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Abstract

Two lines of research have been followed to assess the effect of the
method of measurement on data quality. Split-ballot experiments allowed
researchers to assess the effect of the measurement method on the marginal
distribution of the responses and to make assessments of relative bias.
Structural equation models allowed researchers to assess the effect of the
method on reliability and validity.

This paper develops and illustrates a strategy based on fitting mean-and-
covariance structure models to multitrait-multimethod data, which allows
researchers to assess relative bias, reliability and validity simultaneously.
Two major advantages of this approach over split-ballot designs are that
relative bias is assessed after partialling out the effects of measurement
errors and that alternative definitions of relative bias are possible. A
complete sequence of statistical tests of relative unbiasedness of methods is
provided and applied.

1 Introduction

In the design of survey research, choices must be made with regard to the wording
of questions, the response scales, the question context and the technique for data
collection. Each of these choices and combinations of choices lead to different
errors. There have been numerous experimental studies of the effects of variations
in the characteristics of survey questions (for reviews see Billiet, Loosveldt, and
Waterplas, 1986; Dijkstra and van der Zouwen, 1982; Groves, 1989; Schuman and
Presser, 1981; or Sudman and Bradburn, 1982). These studies illustrate that
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differences in the response distributions may be obtained depending on the
procedure used, but these studies have not resulted in general rules connecting the
degree of measurement error with different combinations of survey and question
characteristics. On the contrary, they assess only relative bias, and they usually do
so by using split ballot experimental designs and varying one single characteristic
of the measurement instrument at a time. An exception is the study of Molenaar
(1986) who evaluated the simultaneous effects of a large number of question
characteristics of arandom sample of survey questions but estimated the effects on
the frequency distribution of the observed variables, thus concentrating on relative
bias and letting aside other aspects of data quality, such as validity and reliability.

Andrews (1984) was the first to conduct a systematic and comprehensive study
of validity and reliability by meta-analyzing the estimates obtained from a large
number multitrait-multimethod (MTMM) studies carried out in the USA. Under
this approach, estimates of reliability and validity are obtained in afirst stage for a
large set of measurement instruments by fitting some form of factor analysis
model to a series of data sets collected with a MTMM design. In a second stage,
the variation in the data quality estimates is explained by the variation in the
characteristics of the survey questions. In this way, reliability and validity of
survey measurement procedures are explained by the characteristics of these
procedures, but measurement bias is neglected. Andrews’ study was followed by
several others: Rodgers, Andrews, and Herzog (1992) extended Andrews’ work in
USA; Koltringer (1993) carried out a similar study in Austria; Scherpenzeel and
Saris (1993) went further to bring together samples from several countries,
although the scope of the questions was fairly limited; Alwin and Krosnick (1991)
carried out a somewhat related study in which only reliability was evaluated and
which used quasi-simplex models (Heise, 1969; Wiley and Wiley, 1970) rather
than MTMM models. Quasi-simplex models have later been criticised (Coenders,
Saris, Batista-Foguet, and Andreenkova, 1999).

In this paper we attempt to combine the study of bias, reliability and validity
by integrating the evaluation of relative bias in MTMM models. With this purpose,
MTMM models will be adapted into mean-and-covariance structure models
(Sorbom, 1974) including constraints representing different forms of relative
unbiasedness. First, a standard MTMM model will be reviewed. The problem of
relative bias will next be introduced, together with the necessary model
modifications and definitions. Finally, the procedure will be illustrated with an
empirical example.

2 MTMM models

MTMM designs (Campbell and Fiske, 1959) consist of multiple measures of a set
of factors (traits) with the same set of measurement procedures (methods). So,
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these designs include txm measurements, that is the number of methods (m) times
the number of traits (t). The differences between methods can be any design
characteristic which can be shared by measurements of all traits, such as different
response scale lengths or category labels in questionnaires, different data
collection procedures, different raters, etc.

Method effects can often be viewed as a form of systematic error variance
which is connected to the method. So, in addition to trait variance, MTMM
measurements have two sources of error variance: noise or random error variance
and method variance. Since the second source of error variance is common for all
measurements using the same method, the resulting error terms will be correlated.

