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Fuzzy Partitions

Slavka Bodjanova!

Abstract

This paper gives an overview of several approaches to the definition of the
notion of a fuzzy partition. Special attention is given to the fuzzy k-partitions
which are results of the well known fuzzy k-means algorithm. Some methods
for quantitative evaluation, comparison and combination of fuzzy k-partitions

are suggested.

1 Introduction

Classification is a key issue in reasoning, learning, and decision making and is one
of the most important of human activities. In the real world, classes are often
inexact and categories vague. Researchers, especially in social and other human
sciences, often have to deal with information expressed in linguistic terms. Using
natural language, one cannot partition objects into nicely bounded classes. For
example, the very natural concept of good student can hardly be used as a criterion
for partitioning a group of students into two distinct subgroups of good and not good
students.

A natural concept, e.g., the concept of a good student, can be thought of as
associated with a collection of objects. Belongingness of an object in a collection
is a matter of degree. Mathematical description of belongingness, or membership of
objects in a collection, was introduced by Lotfi Zadeh (1965) in the theory of fuzzy
sets. A fuzzy set A in a given set X is characterized by a membership function, which
associates with each element of X a real number in the interval [0, 1], with values
of this function representing grade of membership of the corresponding element in
A. Because full membership and full nonmembership in the fuzzy set can still be

indicated by the values of 1 and 0, respectively, we can consider the concept of
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a classical (hard, crisp, nonfuzzy) set to be a restricted case of the more general
concept of fuzzy set.

A fuzzy partition is a special collection of fuzzy sets. There is an abundant
amount of literature dealing with the theory of fuzzy sets. Recent up-to-date mono-
graphs include Kruse et al. (1994), Klir and Yuan (1995), Grabisch et al. (1995),
Hung and Walker (1997) among others. Studies concerned with the mathematical
properties of fuzzy partitions are still rare.

First of all we will present several approaches to the definition of the notion of
a fuzzy partition (Ruspini, 1969; Butnariu, 1983; Dubois and Prade, 1990; Hung
and Walker, 1997). In practice, a fuzzy partition is a result of a search for structure
in a data set. Techniques of search (pattern recognition) are applicable to medical
records, psychological profiles, demographic features, aerial photos, etc. The result
is a partition of objects into more or less homogeneous subgroups on the basis of
an often subjectively chosen measure of similarity. Both the diversity of pattern
recognition techniques and the number of different scientific disciplines in which
these have been developed are striking. An excellent review of probabilistic, fuzzy
and neural models for pattern recognition is in Bezdek (1993). The first fuzzy
clustering algorithm was developed by Ruspini (1969). Dunn (1973) proposed a
fuzzy k—means algorithm, which was generalized by Bezdek (1981). This algorithm
results in the fuzzy k—partition of a data set. The number of fuzzy classification
techniques has been growing, but the fuzzy k-means algorithm is still undoubtedly

the most popular.

In Section 3 of this paper we focus on comparison of fuzzy k-partitions. Fuzzy
partitions can be compared with respect to an appropriate quantitative character-
ization or can be ordered (partially ordered) according to a meaningful relation of
complete or partial order. We propose a partial ordering of fuzzy k-partitions based
on their sharpness (fuzziness) and a partial ordering of fuzzy k-partitions based
on their m-importance. In general, the m-importance of a fuzzy partition U of a
set X is determined by the values and the locations of the maximal coefficients of
membership of object z; € X, j € {1,...,n} = N, in fuzzy clusters u; € U, for
i€ {1,....k} = Ni. We also present several quantitative characterizations of fuzzy
k-partitions and we discuss how they can be used in order to measure the amount

of sharpness (fuzziness) or the amount of m-importance of a fuzzy partition.

In the fourth Section of this paper we consider a finite collection S of fuzzy
k-partitions of the same set of objects (obtained, e.g., by applying different clas-
sification procedures to the same data, or because of different opinions of experts
classifying objects). Then we will show how to find a lower and an upper bound

of § with respect to the relation of m-importance. We will define a-equivalence of
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fuzzy k-partitions and we will present a method which allows one to find a lower
and an upper bound of a collection of a-equivalent fuzzy k-partitions with respect
to their sharpness.

2 The notion of a fuzzy partition

Let X be a nonempty set. A fuzzy set A in X is a function
ta X —[0,1]. (2.1)

The family of fuzzy set on X will be denoted by F(X). When we want to exhibit
an element x € X that typically belongs to a fuzzy set A, we may demand its
membership value to be greater than some threshold o € (0, 1]. For each o € (0, 1]
the a-level set A (or a-cut of A) is defined as the crisp set A, with characteristic

function

pag(x) = 1 if pa(z) > o, (2.2)
pa,(x) = 0 otherwise. (2.3)

Then the membership function of a fuzzy set A can be expressed in terms of char-

acteristic functions of its a-cuts according to the formula

pa(z) = sup min{a, pi4,(7)}- (2.4)
ac(0,1

The operations on F(X) are defined by the triangular norms, t-norms and t-conorms
(Schweitzer and Sklar, 1960). The following t-norms are frequently used as fuzzy

intersections:
e To(z,y) = min(z,y),
e Ti(z,y) = 2.,
o To(z,y) = max(z +y — 1,0),
o Ti(x,y) =log,(1+ %), s>0,s# 1.
The following t-conorms are frequently used as fuzzy unions:
* So(z,y) = max(z,y),
e Si(z,y) =z +y—zy,

¢ Soo(r,y) = min(z +y,1),
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e Si(z,y) =1—log,(1+ %),s > 0,5 # 1.

Several definitions have been proposed for the concept of a fuzzy partition. Ac-
cording to Ruspini (1969) a k-tuple (A1, ..., Ag) of fuzzy sets from F(X) such that
O # A; # X for all i € Ny, and 5, pus () = 1 for all z € X is called a fuzzy
partition of X.

