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Clustering Techniques to Irrelevant Variables
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Abstract

In sociology cluster analysis is often used in situations where the researcher does
not have a clear theoretical view of the importance of variables in the analysis. An
irrelevant variable might disguise a good clustering. Although some special pur-
pose algorithms to deal with variable weighting and variable selection, have been
proposed in the literature, we will focus on the classical (and widely available) algo-
rithms such as the k-means algorithm and hierarchical algorithms like single linkage,
average linkage and so on.

In this paper we summarize first some of the results that we found in the clus-
tering literature on the effects of irrelevant variables on recovery in cluster analysis.
Milligan (1980) found in a simulation study that all the algorithms involved were
sensitive to irrelevant or noise variables. This was also found by Fowlkes (see Milli-
gan and Cooper, 1987). In van Meter’s (1984) study, on the other hand, the addition
of arbitrary variables did not alter the results significantly. ’

We then present a simulation study in which a noise variable is added to a set
of variables with an a priori cluster structure. The a priori cluster structure was
gencrated with a mixture modelling framework. We included the following factors
in our simulation: the dimensionality of the true clustering, the total sample size,
the variance in the noise variable and the (Euclidean) distance between the clusters’
centroids (see Hajnal and Loosveldt, 1996). These factors can affect the cluster
solution. In this simulation we will evaluate the impact of these factors on some
hierarchical and non-hierarchical cluster algorithms. We will also Iook at, whether
the R? measure for predicting the variable from the cluster (SAS Institute Inc., 1989:
834) that is typically given in k-means output is informative for variable selection
purposes.

1 Introduction

Cluster analysis can be a very useful tool in an exploratory analysis 2 when a researcher
does not have a clear view of which variables are important in the cluster structure. In

! Department of Sociology, University of Leuven, Edward Van Evenstraat 2B, B-300 Leuven, Belgium,
e-mail: istvan.hajnal @soc.kuleuven.ac.be

2For a general overview of the basic concepts and purposes of classification and typology construction
in the social sciences, see amongst others Lorr(1983), van Meter et al. (1987), Bailey (1994).
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these situations it is easy to imagine that an irrelevant variable could be added to an
otherwise good set of variables. An often cited example is given by De Sarbo et al.
(1984). In an automobile marketing study, attitudinal variables yielded clear and easy to
interpret clusters of car owners. The clusters reflected the different brands of cars. After
the addition of general attitudinal variables the original structure was obscured.

In this paper, we will study the sensitivity of a clustering solution to irrelevant vari-
ables by adding random noise to a data set with a known cluster structure. Furthermore,
we will study one particular evaluation tool for deciding on the importance of the vari-
ables to the cluster solution: In the output of PROC FASTCLUS of the statistical package
SAS, for each variable used in the cluster analysis, the R? for predicting the variable
from the cluster is given (SAS Institute Inc., 1989: 834). We will look if this measure is
informative for variable selection purposes.

2 Literature overview

Milligan (1980) studied the effects of six types of error perturbation on cluster solutions.
In his study, the k-means algorithms performed well with respect to all types of error only
when appropriate seeds were used. He also found that the single linkage method was
only mildly affected by outliers, but that the method was very sensitive to perturbation
in the distance matrix. This was also found by Baker in 1974. In Baker’s study the
complete linkage method performed better with respect to this type of error (see Milligan,
1981: 383-384). Another result of Milligan’s simulation study was the finding that the
selection of a proximity measure is less important than the selection of a clustering method
(Milligan, 1980: 339-340). This was also argued by Punj and Stewart (see Milligan
and Cooper, 1987: 344). Kaufman (1985) found that problems of measurement space
distortion are less severe than the problems of including ”too much” variation. Donoghue
(1995) studied the effects of the within-group covariance structure on the cluster solution.
He found that, in general, negative within-group correlation resulted in a lower recovery.

The main topic of this paper is one particular type of error perturbation; namely, irrel-
evant variables. In Milligan’s (1980) simulation, two situations were considered. In the
error-free condition, the data sets were generated on the basis of a true clustering; in the
noise condition, random noise dimensions were added to the data sets. The best clustering
method in the error-free condition was the group average method with an adjusted Rand
statistic of 0.998. In the noise condition, this method again had the best recovery. The
adjusted Rand statistic in that condition was 0.930. All the other methods showed a sim-
ilar decrease in cluster recovery. Milligan concluded that all the methods were sensitive
to this type of error, but it was possible to classify the clustering methods according to
their sensitivity to noise. The group average method turned out to be the best perform-
ing method, followed by the weighted average method, the beta-flexible method, and the
minimum average sum of squares® method. Milligan’s finding that the use of all available
data can possibly obscure the clustering present in a subset of variables was also found
by Fowlkes (see Milligan and Cooper, 1987: 344). The only study that we found in the
literature where the addition of arbitrary variables hardly modified the results was by van

3See Anderberg (1973:148).
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Meter (1984). In his study, he used two types of classification methods; namely, dynamic
clusters and fixed centre typology analysis.