Random measurement errors tend to attenuate the correlations among observed
measurements with respect to the correlations among the trait factors. On the
contrary, correlated measurement errors will usually increase the correlations
among observed measurements in absolute value (at least if trait correlations are
positive). The former are related to reliability and the latter to validity.

Campbell and Fiske (1959) suggested using MTMM designs for convergent
and discriminant validation by directly examining the elements of the correlation
matrix among all txm measurements, called MTMM matrix. An example of such a
matrix can be found in Table 1. This approach was cumbersome and often led to
confusion (Schmitt and Stults, 1986) so that from the early seventies MTMM
matrices began instead to be analyzed by means of structural equation models (see
for instance Bollen, 1989 as a general reference for structural equation models and
Schmitt and Stults for applications on MTMM data). These models are called
MTMM models and have been used for providing the researcher with reliability
and validity estimates (usually in the form of a variance decomposition into trait,
error, and method variance) and corrected trait correlations, taking random and
correlated measurement errors into account.

Table 1: Correlations, means and standard deviations of nine measurements of life
satisfaction.

tI-ml1 t2-ml1 t3-ml1l t1-m2 t2-m2 t3-m2 t1-m3 t2-m3 t3-m3

t1-m1  1.000

t2-ml 0514 1.000

t3-m1 0428 0435 1.000

tI-m2 0693 0469 0343 1.000

t2-m2 0464 0.764 0380 0.568 1.000

t3m2 0332 0398 0812 0383 0434 1.000

tI-m3 0661 0432 0335 0.690 0461 0316 1.000

t2-m3 0412 0.762 0352 0451 0.779 0365 0527 1.000
t3m3 0297 0351 0802 0310 0344 0823 0365 0373 1.000
Means 74.997 80.724 65.849 75496 81.382 68.188 73.884 80.432 66.295
Stdev 23464 24.759 30.107 21.743 23.082 27.403 21438 22157 28529
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Many different MTMM models have been suggested in the literature. Among
them are the confirmatory factor analysis (CF) model for MTMM data (Althauser,
Heberlein, and Scott, 1971; Alwin, 1974; Werts and Linn, 1970), the correlated
uniqueness model (Kenny, 1976; Marsh, 1989; Marsh and Bailey, 1991), and the
true score model for MTMM data (Saris and Andrews, 1991). This paper will
build on the CF model, which will next be presented, although the other models
may also be used if so desired.

The CF model belongs to the family of factor analysis models and is probably
the model most frequently used to analyze MTMM data. In this model, each
observed variable is allowed to load on both one trait factor and one method
factor. The latter type of factors account for error covariances or method effects.
The model is specified as follows:

Xij = Atij &1 + Awmij $mj + 4 bi,j (1)

where x;j; is the measurement of Trait i with Method j, expressed in deviations
from the mean, 9;; is the random measurement error for x;; , assumed to have a zero
mean, and with variance 6;j; &ti are the trait factors expressed in deviations from
the mean, with covariances @rii and variances @rii ; {m; are the method factors,
expressed in deviations from the mean, with variances @yj; ; and A+j; is the loading
of xi; on &ri and Awjj istheloading of xi; on &u;.

The model is usually specified with the standard assumptions of factor analysis
models, including uncorrelatedness of error terms, plus the additional one of
uncorrelated method and trait factors:

cov(gj ér) =0 [T1j,1'

cov(a; émp) =0 ij,J’ (2)
cov(g; ay)=0 ifi Zi'orj Zj'

COV(Er, gzMj):O Ui,j

wherei, i’,... identify the traitsand j, j’,... identify the methods. Note that, in all

equations in the article, i may be equal to i’ and j may be equal to j° unless the
opposite is expressly stated.

The assumption of absence of correlation between trait and method factors
makes it possible to decompose the variance of x;; into variance explained by the
trait (A\%7ij @rii), by the method (A%wij@w;;), and random error variance (8;; ) in order
to assess measurement quality (e.g., Schmitt and Stults, 1986), although this
assumption may not be reasonable under certain conditions (Kumar and Dillon,
1992). The percentage of variance explained by the trait can be interpreted as the
product of reliability and validity if the model is correctly specified. This product
is referred to as quality of the item in Saris (1996). Reliability can be computed as
one minus the percentage of random error variance.
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Figure 1: Path diagram of the CF model for three traits and three methods.

