg

±1.96 15 5% 100%
±3 3 0.27%   69%
±3.66 2 0.025%   10%
±3.85 2 0.012%     5%

The ordinary least squares estimates are in Table 7, together with the
collinearity and heteroscedasticity diagnostics discussed in previous sections. The
Vif’s and the Tol’s show a sizeable though not extreme degree of collinearity.
However, the condition number of SX’XS lies above the usually recommended
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limits, thus showing an apparently extreme collinearity. The condition number of
R, on the contrary, shows a large though not extreme degree of collinearity, in
coherence with the Vif’s and the Tol’s. The extremely high kurtosis of the
residuals causes big difference between the SSQR/2 and NR2 statistics for the
Breusch-Pagan test. There is no grounds to reject the null homoscedasticity
hypothesis when using the alternative NR2 statistic. On the contrary, the SSQR/2
statistic would lead to the rejection of the null hypothesis with virtually no risk,
although it is unknown whether the test is being sensitive to heteroscedasticity or
to kurtosis.

Table 7 also shows the number of observations whose studentized deleted
residual exceeds a range of alternative critical values. The number of outliers
detected changes dramatically from 15 to 2 depending on whether αi or αg is set to
5%. Even the ±3 critical values have an unacceptably large αg. A global risk
αg=10% seems a reasonable compromise if we want individual outliers to have a
greater chance of being detected.
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Figure 2: Scree plot of Cook’s distances (only the 50 largest are shown).

Figure 2 shows a scree plot of the 50 largest Cook’s distances. The plot
suggests that 4 observations are comparatively more influential than most others
and could be subject to a sensitivity analysis. The standard level based on the 50th
percentile of the F distribution with 11 and 420 degrees of freedom is 0.94, which
is not exceeded by any of the observations. The removal of the 4 observations with
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the highest Cook’s distances did lead to some substantial changes in the model:
the variable tobacco attained a significance of 5.5%; the R2 statistic increased to
.142; the estimated effect of gender decreased to 0.75 and the effect of selfper
increased to 3.22.

5 Discussion

In this article we have shown major weaknesses of some commonly used
collinearity  heteroscedasticity and outlier diagnostics. In particular, the condition
number of SX’XS has been shown to be sensitive to the means of the variables, the
Breusch-Pagan test has been shown to be sensitive to the kurtosis of the
disturbances and the critical values for the usual outlier statistics have been shown
to be rather meaningless. Alternatives which do not have these undesirable
properties and which are easy to compute have been suggested.

The classic diagnostics have been compared to the alternatives on an empirical
data set. The differences were large enough to lead to completely different
conclusions depending on which diagnostics were employed.

Further robustness problems of these diagnostics are not solved by the
suggested alternatives. Critical values for studentized deleted residuals are very
sensitive to the normality assumption. Heteroscedasticity tests are very sensitive to
the presence of outliers because they involve squaring the residuals, which makes
outliers to have a more serious effect in the auxiliary than in the main regression.
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