The following alternative definition of a fuzzy partition of a fuzzy set has been
introduced by Butnariu (1983):

Let C be a fuzzy set on X. The family Ay, ..., A of fuzzy sets from F(X) is a
finite fuzzy partition of C if the next conditions are satisfied:

(W) NAj=0,j € Nea, (2.5)
oAy = C, (26)

where (A; N A;)(z) = max(A4;(z) + Aj(xz) —1,0) for all z € X,
and (A4; U A;)(z) = min(4;(z) + 4;(z),1) for all z € X.

The equivalence of Ruspini’s and Butnariu’s definition is stated by the following
theorem (Butnariu, 1983):

Theorem 1
The family A1, ..., A of fuzzy sets is a finite partition of a set C, i.e. it satisfies
(5) and (6), if and only if X%, pa,(z) = C(x) for allz € X.

Dumitrescu (1992) showed that operations U and N given by S., and Ty, respec-
tively are the only t-conorm and t-norm for which the Theorem 1 holds.

Some authors, e.g., Hung and Walker (1997), require that fuzzy sets Ay, ... Ay
in Ruspini’s definition of a fuzzy partition must be normal fuzzy sets, i.e. for each
A; thereis x € X : A;(z) = 1.

There has been also an attempt to study fuzzy partitions in metric spaces, con-
ducted by Bouchon and Cohen (1986).

Dubois and Prade (1990) introduced a weak fuzzy partition as follows:

A k-tuple (A4, ..., Ag) of fuzzy sets from F(X) forms a weak partition of X if

for all 7 : inf max{ua,(z)} >0, (2.7)
while
for all 4, 7,4 # j : supmin{pua, (x), pa,(z)} < 1. (2.8)

In applications the bound 1 in (2.8) is usually replaced by 0.5 (Kruse et al., 1994).
Bezdek (1981) used Ruspini’s definition of a fuzzy partition and devoted many

of his papers to methods of fuzzy clustering and fuzzy pattern recognition where
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the results are fuzzy k-partitions. He defined partition spaces on a finite set X as
follows:

Let X = {x1,22,...,z,} be a given set of objects. Fix the integer k, 2 < k < n
and denote by Vj, the usual vector space of real k& x n matrices. Then: Fuzzy

k-partition space associated with X:

Py ={U € Vigsuij € [0,1]; ) ws; = 1 for all j; ) u;; > 0 for all 7} (2.9)
i J

Here u;; is the grade of membership of object z; € X in fuzzy cluster u,. Hard
k-partition space associated with X:

Py ={U € Vi uj € {0,1};> u;; =1 for all j; > uy; > 0 for all 4} (2.10)
{ J

If we relax the condition 3, u;; > 0 we will get degenerate partitions. Degenerate

fuzzy k-partition space associated with X:

Piio = {U € Vi wij € [0,1]; Y uy; = 1 for all j}. (2.11)

Degenerate hard k-partition space associated with X:

Pro ={U € Vip; w5 € {0,1}; Z“ij =1 for all j}. (2.12)

It is obvious that P, C Ps; C Ppio and P, C Py C Ppio-

Klir and Yuan (1995) call a fuzzy k-partition defined by Bezdek a fuzzy pseu-
dopartition of X. They use the term fuzzy partition only for the result of a clustering
method based on a fuzzy equivalence relation.

A fuzzy binary relation E in X x X is a fuzzy set defined on X xX. E is reflexive
ifand only if forallz € X : pg(z,x) = 1. E is symmetric if and only if for allz € X :
pe(z,y) = pue(y,z). E is transitive if ug(z, z) > maxyey min{ugr(z,y), pe(y,2)}
is satisfied for each pair (z,z) € X x X. A fuzzy binary relation that is reflexive,
symmetric and transitive is known as fuzzy equivalence relation or similarity relation.
According to Klir and Yuan (1995) a fuzzy partition is a family of crisp partitions
induced by the a-cuts of a fuzzy equivalence relation.

Example 1
Let X = {z1,x9, x3,24}. The following partitions U and V are partitions of X from
Pr3o:
0.8 0.5 0.6 0.2 1.0 0.6 0.7 0.1
U=1] 01 05 0.1 04 and V=1 0.0 0.3 0.0 0.5
0.1 0.0 0.3 04 0.0 0.1 0.3 04
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Example 2
Let X = {1, %9, 23, 74}. Let the similarity among objects from X be given by the

fuzzy equivalence relation E:

1.0 0.5 0.7 0.5
05 1.0 0.5 0.9
0.7 0.5 1.0 0.5
0.5 09 0.5 1.0

Relation E induces four crisp partitions of its a-cuts.
P : a€(0.0,0.5]: {{x1, 22,23, 24}},
Py: € (05,0.7): {{z2, 24}, {z1,23}},
Py: ac(0.7,0.9] : {{z2, x4}, {z1},{23}},
Py ae(0.9,1.0]: {{z1}, {z2}, {z3},{z4}}.
The above sequence of partitions forms a crisp hierarchical partition of X.
In the next two Sections we will focus on characterization, comparison and com-

bination of fuzzy k-partitions from Ppy,.

3 Comparison of fuzzy partitions

Let U,V € Py,. We say that U =V if and only if u;; = v;; for all 7, j. We want to
introduce a relation of partial order on Py, which allows one to order some pairs of
U,V € Py,. We will use a modification of relation sharpness originally introduced
by De Luca and Termini (1972) for fuzzy sets.

Definition 1
Let U,V € Py, and o € [0,1]. We say that U is a-sharper than V denoted by
U <.V if and only if

IN

Uy Vij for Vij <a, (31)

uij > v forvi; > a. (3.2)

Relation <, satisfies the following properties:
1. Py, is partially ordered by <,.

2. The set MIN, = {U € P, : uj; > aoru; = 0foralli,j} is the set of
minimal elements of Py, with respect to <.

It is obvious that when « approaches 1, then MIN, approaches Py,.
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Relation a-sharpness captures the intuitive idea that the closer the coefficients u;;
are to 1 or 0, the sharper (less fuzzy, less diverse, less uncertain) is the partition U.