Two additional sets of constraints are considered in this paper in order to avoid
the frequent overparametrization problems of the model, such as failure to
converge, inadmissible estimates, or empirical underidentification (Andrews,
1984; Bagozzi and Yi, 1991; Brannick and Spector, 1990; Kenny and Kashy, 1992;
Marsh and Bailey, 1991, Saris, 1990a).

/]Mij =1 Ui, J (3)
cov(&uj &mp) = 0 ifj Zj’ (4)

The restriction in Equation 4 of uncorrelated method factors implies that only
error covariances among indicators sharing the same method can be explained by
the model. In some circumstances, some of the methods of measurement are
similar, thus suggesting the existence of error covariances among measurements
using different methods (de Wit, 1994). For instance, Andrews and Withey (1976,
chap. 6) consider six methods for evaluating perceived satisfaction, five based on
self-ratings and one on other's ratings. The authors expected correlated
measurement errors to occur among all self-rating measures. In such a case the
constraint in Equation 4 would not hold. Fortunately, some literature suggests that
the effect of such misspecification is fairly minor (Marsh and Bailey, 1991; Saris,
1990b; Scherpenzeel, 1995), at least if method variance is low. In any case,
eliminating the assumption of method uncorrel atedness |eads to many problems, as
mentioned above. The CF model specified with the restrictions in Equations 2 to 4
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was used for instance in Andrews (1984) and Saris (1990a). Figure 1 shows a path
diagram of the model for t=3 and m=3.

3 Biasassessment in MTMM designs

This paper is concerned with the assessment of bias caused by the methods. As has
been said, MTMM designs and models have traditionally been used to assess
reliability and validity of measurement instruments. Relative bias of measurement
instruments has mainly been evaluated by using split-ballot experiments (e.g.,
Schuman and Presser, 1981) rather than by using structural equation models such
as MTMM models.

In this article it is shown how to integrate the assessment of bias into MTMM
models in order to simultaneously evaluate all three aspects of measurement
quality. The correlations or covariances among the variables are in principle
enough to assess reliability and validity by means of MTMM models. In order to
study reliability, validity and relative bias at one go, means must also be included
in the analysis and a mean-and-covariance structure model (e.g., Bollen, 1989;
Joreskog and Sérbom, 1989; Sérbom, 1974) is called for. There is another major
difference between validity or reliability assessment and relative bias assessment:

1. Validity and reliability of a method can be estimated in absolute terms. In
other words, their estimates for a given method should not in principle
change depending on which other methods are combined with it in the
MTMM design. This occurs because reliability and validity concern only the
strength of the relationship between the trait factor and the observed
measurement and the correlations among measurements provide enough
information to identify and estimate this strength of relationship. Of course,
this only holds if the MTMM model is correctly specified. Koltringer
(1995a), and de Wit (1994) show that absolute estimates are not possible
otherwise.

2. Bias of a method can only be estimated in comparative terms with respect to
another particular method. This occurs because bias of a measurement using
a given method concerns the comparison of the mean of the observed
measurement and the mean of the trait factor. The mean of the trait factor is
completely arbitrary and can at most be fixed according to the mean of a
measurement using another method. The researcher can at most assess
whether the means of measurements made with different methods are the
same or not, but cannot decide which is correct, if any is correct at all.
Then, only statements regarding the comparison of a method with a
particular alternative method are possible. Attempts have been made to
provide absolute indices of bias (Koéltringer, 1995b) but the value of these
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indices will strongly depend on the particular set of methods which are
combined the MTMM design. Unlike reliability and validity estimates, bias
estimates continue to be relative even if the model is correctly specified.

The fact that bias can only be assessed in relative terms does not mean that its
study is useless. The study of relative bias is still necessary and useful if the
results obtained in different surveys using different methods are to be compared.

3.1 Reparametrization of MTMM modelsto include means

In order to study reliability, validity and relative bias at one go, covariances and
means must both be included in the analysis. The CF model can easily be
reparametrized as a mean-and-covariance structure model deal with variables
which are not centred about their means. The main difference with respect to the
classic specification will be the inclusion of the means of the trait factors and
intercept terms in the equations as parameters to be estimated. The means of trait
factors are obviously interesting to the researcher as they intend to express the
mean values of the population for the characteristics being measured. The model is
then specified as follows:

Xij = Tj + Arij éri + Awij mj + 0 Ui} (5)

where Tj; is an intercept term in the equation; x;; is the uncentered measurement of
Trait i with Method j. The &y trait factors are uncentered with means k; while the
&vj method factors are expressed in deviations from their means. The remaining
terms are interpreted as in Equation 1.

In order to identify the @r;; parameters, one Ati; loading must be constrained to
1 for each trait. Similarly, in order to identify the k; parameters, one t;; must be
constrained to O for each trait. Let us assume without loss of generality that the
constraint is applied to all measurements with Method 1 so that Ati;=1 and T1;;=0 [
i.

The new parametrization in Equation 5 and the constraints Atj;=1 and t;;=0 fix
the scale and origin of the trait factors according to their measurements with
Method 1. From the reparametrized models it can then be evaluated whether
Methods 2 to m lead to scores which are systematically different from those
obtained with Method 1, once random errors and correlated errors or method
effects have been accounted for. This stresses the comparative nature of bias
assessment. Of course, it is up to the researcher to decide which of the methods in
the design will be labelled Method 1.

The model parameters which are useful to evaluate bias relative to Method 1
are the T1;; intercepts and the Ay trait loadings with j#z1. Bias is understood as a



62 Germa Coenders and Willem E. Saris

difference between the scaling of the measurements and the trait factors. Method
factors are, thus, not directly involved. The method factor variances express
systematic response behaviour which is constant within a method but varies across
the different respondents, while the T;; intercepts express a response behaviour
which is constant across all respondents but may vary within a method from trait
to trait; the former correspond to what is understood as a method effect and the
latter can be related to measurement bias.

3.2 Alternative definitions of relative bias

Before continuing, it must be made clear what we understand by measurement bias
in the context of the reparametrized model. In the literature on survey research,
bias of measurement instruments is usually considered when using the responses to
the instrument with the aim of estimating a parameter of interest related to the
population of respondents, usually a proportion or a mean. More precisely, it is
“the type of error that affects the statistic in all implementations of a survey
design; in that sense it is a constant error” (Groves, 1989: 8).

Here we concentrate on one characteristic of the survey design, namely the
method. If we consider the estimation of the k; trait means, through the mean of
the xi; observed scores across all respondents with Method j, then Method j is
unbiased if:

E(mean(x;;)) = ki i (6)

where the operator mean denotes the average across all respondents and the operator E
denotes the expectation across all possible replications of the survey. Unfortunately,
absolute bias as defined in Equation 6 cannot be assessed because K; is not observable.

This leads us to a first definition of relative unbiasedness of Methods 1 and j which
states that both methods have the same bias and thus the expectation of the mean of the
responses across all respondents must be the same for both methods regardless of the trait.
This will be referred to as unconditional definition of relative unbiasedness of Methods 1
and j:

E(mean(x1)) = E(mean (x;)) [ W

It must be noted that the expectations of the means of x;; and X;; implied by the
models are:

E(mean(xi1)) = &i i (8)

E(mean(xij )) = 7ij + Arij Ki i 9)
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where it can, of course, be seen that the implied mean of measurements with
Method 1 equals the trait mean. The unconditional definition then implies that the
model parameters must fulfil the non-linear constraint

Tj + A1ij Ki = K i (10)

If 1;;=0 and A1;=1 O i then Methods 1 and j are relatively unbiased with respect
to the above definition, but this is not the whole story. Both the loadings and the
intercepts will usually have to be jointly interpreted in order to evaluate bias. Note
that (assuming, without loss of generality, that K; is positive), a positive t;; may not
imply that E(mean(xij)) > E(mean(xi1)) when A1ij<1. Similarly, a negative 1;; may
not imply that E(mean(x;;)) < E(mean(xi1)) when Atjj>1. Only when A+j;=1 does Ttj;
correspond to the change in the mean. The unconditional definition is thus
complicated to relate to the model parameters.