Example 3
Let X = {x1,%9,x3,24}. Let U,V € Py3o be given by matrices

0.6 0.0 04 0.1 0.5 0.0 0.4 0.2
U=1]02 10 05 02 | andV =| 03 0.8 0.4 0.2
0.2 0.0 0.1 0.7 0.2 0.2 0.2 0.6

Then U <,V for a=0.4.

Suppose that classes C1,...,C} are arranged according to their logical impor-
tance from the most important to the least important (e.g., arrangement of k£ medical
diagnoses from the most severe (C}) to the least severe (Cy)). Suppose that we have
two fuzzy partitions of the same set of objects (e.g., the same set of patients) into
classes C',...,Cy. We will consider the fuzzy partition U more important than the

fuzzy partition V' if for each object (patient) x; either 1. or 2. holds:

1. the maximum of the set {u;;, v;;} over classes C; where u;; # v;;, is a coefficient
from U,

2. max{u;j, v;;} over classes C; where u;; # v;; is the element u,; € U which is

equal to the element v,; € V, but u,; is in the more important class (r < s).
We define the relation m-inclusion on P, X Py, as follows:

Definition 2

Let U,V € Pyppo. For each x; € X, let Ij = {i : ug; # vij},urj = maxser{ui;} and
vy = maxer,{vi; ). Then U is m-included in 'V, denoted by U Ty, V, if and only if
for each z; € X either I; =0, or u,j > vgj; or up; = vg; and r < s.

Relation [, satisfies the following properties:

1. Py, is partially ordered by .

2. Poset (P, Cry) forms a lattice.

Example 4
Let U,V € Py3, be partitions of X = {x1,zs, 23,24} given by matrices

0.0 0.6 0.1 0.2 0.6 0.0 0.3 0.0
U=]10 03 05 00 | andV =| 04 06 0.5 0.7
0.0 0.1 04 08 0.0 04 0.2 0.3

Then U [, V.
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Theorem 2
Let U,V € P and a € (0,1). If U <, V thenU C,, V.

Fuzzy partitions can be compared with respect to some quantitative characteri-
zations which are defined as real functions g : P, — [0, 00). We will show that some
of these characterizations can be used in order to measure the amount of a-sharpness

or the amount of m-importance of a fuzzy partition.

Definition 3
Function g : Ppy, — Ry is called a measure of a-sharpness if for U,V € Py, such
that U <, V', we have g(U) < g(V).

If a= % then a measure of a-sharpness becomes a convenient way of measuring

fuzziness of a fuzzy partition.

Example 5
Several quantitative characterizations of fuzzy partitions suggested in Bezdek (1981)

can be used for constructing measures of a-sharpness. For example:

a) Degree of separation
Z(U) =1 — max{min u,;;}. (3.3)

j 7
Proof: If U <, V then min; u;; < min;v;;, therefore Z(U) > Z(V) and ¢,(U) =
1-ZU)<1-=Z(V)=g:1(V), i.e. g1(U) is a measure of a-sharpness of U.

b) Partition coefficient

FU) = %Zzuﬁj (3.4)

Proof: If U <, V then 3, > (u;; — @)® > 3, 3 ,(vs; — @)?, it means

XU — 230 Y w4+ nka? > 30, 3,08 — 230, 3 viga + nka?, it means

i 2, uy; — 2no+ nka? > 3 ;v — 2na 4+ nka?, therefore Y5, 30, uf; > 3 2, v,
and ¢go(U) =1 — F(U) is a measure of a-sharpness of U.

c) Partition entropy
1
H(U) = —; ZZU” lOga Usj (35)
T g

where a € (1, 00) and u;;log, u;; = 0 for u;; = 0.

Proof:

We will show that if V' <, U then H(V) < H(U).

Let z; € X and I(u;) = {¢ : u;; > 0}. Let us consider function & : [0,1] — R defined
by h(z) = —z.log, z, for z € (0,1],a € (1,00), h(0) = 0.
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Then % = —log, z— - and £* < 0. Hence h(z+8) < h(z)+6% for all § € (0,1).

- loga

Let us consider u(x;) € U € Py, such that u;; < o for i < r and w;; > a for i > r.
Then v;; = u;; + 6;, where 6; <0 for ¢ <r and 6; > 0 for ¢ > 7.
Obviously, 7_,(—&) = ¥¥, 1 6;, and log, u;; < log, a for i < r and log, u;; >
log, o for 7 > r.
Therefore

k k

h(v(z;)) = Z —vj5.log, vij = — Z(u” + 0;). log, (ui; + 6;)

% %

k k
1
S - ;u” IOga Uyj + ;51(— IOga Uij — loga)
< ; | . —0;
< hlufay) + (og, @t o). 350
k 1
+ 0i(—log, u;; —
2, B o)
k
= h(u(zy)) + Y di(log, o —log, uij) < h(u(z;)).
i=r+1

Hence H(V) = X2, h(vi;) < X h(ui;) = H(U), Q.E.D.

Example 6
Consider fuzzy partitions U, V' from Example 3. U <, V for a = 0.4. Let g1, g» and
H be measures of a-sharpness introduced in Example 5. Let ¢ = 10 in definition of
H. Then:
91(U) =0.2, go(U) =04, H{U) = .293, and ¢;(V) = 0.2, go(V) = 0.535, H(V) =
.384.

A simple way of constructing measures of a-sharpness of fuzzy partitions is based

on a-combination of fuzzy clusters.