Furthermore, even if E(mean(xij)) = E(mean(xi1)), the fact that Arj; deviates
from 1 may have a substantive interest. If Atjj>1 and 1;;<0, then the respondents
tend to give more extreme or polarized answers with Method j than with Method 1.
If Atij<1 and 1;;>0, then the respondents tend to give answers which are closer to
the mean with Method j than with Method 1. The At parameter relates the
standard deviation of x;; to the standard deviation of x;;, once method and error
variance have been subtracted. Since the standard deviation of the raw responsesis
affected by the error and method variances, this type of conclusions cannot be
drawn from split-ballot experiments.

In order to simplify the relationship between the definition and the model
parameters and in order to take standard deviations corrected for measurement
error into account, we suggest using a more strict alternative definition of relative
unbiasedness in which the parameters of interest to be estimated are the scores of
each respondent on the trait in a psychometric sense (see Groves, 1989, Cap. 1 for
a discussion about the different perspectives of bias across disciplines). Methods 1
and j are relatively unbiased if the expectation of the responses conditional on the
value of &y isthe same for both methods regardless of the trait:

E(xi1/éni=k) = E(xij/ni=kK) ik (11)

This definition will be referred to as conditional definition. Assuming
independence between trait and method factors, these conditional expectations can
be expressed as:

E(xi1 /& =K)= kK ik (12

E(Xij [ & :k): L+ /\Tij k i,k (13)
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In order that Methods 1 and j be relative unbiased, the condition below must
hold for all possible values of k.

k = hj + /\Tij k i,k (14)

The latter will imply that 1;;=0 and Ar;=1. It must be noted that relative
unbiasedness according to the unconditional definition is a necessary but not
sufficient condition for relative unbiasedness according to the conditional
definition. The conditional definition will be the one considered in this article.

3.3 Estimating and testing mean-and-covariance MTMM models

The estimation of mean-and-covariance structure MTMM model in Equation 5 can
be carried out with most standard software for structural equation modeling if an
augmented moment matrix or a covariance matrix and a mean vector are supplied.
The estimation is usually be made by normal-theory maximum likelihood. Satorra
(1992) showed that some maximum likelihood inferences are asymptotically robust
to non-normality as long as the random constituents of the model (4§; error terms,
éri trait factors and évj method factors) which are nonnormal fulfil two conditions,
namely they have unconstrained variances and are either mutually independent or
have unconstrained covariances. If these conditions hold, the likelihood ratio x2
tests are correct. Moreover, the standard errors of the estimates is also correct
except for variance and covariance parameters of non normal random constituents
of the model. The models used in this article do not introduce any constraints on
variances and the tests considered involve loadings and intercepts only. We thus
expect inferences to be robust.

3.4 Assessing consistency of the behaviour of methods

A set of nested models can be tested in order to evaluate relative bias from the
pattern and the statistical significance of the 1;j and Arj; parameters for j=2,...,m.
The suggested strategy starts by assessing whether these parameters are
constant within a method over all traits. If this holds, then a constant behaviour of
the methods in terms of relative bias is supported. If this does not hold, then the
relative bias of a method may change from trait to trait, and no general conclusions
about the behaviour of the method can be drawn: an interaction between trait and
method is instead supported. The following constraints must then be tested:

=T = 1] O #7,j=2,...,m (15)

Arij = Aty = Ay Oi#1,j=2,...m (16)
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Three constrained models can be considered in which the constraints in
Equations 15 and 16 are applied isolatedly or jointly.

3.5 Assessing relative bias of methods

If the constraints in the foregoing subsection are not rejected, then the behaviour
of the methods can be considered to be approximately stable and it can next be
assessed whether this stable behaviour is significantly biased with respect to
Method 1. This can be done by testing the constraints:

=0 j=2,...m (17)
A =1 j=2,...m (18)

These constraints can be introduced for a single method, any subset of methods
or all methods simultaneously.

4 [llustration

In this section, the mean-and-covariance structure models which have been
presented will be fitted to real data from a survey of life satisfaction. The
constraints which have been presented in previous sections will then be orderly
tested in order to assess the presence of relative bias.

41 Data

The data from a survey of perceived life satisfaction carried out in the greater
Goteborg area (Sweden) in Autumn 1989 will be used for illustration. We consider
t=3 domains of life satisfaction (traits):

1. Life in general (t1).
2. Housing situation (t2).
3. Financial situation (t3).

Each trait was measured with m=3 response scales ranging from “completely
dissatisfied” to “completely satisfied” (methods):

1. 1 to 100 line production scale in which respondents were asked to draw a line
whose length was then measured from 1 to 100 (m1).
2. 1to 10 numeric scale (m2).
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3. 1to 5 scaewith al-labelled categories (m3).

The questionnaire was administered by mail in a three-wave panel design. In
each wave one method was presented. The time interval between the waves was
about two weeks and the order in which the methods were administered varied for
different groups of respondents. The sample size was N=336 after applying
listwise deletion of missing values. Further details on the questionnaire and data
collection can be found in Olsen and Munck (1996). The wording of the items and
the order in which the traits were presented was the same for all methods: t1, t2,
t3. However, the three methods themselves are sufficiently different (line
production versus number and categorical) so that some relative bias may be
expected.

4.2 Converting measurementsto a common scale

For this data set, the different methods produce measurements expressed in
different units. Prior to assessing relative bias, the measurements of the same trait
obtained using different methods must be converted to a common or comparable
scale.

One possible transformation is to rescale all measurements so that they have a
common allowed range, for instance by letting the minimum allowed response be 0
and the maximum allowed response be 100:

response - allowed minimum
rescaled response = x100 (19)
allowed maximum - allowed minimum

The changes of scale do not imply that an equivalence be necessarily imposed
between the units of a measurement scale and another. The At parameters can still
account for differences in this respect if necessary: precisely these parameters will
be a powerful instrument for the assessment of relative bias.

Non-linear rescaling transformations could have been considered as an
alternative. We disregarded them because they not only affect the means and
variances but also the correlations.

The Pearson correlation matrix and the means and standard deviations of the
nine measurements in our data set are given in Table 1 and refer to the rescaled
variables to a 0 to 100 range.
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Table 2: Estimates of the CF model. Unconstrained and with constraints “I” in Table
3.(Tij=TJ‘ and )\ij:)\j ; i=1,2,3; j=2,3; T3=0; )\321).

M easurement equations

Unconstrained Constrained

T }\T T )\T
t1-ml 0.00 1.00 0.00 1.00
t2-ml 0.00 1.00 0.00 1.00
t3-ml 0.00 1.00 0.00 1.00
t1-m2 2.68 0.97 3.84 0.97
t2-m2 4.16 0.96 3.84 0.97
t3-m2 6.49 0.94 3.84 0.97
t1-m3 2.98 0.95 0.00 1.00
t2-m3 5.45 0.93 0.00 1.00
t3-m3 2.36 0.97 0.00 1.00

Variances, covariances and means of trait factors

t1 t2 t3 t1 t2
t1l 357.16 343.46

t2 250.44 451.37 236.85 422.32
t3 218.16 258.28 709.13 208.27 24284 678.17
means 75.00 80.72 65.85 74.30 80.46 66.29

Method variances

ml m2 m3 ml m2 m3
50.63 33.23 40.02 52.89 34.88 38.82

Error variances

ml m2 m3 ml m2 m3

t1 131.64 96.96 106.60 134.05 100.59 101.51

t2 112.85 79.96 70.55 116.21 83.66 64.53

t3 13557 96.38 119.38 139.56 93.83 118.00
Goodness of fit

X d.f. X d.f.

17.22 21 24.45 31
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4.3 Assessing consistency of the behaviour of methods

The first column of Table 2 presents the maximum likelihood estimates and
goodness of fit test statistic for the unconstrained mean-and-covariance structure
CF model fitted to the data in Table 1. The LISREL8 program (Joreskog and
Sérbom, 1989, 1993) was used. The model yields a x? statistic of 17.22 with 21
degrees of freedom and is thus not rejected, which allows us to proceed to test the
constraints of relative unbiasedness.