Definition 4

Let up,us € F(X) and o € (0,1). Minimal a-combination of u,,us is the fuzzy set
up € F(X) defined by:

forallz e X :

up(z) = min{u,(x),us(z)} if min{u,(x),us(z)} < o,

= 0 otherwise. (3.6)

We denote uy = Uy, Us.
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Definition 5

Let up,us € F(X) and a € (0,1). Mazimal a-combination of u,,us is the fuzzy set
uq € F(X) defined by:

forallz e X :

ug(x) = max{u,(x),us(x)} if max{u,(z),us(z)} > a,

= 1 otherwise. (3.7)
We denote u, = ulus.

It is easy to prove that for U,V € Py, such that U <, V, for all (r X 5) € Ny x Nj:

0<up(x) = (urats)(w) < (U 0s)(2) = vp(2) <o, (3.8)
a <) = (vs)(x) < (uus)(@) = ug(w) < 1. (3.9)

T

Theorem 3
Let f :[0,a] = R{ such that f is nondecreasing on [0, «]. Then function g : P, —
Ry defined by

1

g(U) =23 > > f(ur,us)(2)) (3.10)

=1ls=r+1 =

1s a measure of a-sharpness of U.

Theorem 4
Let f : [, 1] = Ry such that f is nonincreasing on [, 1]. Then function g : P, —
Ry defined by

-1

gU) =23 > 2 f((ufu)(x)) (3.11)

=ls=r+1

1s a measure of a-sharpness of U.

Example 7
Let U,V € Pys, be partitions of X = {x1, s, z3, 24} given by matrices

0.8 04 1.0 0.3 0.75 0.40 0.70 0.30
U= 01 02 00 02 | andV =1 0.15 0.25 0.20 0.25
0.1 0.4 0.0 0.5 0.10 0.35 0.10 0.45

U<,V for a=0.3.
Let fi :[0,0.3] — R{ is an identity function, i.e. f;(z) = z for all z € [0,0.3]. Then
g(U) =1 Yk Y a(urg,us) () is a measure of a-sharpness of U for @ = 0.3.
It is clear that
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(u10_3uQ)(3§1) 0'1’ (u10_3u2)(l‘2) = 0'2’ (u10_3u2)(l‘3) = 0'0’ (u10.3u2)(‘7"4) = 0'27

(u155u3)(71) = 0.1, (u1g5u3)(w2) = 0.0, (u143u3)(x3) = 0.0, (u1g,us)(74) = 0.0,

(ugq5u3)(71) = 0.1, (uzg4u3) (T2) = 0.2, (ugy zu3)(x3) = 0.0, (ugyzu3)(74) = 0.2.

Therefore g,(U) = 1.1.
Analogously we can find out that ¢; (V') = 1.75.

Let f5:[0.3,1] — Ry is defined by fi(z) =1 — z for all z € [0.3,1].

Then go(U) = nk — k21 sk 5, (u@3u,)(2) is a measure of a-sharpness of U for
a=0.3.

It is clear that

(ud3up) (1) = 0.8, (ud3up) () = 0.4, (udPuz) (z3) = 1.0, (udPus)(x4) = 0
(ufPug) (1) = 0.8, (ufPug) (x2) = 04, (ufPuy) (23) = 1.0, (u)®us)(21) = 0.
(u§us) (1) = 1.0, (u3Pug) (z2) = 0.4, (u3%uy) (23) = 1.0, (udus)(24) = 0
Therefore go(U) =12 — 8.1 = 3.9.

Analogously we can find out that g,(V') = 4.75.

Now we will provide some examples of measures of m-importance.

Example 8
Let U € Pjy,. Then

P (U)=n-— ; Max u;; (3.12)
is a measure of m-importance.
Proof: If U C,, V then max; u;; > max; v;; for all j, therefore ¢, (U) < 41 (V), and
1 is a measure of m-importance.

Also

is a measure of m-importance.

The proof is obvious.

Example 9

Consider fuzzy partitions U,V from Example 4. Let 11, 1 be measures of m-
importance introduced in Example 8. Then

v (U)=4—(140.6+05+0.8) =1.1and ¢ (V) =4—(0.64+0.6+0.5+0.7) = 1.6,
and 1o (U) =1 —0.24 = .76, 1o(V) =1 — 0.126 = 0.874.

4 Combination of fuzzy partitions

Let § = {U,...,Un} be a collection of fuzzy k-partitions and let R be a relation
of partial order on Pyz,. We want to find a fuzzy partition W € Py, such that
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W R U, for all t € N,,. W will be called a lower bound of & with respect to R.
Analogously, we want to find a fuzzy partition Z € Py, such that U; R Z for all
t € N,,. Z will be called an upper bound of S with respect to R.

Let R be the relation of m-importance introduced in Section 3. Since (Ppgo, Crn)
forms a lattice, a lower and an upper bound exist for any collection {Uy, ..., Uy} of
fuzzy partitions from Py,. We will describe an algorithm for construction of these

bounds.

Let U(z;) denote the column of matrix U which includes coefficients of mem-
bership of object z; € X in fuzzy clusters u;,7 € Ny. Let V(z;) denote the column
of matrix V' which includes coefficients of membership of object z; € X in fuzzy
clusters v;,i € Ni. Let I; = {i € Np : u;(;) # vi(x;)}, uryj = maxser{ug;} and
vg; = maxer,{vi;}. Then U(z;) C V(x;) if and only if either I; = 0, or u,; > vy; ,
or u,; = vs; and 7 < s. It is obvious that U C,, V if and only if U(z;) C V(z;) for
all z; € X.

The following algorithm leads to a lower bound W and an upper bound Z for a

collection of fuzzy k-partitions {Uy, ..., U, } with respect to their m-importance.

Algorithm 1

Input: U,V € Pyy,.

Step 1. Put t =1. For all j € N,, : W (z;) := U(x;) and Z(z;) := Ui(x;).
Step 2. Put t :=t+ 1. If t = m then stop. Else go to Step 3.

Step 3. If Uy(z;) C W(x;) then W(z;) := Uy(x;).

If Z(z;) C Uy(z;) then Z(z;) := Uy(z;).

Go to Step 2.