As has been argued, in order to determine whether a method produces some
systematic kind of bias it must first be assessed whether the behaviour of the
method is any systematic or stable at all. The tests of stability of method behaviour
are illustrated on the data in Table 1. The first row of Table 3 shows the x?
statistics of the model constrained to a stable behaviour of methods. From Table 3
and Table 2, the corresponding X2 change statistics needed to perform the tests can
be computed. From these tests, the constraint t;=T; ; i=1,2,3; j=2,3 cannot be
rejected (the x® change between the unconstrained model and the model labelled
“A” in Table 3 is 2.32; with 4 degrees of freedom); the constraint Arj=Ay; ;
i=1,2,3; j=2,3 cannot be rejected (the X change between the unconstrained model
and the model labelled “B” in Table 3 is 1.78; with 4 degrees of freedom); and
both sets of restrictions cannot either be jointly rejected (the x* change between
the unconstrained model and the model labelled “C” in Table 4 is 4.08; with 8
degrees of freedom). This result supports the consistency of the behaviour of all
methods.

4.4 Assessing relative bias of methods

On the basis of model “C” in Table 3, the tests of relative bias of m2 with
respect to m1 can be performed by comparing its fit to that of the models “D” to
“F”_ Although none of the models is statistically rejected based on the overall x?
test, from the corresponding x? change tests, the assumption 1,=0 can be rejected
at a=1% (x? change=6.58, with 1 d.f.), the assumption At,=1 can be rejected at
a=3% (x* change=4.70, with 1 d.f.) and both assumptions can also be jointly
rejected at a=2.5% (x2 change=7.40, with 2 d.f.). According to these results, the
relative unbiasedness of m1l and m2 is not tenable according to the conditional
definition.

On the basis of model “C” in Table 3, the tests of relative bias of m3 with
respect to m1 can be performed by comparing its fit to that of the models “G” to
“I”. From the corresponding X* change tests, the assumption 15=0 cannot be
rejected (x> change=2.22, with 1 d.f.), the assumption Arz=1 cannot either be
rejected under the usual risk standards (x* change=2.94, with 1 d.f., a=8.6%) and
both assumptions cannot either be jointly rejected (x® change=3.15, with 2 d.f.).
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According to these results, the relative unbiasedness of m1 and m3 is tenable, both
conditionally and unconditionally.

Table 3: Goodness of fit of constrained mean-and-covariance structure CF models.

Testing stability of method behaviour

Label A B C
Congtraints L=1,1=123j=23 An=A7:i1=123,j=23  §=r1,;i=123;j=23

/]Tij:/]T ; i= 1,2,3;j: 2,3
X° statistic 19.54 19.00 21.30
Degrees of freedom 25 25 29
p vaue 0.7705 0.7970 0.8480

Testing relative bias of Methods 2 and 1

Label D E F
Congtraints G=1,i=1,23;j=23 Li=1,i=123j=23 1;=7;i=123j=23
/‘le:/]Tj ;i:1,2,3;j:2,3 /]Tij:/‘T ;i:1,2,3;j:2,3 /]Tij:/‘T ;i:1,2,3;j:2,3

=0 /]T2: 1 =0, /]T2: 1

X° statistic 27.88 26.00 28.70
Degrees of freedom 30 30 31
p value 0.5769 0.6753 0.5849

Testing relative bias of Methods 3 and 1

Labd G H [
Constraints L=1,1=1,23;j=23 Li=1,1=1,23;j=23 Li=1,1=1,23;j=23
/]le:/]Tj ;i:1,2,3;j:2,3 /]Tij:/]T ;i:1,2,3;j:2,3 /]Tij:/]T ;i:1,2,3;j:2,3

=0 /]TSZ 1 =0, /]TSZ 1

X’ statistic 23.52 24.24 24.45
Degrees of freedom 30 30 31
p value 0.7932 0.7610 0.7918