Example 10
Let Uy, Us, Us € Py3, be fuzzy partitions of X = {1, x2, x3, 24} given by matrices

0.4 0.0 0.3 0.0 0.8 02 0.3 0.9
Ui=| 06 07 03 00 |,U,={ 01 07 01 0.1
0.0 0.3 04 1.0 0.1 0.1 0.6 0.0

and

0.5 0.1 0.2 0.0
0.3 0.7 0.2 1.0
0.2 0.2 0.6 0.0

Us

Then, applying Algorithm 1, we will get the lower bound W and the upper bound

Z of collection {U;, Us, U3} with respect to the relation m-sharpness as follows:
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0.8 0.0 0.3 0.0 0.5 0.1 0.3 0.9
W=1|01 07 01 1.0 [and Z=] 0.3 0.7 0.3 0.1
0.1 03 0.6 0.0 0.2 0.2 04 0.0

It is obvious that W ,,, U; and U; ,,, Z for all t € N3.

In general, the lower and the upper bound for a collection of fuzzy k-partitions
with respect to relation a-sharpness do not exist. However, we might be able to find
these bounds for a collection of a-equivalent fuzzy partitions.

Definition 6
Let a € [0,1] and let U € Pjgo. The a-cut of fuzzy partition U is characterized by
the k x n matriz U* defined as follows:

uy = 1 if wij >« (4.1)

up; = 0 otherwise. (4.2)

Definition 7
Let a € [0,1]. We will say that fuzzy partitions U,V € Py, are
a-equivalent if U* = V.

The following hold:
1. All fuzzy partitions are a-equivalent at a = 0.
2. U=V foralla €[0,1] if and only if U = V.

Theorem 5
Let U,V € Py, be such that U <, V. Then U* = V©.

The proof is obvious.

It is easy to check that there are two trivial cases when U = Us = ... = US.
Let 6, = minyj{u@)i;}, and 0 = maxyj{uw}, t € Np. Then for a € [0,6,] we
get UY = [1], and for a € (d2, 1] we get U = [0] for all t € N,,. We want to find
a nontrivial «, i.e. «a € (d1,d9] such that U = U = ... = U%. We propose the
following Algorithm:

Algorithm 2

Step 1. Put oy = minj,{max; u(y,;} and 01 = ming;{ugi;}-

Step 2. Put a = oy and construct U} for all ¢t € N,,.

Step 3. Find the set S of those elements u(,;; from matrices Uy, ..., U, such that
ufy;; = 0 and there exists s € Ny, such that u,;; = 1. If S = () then stop.

Else go to Step 4.

Step 4. Put ay=minimal element from S.
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If g < 971 then stop.
Else go to Step 2.

Example 11
Let Uy, Uz, Us € Pyy, be fuzzy partitions of X = {x1, x5, x3, 24, x5} given by matrices

0.50 0.10 0.40 0.15 .40 0.50 0.10 0.45 0.15 0.50
U 0.40 0.05 0.08 0.42 .50 U, — 0.45 0.00 0.08 0.45 0.40
"7 000 045 012 043 05 [ ° | 0.00 040 0.07 0.40 0.05
0.10 0.40 0.40 0.00 .05 0.05 0.50 0.40 0.00 0.05
and
0.48 0.10 0.54 0.15 0.50
U. — 0.42 0.10 0.01 0.40 0.50
5T 0.05 0.40 0.05 0.40 0.00
0.05 0.40 0.40 0.05 0.00
51 = mlnm]{U(t)Z]} =0.
We want to find o > 0 such that U} = U$ = US. We will use Algorithm 2 as
follows:
Step 1. ap = min{0.50,0.54,0.45} = 0.45.
Step 2. a = 0.45. Then
1 00 00 1 0101 1 0101
00 0O01 1 0010 00 0O01
s = , Us = U5 =
01 000 00 O0O00O 00 O0O00O O
000O0@O 01 000 00 O0O0@ O
Step 3. S = {0.42,0.40}.
Step 4. ap = 0.4.
Step 2.
1 0101
1 0011
Ur =Us = Uy =
e 01010
01100
Step 3. S = 0.
Therefore, we have that U = Us* = Us' for a = 0.4.
Let § = {Uy,..., Uy} be a collection of a-equivalent fuzzy k-partitions. For

zj € X let us denote Ip; = {i € Ny : ufyy,; = 0}, 1; = {i € Ny : u}y,; = 1}. Let us

create a matrix S € Vj, as follows:
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ﬁij = m?X{u(t)ij} fOl" all Z € Ilj, (43)

ﬁij = mtin{U(t)ij} fOl" all 1 € I()j. (44)

It is obvious that for all ¢ € Ny, we get: s;; < uy;; for all uy; < o and s;; > uy;
for all u(;);; > a. However, matrix S is not a matrix representing a fuzzy k-partition
(in general, 37, s;; # 1.) We want to find a fuzzy partition W € Pp, such that
W <, Ugforallt € Ny, and 32, 3, (wij — §ij)2 is minimal. The solution is described
in the following method.

Method 1

Let Uy, Us,, ..., Uy, be partitions from Py, which are a-equivalent at a nontrivial
level of ao. For j € N, let us denote:

Iyj = {i € Ny : u‘(’t)ij) =0}, 5; = {i € Ny - Ulhi; = 1},c9j = card Iyj,c15 =
card I,

Soj = Tiery, miny{u)i;} and Si; = Yien, max{()i; } -

Requirement: Let S;; <1 for all j € N,,.

Then we can find W € Py, such that W <, U; for t € N, as follows: a) If
Soj + S1; < 1 then for ¢ € Iy;:

’LUZ']' = mtin{u(t)ij}, (45)

fOI'Z'EIlj:

1-— (So + Sl )
J
b) If Sp; + S1; > 1 then for ¢ € I};:
Wi; = mtax{u(t)”} (47)

For ¢ € Iy; the values of w;; are calculated as follows:

Algorithm 3

Step 1.

I° := Iy;; S:= So; + S1; — 1.

Step 2.

D= % and I' = {i € I’ : min,{u@y;} < D}.
Step 3.

If card I' = 0 then for all i € I° : w;; = min{uyi;} — D and stop.
Else forall i € I' : w;; =0, S =S — Y ;e ming{ugy;},
I° :=I° — I' and go to Step 2.
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The proof that Method 1 leads to a fuzzy partitions W such that W <, U; for
all t € Ny, and 3, 3" ;(ws; — s45)? is minimal is given in Appendix 1.

Example 12
Consider the fuzzy partitions from Example 11. We have shown that U = Us' = U§*
for o = 0.4. We will use Method 1 in order to find fuzzy partition W € Py4, such
that U <, U, for all t € N3 and a = 0.4.

Forj =1:Iy; = {3,4}, ; = {1, 2}, Sp; = 0.00+0.05 = 0.05, S;; = 0.50+0.45 =
0.95.
For j =2: Io; = {1,2}, I; = {3,4}, So; = 0.10 4+ 0.00 = 0.10, S1; = 0.45+ 0.50 =
0.95.
For j =3: Iy; ={2,3}, I1; = {1,4}, Sp; = 0.01 4+ 0.05 = 0.06, S1; = 0.54 + 0.40 =
0.94.
For j =4: Iy; = {1,4}, I; = {2,3}, Sp; = 0.15+0.00 = 0.15,5;; = 0.45+ 0.43 =
0.88.
For j =5: Ip; = {3,4}, I; = {1,2}, Sp; = 0.00 + 0.00 = 0.00, S1; = 0.50 + 0.50 =
1.00.
Therefore the requirement of Method 1 is satisfied.
Now we will construct columns of matrix W.
For j =1: Sp; +51;, = 0.054+ 0.95 =1 < 1, therefore
w1 = 0.5, w91 = 0.45, w31 = 0, wyy = 0.05.
For j =2: Sp; + S1; = 0.10 + 0.95 = 1.05 > 1, therefore w3y = 0.45, w4 = 0.50.
In order to obtain wis and wses we need to use Algorithm 3.
Step 1. I° := Ipp = {1,2} and S := Sy + S12 — 1 = 0.05.
Step 2. D = %% =0.025 and I' = {2}.
Step 3. Because I' = {2}, we get wqy = 0.
S:=0.05-0=0.051%=1°-T1'={1}.
Step 2. D = %% =0.05 and I' = 0.
Step 3. wyo = 0.10 — 0.05 = 0.05.

The remaining columns of W are calculated analogously. Then

0.50 0.05 0.54 0.12 .50
0.45 0.00 0.01 0.45 .50
0.00 0.45 0.05 0.43 .00
0.05 0.50 0.40 0.00 .00

Let S = {Ui,...,Un} be a collection of a-equivalent fuzzy k-partitions. For
zj € X let us denote Ip; = {i € Ny : uy,;; = 0}, L1; = {i € Ny : u},; = 1}. Let us

create a matrix S € V;, as follows:
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Sy = mtln{u(t)m} for allz € Ilj (48)

S = mtax{u(t)ij} for all ¢ € Iy,. (4.9)

It is obvious that for all £ € N,, we get: ug);; < S5 for all uy;; < a and ugy; > Sy
for all u(;;; > a. However, matrix S is not a matrix representing a fuzzy k-partition
(in general, Y;35;; # 1.) We want to find a fuzzy partition Z € Py, such that
Up <o Z for all t € N, and 32, 35 (zij — Eij)Q is minimal. The solution is described
in the following method.

Method 2

Let Ui, ..., Uy, be partitions from Pp, which are a-equivalent at a nontrivial value
of a. For j € N, let us denote:

Inj = {i € Ny : Ulij = 0}, Iy = {i € Ny - Ulhij = 1},c9j = card Iyj,c1; =
card Iy,

Soj = Lier,; max{ugy;} and Si; = Yier,; ming{ugy; }-

Requirements: Let Sp; + av.ci; <1 for all j € N,,. Let for Sp; +S1; <1 we have
that 1_(52%5”) < a — maX;er, {ui;} for all j € N,. Then we can find Z € Py,
such that U, <, Z for t € N, as follows: a) If Sp; + S1; < 1 then for ¢ € Iy;:

Zij = mtin{u(t)ij}, (410)

for i € I, :

1 — (Soj + S1j
s = e} + ), (a.11)
j
b) If Sp; + S1; > 1 then for ¢ € Iy;:
Zij = mgxx{u(t)ij}. (4.12)

For ¢ € I,; the values of z;; are calculated as follows:

Algorithm 4

Step 1

I':=1; S:= Sy + Si; — 1.

Step 2

D= carifiﬂ’ and I? = {i € I' : min,{uy;} — D < a}.
Step 3

If card I? = 0 then for all ¢ € I' : z;; = min;{u@y;;} — D and stop.
Else foralli € I : z;; = «, S := S — Y2 (miny{uyyij } — @),
I' :=I' — I? and go to Step 2.
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The proof that Method 2 leads to a fuzzy partition Z such that U; <, Z for all
t € Ny, and ¥, 3°;(2i; — Sij)? is minimal is given in Appendix 2.

Example 13

Consider the fuzzy partitions from Example 11. We have shown that U = US' = U§*
for « = 0.4. We will use Method 2 in order to find fuzzy partition Z € Py4, such
that U; <, Z for all t € N3 and a = 0.4.

For j=1: Iy; ={3,4}, 1, = {1,2},coj = c1j = 2.

Soj = 0.0540.10 = 0.15,5;; = 0.48 + 0.40 = 0.88, Sp; + S1; = 1.03.

Soj + acy; = 0.15+ (0.4)(2) = 0.95 < 1.

For j=2: Iy; ={1,2}, 1, = {3,4},co; = c1j = 2.