To sum up, the stability of behaviour of methods across traits, and the
unbiasedness of m3 (1 to 5 scale) with respect to ml1 (1 to 100 line production
scale) are maintained while the unbiasedness of m2 (1 to 10 scale) with respect to
ml is rejected.
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4.5 Assessing overall measurement quality

The model with restrictions “I” in Table 3 is then considered for interpretation.
This model constrains all trait loadings for m1 and m3 to 1 and all intercepts for
m1 and m3 to 0. It also constrains trait loadings and intercepts with m2 to be equal
across measurements of all traits. Note the high degree of parsimony of the model
(31 d.f., compared to the 21 d.f. achieved by the original model) which has been
achieved by introducing substantively meaningful constraints, whose failure to be
rejected also provided interesting conclusions with respect to measurement quality.
Parsimony leads both to ease of interpretation and efficiency: the estimated
standard errors of the estimates dropped for nearly all parameters, in some cases
by more than half.

The actual estimates of all parameters of the model with the constraints “I”” are
in the second column of Table 2. Some of these estimates (trait variances,
covariances and means) refer to the distribution of the trait factors corrected for
random measurement errors and method effects and are expressed in the units of
the line production scale.

The remaining estimates allow us to draw a complete picture of measurement
quality and include parameters related to the relative bias of the line production
(m1) and numeric (m2) scales, (loadings and intercepts of m2); and parameters
related to reliability and validity (method variances and error variances). These
estimates show that the ten-point scale (m2) tends to yield measurements which
are less polarized (i. e. closer to the mean) than the remaining methods. They also
allow us to compute the percentages of trait, random error and method variance for
each of the 9 measurements. According to Section 2, reliability can then computed
from the percentage of random error variance, and validity from reliability and the
percentage of trait variance. These measurement quality estimates are displayed in
Table 4. The line production scale (m1) yields the lowest reliability and validity.
Reliability and validity are also lowest for measurements of satisfaction with life
in general (t1).

5 Discussion

This article was concerned with the assessment of bias caused by the methods of
measurement. As has been said, MTMM designs and models have traditionally
been used to assess reliability and validity of measurement instruments. Relative
bias of measurement instruments has mainly been evaluated by using split-ballot
experiments (e.g., Schuman and Presser, 1981) rather than by using structural
equation models such as MTMM models. This has resulted in:
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Table 4: Measurement quality from the CF model with constraints “1” in Table 3.
(=T and A=A ; 1=1,2,3; j=2,3; 13=0; A3z=1)

Percentages of Measurement

variance explained by: quality
trait random error _method reliability  validity
tl-m1 64.8% 25.3% 10.0% 74.7% 86.7%
t2-m1  71.4% 19.6% 8.9% 80.4% 88.9%
t3-m1  77.9% 16.0% 6.1% 84.0% 92.8%
tl-m2 70.5% 21.9% 7.6% 78.1% 90.3%
t2-m2  77.0% 16.2% 6.8% 83.8% 91.9%
t3-m2  83.2% 12.2% 4.5% 87.8% 94.8%
tl1-m3 71.0% 21.0% 8.0% 79.0% 89.8%
t2-m3  80.3% 12.3% 7.4% 87.7% 91.6%
t3-m3  81.2% 14.1% 4.6% 85.9% 94.6%

1. Only some aspects of measurement quality are evaluated at a time, while
there may be interrelations between them and all of them are necessary to
compare the results of different surveys.

2. Only means are used to evaluate relative bias, which implies a quite
restrictive definition of bias.

In this article it was shown how to integrate the assessment of bias into
MTMM models in order to simultaneously evaluate all three aspects of
measurement quality. While bias continues to be treated in a relative way under
this approach, as the case was in split-ballot experiments, the definition of relative
bias has been enriched and complemented with statistical tests based on model
constraints.

An illustration of the tests has been provided in which relative unbiasedness
was tenable for certain pairs of methods and rejected for certain others. In spite of
the generality of the approach, it can lead to the fit of very parsimonious models,
as shown in our example, in which a multitrait-multimethod model analyzing a
design with only 9 variables left 31 degrees of freedom.
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