So; = 0.1040.10 = 0.20, 51, = 0.40 4 0.40 = 0.80, Sp; + Si; = 1.

Soj + aecy; = 0.20 + (0.4)(2) = 1.

For j=3: Iy; =1{2,3}, 1, ={1,4},co; = 15 = 2.

Soj = 0.08 4 0.12 = 0.20, S1; = 0.40 4 0.40 = 0.80, Sp; + Si; = 1.

Soj + vy = 0.20 + (0.4)(2) = 1.

For j=4: Iy; ={1,4}, 1, = {2,3},co; = c1j = 2.

Soj = 0.1540.05 = 0.20, S1; = 0.40 + 0.40 = 0.80, Sp; + S1; = 1.

Soj + aey; = 0.20 + (0.4)(2) = 1.

For j =5: Iy; ={3,4}, 1, = {1,2},coj = 15 = 2.

Soj = 0.05+40.05 = 0.10, S1; = 0.40 + 0.40 = 0.80, Sp; + S1; = 0.9 < 1.

Soj +ac; =0.14(04)(2) =09 < 1.

B0 t51y) = 12095 — (0,025 < @ — maxjery; {(ij} = 0.4 — 0.05 = 0.35.

Coj
Therefore the requirements of Method 2 are satisfied. Now we will construct columns

of matrix Z.
For j =1: Sp; +51; = 1.03 > 1, therefore z3; = 0.05 and 24 = 0.10.
In order to obtain z;; and z3; we need to use Algorithm 4.

Step 1. I' := {1,2},S =1.03— 1 = 0.03.

Step 2. D = %8, 2 = {2}.

Step 3. Because I? = {2}, we get 201 = @ = 0.4 and S = 0.03 — (0.4 — 0.4) =
0.03, I :=T1"'—1? = {1}.

Step 2. D = %2 and I' = 0.

Step 3. 211 = 0.48 — 0.03 = 0.45.

For j = 2: Sp; + 51; = 1, therefore 215 = 0.10, 292 = 0.10, 232 = 0.40 and 245 = 0.40.
Analogously for j = 3 and j = 4.

For j =5: Sp; + S1; = 0.9 < 1, therefore

z15 = 0.40, 205 = 0.40 and z35 = 0.05 + 1522 = 0.10, 245 = 0.05 + 12 = 0.10.
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The resulting partition is given by matrix

0.45
0.40
0.05
0.10

0.10
0.10
0.40
0.40

0.40
0.08
0.12
0.40

0.15
0.40
0.40
0.05

40
40
.10
10

It is obvious that we can find a lower bound and an upper bound of a collection of
a-equivalent fuzzy k-partitions only if the requirements of Method 1 and Method 2
are satisfied. There are collections of a-equivalent fuzzy k-partitions where only a

lower bound exists, only an upper bound exists, or neither lower nor upper bound

exists.
Example 14
a) Consider fuzzy partitions U;, U, from Example 11 and fuzzy partition V; given
by matrix

0.48 0.10 0.54 0.15 0.45

Vi = 0.42 0.10 0.01 0.40 0.55
0.05 0.40 0.05 0.40 0.00
0.05 0.40 0.40 0.05 0.00

It is easy to verify that Uy = Ut =V for a = 0.4. The a-upper bound of collection
{U1,U,, V1 } for a = 0.4 is partition Z € Ppyp:

0.45
0.40
0.05
0.10

0.10
0.10
0.40
0.40

0.40
0.08
0.12
0.40

0.15
0.40
0.40
0.05

40
40
10
10

However, the 0.4-lower bound of {U;, Us, V;} does not exist, because for j = 5 we
get S1; = 0.5+ 0.55 = 1.05, which means that the requirement S;; <1 of Method
1 is not satisfied.

b) Consider fuzzy partition Us from Example 11 and fuzzy partitions Vs, V3 €

Py4, given by matrices

0.50 0.10 0.40 0.15 .40 0.50 0.10 0.45 0.15 0.50

0.40 0.05 0.10 0.42 .50 0.45 0.00 0.13 0.45 0.40
Vo = and V3 =

0.00 0.45 0.10 0.43 .05 0.00 0.40 0.02 0.40 0.05

0.10 0.40 0.40 0.00 .05 0.05 0.50 0.40 0.00 0.05

It is easy to verify that Us = V3* = V3* for o = 0.4. The a-lower bound of collection
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{Us, V4, V3} for o = 0.4 is partition W € Pjyq:

0.50 0.05 0.555 0.12 .50
0.45 0.00 0.010 0.45 .50
0.00 0.45 0.020 0.43 .00
0.05 0.50 0.415 0.00 .00

However, the 0.4-upper bound of {Us, V5, V3} does not exist, because for j = 3 we
get: Sp; + a.cj = 0.23 4+ (0.4)(2) = 1.03, which violates the requirement of Method
2, that Sp; + a.cy; < 1.

c¢) Consider partitions V3,V and V3 from part a) and part b) of this example.
{V1, V2, V3} is a collection of 0.4-equivalent fuzzy k-partitions. However, neither
the the lower bound nor the upper bound of this collection exists with respect to
a-sharpness, for a = 0.4.

Method 1 can be viewed as a method of combination (aggregation) of fuzzy k-
partitions with respect to minimal a-sharpness, while Method 2 can be viewed as a
method of aggregation of fuzzy k-partitions with respect to maximal a-sharpness.

5 Conclusion

In this paper we have presented some techniques for comparison and combination
of fuzzy k-partitions. There is clearly much to be done: further studies and gener-
alization of measures of a-sharpness and measures of m-importance, aggregation of
fuzzy partitions which are not a-equivalent, development of new relations of partial
(or complete) order on Pjy,. A challenging problem is to introduce some meaningful
connectives on Py, similar to t-norm and t-conorm on F(X). Some of these topics

will be investigated in our further research.
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Appendix 1

We need to show that the partition W created by Method 1 is a fuzzy k-partition
and that W <, U, for all t € N,,.

It is clear from the construction of w;; that w;; > 0 for all (ij) € Ny x N,. We
will prove that >, w;; =1 for all j € N,,.
a) If SOj + Slj S 1 then:

— (S ._|_S .
dowig = Y wi+ Y wi =S+ ) max{u Wi} + ( zj, 1]))
i i€lp; i€l zeIIJ 1
—(Sy; + 54
= Soi+ >, max{u yij b+ z (So; + 55y)
1611] 1611] Clj
1—(So; +S
= S()j + Slj + Ci1j ( v lj) =1.

C1j

b) If Sp; + S1; > 1 then:

Let card I' = 0 in the r-th iteration of Algorithm 3, r € {1,2,.. } Then I'(") is
an empty set and I* = U,—{I'®)_ It is obvious that Io; = I* U I°"). According to
Algorithm 3 we have that w;; = 0 for all € I* and for all i € I%") we have that

wi; = ming{ug;} — o5 caer: %(T)m mlvwid  Therefore
Dowiy = dowiyt Yowi =D wiE Yy wig+ Y wig= mtaX{“(t)ij}
1 ZEIU ZEI()] ’L€I1J el zEIO(”) iEIlj
. (S()j + Slj —_ 1) —_ Ziel* mint{u(t)ij}
+ 2 (min{ugy} - ard 700) )
ie10(r)
(So~ + 815 — 1) = Y ming{ugyi;
= S+ ZO mln{u yij} — card 1) = . p— ]oz(i) K
el (r)
= Sy + Z mm{u yij} — Soj — S+ 1+ Z mln{u yij }
1€I10(r) iel*
= 2 min{ug}+ Y min{ugy;} — So; +1
1eJ0(r) iel*
= Z mm{u Z]} SO] +1= SO] SOj +1=1.
ZEI()]

We will prove that W <, U and W <, V.
a) If Sp; + S1; < 1 then:
For 1 € Iy; we have:
wi; = ming{u)i; }, therefore wi; < uy; for all upy; < o and all t € Np,.
For 7 € I,; we have:

wij = maxy{uyi; } + %@J—) Because M > 0 we have that w;; > ), for
J C1j
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all u();; > o and all £ € Ny,.
Because Y_; w;; = 1 and w;; > 0 for all (ij) € Ny x N,, each coefficient w;; defined
by (4.6) is at most 1.

b) If Sp; + S1; > 1 then:

For 1 € Iy; we have:

w;; < mint{u(t)ij} therefore w;; < uy;; for all ugpy;; < o and all £ € N,.
For 7 € I,; we have:

w;; = maxy{uy);; }, therefore w;; > ugy;; for all ugy; > o and all t € Ny,.

Now we need to show that >; 3°;(wi; — s;;)? is minimal.
a) If Sp; + S1j = 1, then w;; = s;;, therefore 3;(wi; — s;;)*> = 0.
b) If Sp; 4+ S1; < 1 then for i € Iy; : wy = s;; and for i € Iy = wy; = s;; + 035
Therefore 32 (wij — 8i5)* = Yicry, (Wis — 8j)° + Lien; (Wi — 83j)” = Tien; 05
with the condition that ¥ ;s 0 = 1 — (So; + Si;) = Q.

We will use the method of Lagrange multipliers to prove that 3 ;e (5% is minimal
if 5ij = % for all 7 € -Ilj'
Proof:
Let F'(A, 6ij) = Lier, 0% — AMZier, 0ij — §2). Then
oF
= 20;; —A=0, 5.1
oF
— = - > §;+Q=0. (5.2)
OA 1€ly
From (5.1) we get that
A
0ij = 2 (5.3)
Using (5.3) in (5.2) we get the solution for A,
29
A= —. (5.4)
C1j
Substituting (5.4) for A in (5.3) we get
Q 1= (Sy; + 51
bij = — = (Soj + S5) (5.5)

Clj Clj

¢) The proof of case when Sp; + S1; > 1 is analogous to the proof of case b).
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Appendix 2

We need to show that the partition Z created by Method 2 is a fuzzy k-partition.
It is clear from the construction of z;; that z;; > 0 for all (ij) € Ny x N,. We will
prove that >, z;; = 1 for all j € N,,.

a) If Sp; + S1; <1 then:

1— (So; + S
S = Tt XSyt X e} + 1005,

ich; i€y, i€y, Coj

1~ (So; + Sy
= S+ Y mad{upt+ ) o £ 51y)

i€ly, i€ly, Coj
1 — (Soj + S1j)

C()j

= Slj+SOj+COj =1.

b) If Sp; + S1; > 1 then:
Let card I? = 0 in the r-th iteration of Algorithm 4, r € {1,2,...}. Then I*(") is
an empty set and I* = U,—{I*®). It is obvious that I;; = I* U I'™. According to

Algorithm 4 we have that z;; = o for all « € I* and for all 7 € I'™") we have
SOJ'+51J'—1)—E¢€1* (mint{u(t)ij}—a)

card 11 . Therefore

Zij = mint{u(t)ij} — (

Doz = Domi+ Dz =) max{upgt+ ) o
3

iclo; il i€lo; el
. (SOj + 51 — 1) - Dier (mint{u(t)ij} — )

! z'e;r)(mtm{u(t)ij} N card I(r) )
= Sy +card I".a + | ; ) mtin{u(t)z-j}

i€ 1(r
_ card 'O (Soj + 51— 1) = Yier- (mint{“(t)ij} —a)

card ()

= Sy; +card I".ao + Z( ) mtin{u(t)ij} —Spj —Si;+1

iEIl L
+ > mtin{u(t)ij} —card "o = ) mtin{u(t)ij} -5 +1

ier* 1€l

= Slj—S1j+1=1.

The proof that U; <, Z for all t € N,, and that 35, >, (zi; — Sij)? is minimal is
analogous to the proof in Appendix 1.