In the classification literature, a few clustering models have been proposed that could
be used for detecting noisy variables. The synclus model (De Sarbo, et al., 1984), for
example, uses a weighting scheme to enhance the cluster structure. In this case, the
irrelevant variables would have low weights. Some methods try to cluster objects in a
lower dimensional space (see Bock,1987; De Soete and Caroll, 1994). The data reduction
used in these methods would, unlike principal components, preserve the cluster structure.
Although these models are very interesting, they have serious drawbacks for sociologists.
A major problem is that implementations of these algorithms are not widely available
yet. Another, even more serious, drawback is that the current implementations of these
models can handle only a few hundred objects. In sociological research, especially in
settings where large scale surveys are used (i.e. where the total sample size tends to be
high), this is problematical. It is, therefore, interesting to see to what extent algorithms
such as the k-means algorithm and hierarchical algorithms like single linkage, average
linkage and the like (in the remainder of this paper refered to as ’the classical clustering
techniques’), are vulnerable to irrelevant variables. Furthermore, it is also interesting to
see in what conditions the solutions become very bad. Another research question is: if
a particular clustering technique is vulnerable to irrelevant variables, can the R? measure
for each variable be used to detect important variables?

3 Design

The aim of this paper is to study the effect of an irrelevant variable on an otherwise
good cluster solution and to evaluate the usefulness of the R? measure for detecting the
irrelevant variable. To this end we generated artificial data and clustered them with 5
hierarchical clustering methods from PROC CLUSTER* in SAS mentioned in Table 1.
We also used a k-means algorithm from PROC FASTCLUSS. Below we discuss the design
factors, the data generation, and the outcome measure.

Of the several factors that affect cluster solutions we only varied those given in Table
1. Other factors remained equal in the simulation, such as the number of clusters (3),
the variances of the relevant variables (1), the dissimilarity measure for the hierarchical
cluster analyses (Euclidean distance), the number of irrelevant variables (1), the mean of
the irrelevant variable (0), and, finally, the relative cluster sizes in the data set (1/3).

The true mean vectors were specified in such a way that the Euclidean distances ||
pi — 115 || between any two cluster centroids are the same in the three situations of the
number of relevant variables (p = 2, 4 and 6). A little geometry and algebra will show

4For more information on PROC CLUSTER see SAS Institute Inc., (1989: 519-614).

5Because of the implementation of the algorithm and the particular method of generating seeds used in
PROC FASTCLUS (see SAS Institute Inc., 1989: 823-850), we decided to refer to this method as fastclus
instead of k-means.
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Table 1: The experimental design factors

Factor Name Number of levels Description of level
p Number of relevant variables 3 2
4
6
n Sample size for each cluster 3 50
100
150
v Variance in the noise 3 1
3
5
m Cluster procudure 6 -Average linkage
-Centoid methode
-Complete linkage
-Single linkage
-Ward’s methode
-Fastclus
d Euclidean distance between 3 4
the true clusters’ centroids 6
' 8
that, for any positive real number d, the set of u’s:
0 dcos60° d
0 dsin 60° 0
01, 0 10
M1 = 0 YHg = 0 YH3 = 0
0 0 0
0 0 0

in R® will satisfy this condition:

dij=|| pi — p lI=d

4 Data generation

(N

@

We generated 3 spherical clusters around these centroids using a multivariate normal mix-
ture approach (with fixed cluster sizes n) with the identity matrix as the covariance ma-
trix. The five-factor design resulted in 3x3x3x3x6=486 different setups. Each setup was
replicated 20 times. This resulted in 9720 data sets. To each data set one random noise
variable was added. Two cluster analyses were performed: one with and one without the

noise variableS.

SIn total almost 20,000 analyses were carried out for this simulation. The R? measure for predicting
the variable from the cluster (SAS Institute Inc., 1989: 834) is only computed in PROC FASTCLUS and



The Evaluation of the Sensitivity... 65

In Figure 1, an example is given of the effect of adding a noise variable for p = 2,
n = 100, and d = 8. In Figure 1(a), three clusters are shown in two dimensions. In Figure

1(b), the same data are shown in three dimensions. In Figure 1(c), the noise variable is
added.

5 Outcome measures

Many outcome measures have been suggested to evaluate cluster solutions (see, for ex-
ample, Rand, 1971; Milligan, 1980; Milligan, 1981; Kaufman, 1985; Milligan, Cooper,
1987; Fisher, Hoffman, 1988). We measured the recovery with the value of Cramer’s V
(see SAS Institute Inc., 1989: 866):

X2
V:\lemin[(r—l),k—l)] @

where N is the total sample size, r is the number of rows, and ¢ is the number of columns
in a crosstabulation. Since in this case we use the crosstabulation of the true clustering
and the cluster solution and we have 3 clusters, N = 3 x n and min[(r — 1),k — 1)] = 2.

Cramer’s V amounts here to V = \/g . The measure has an lower bound of 0 and an
upper bound of 1. The former will occur when the cluster recovery is minimal, the latter
when the recovery is maximum. Cramer’s V was also used by Mezzich to assess cluster
validation (see Milligan, 1981: 392). The sensitivity was measured as the difference be-
tween the value of Cramer’s V of the cluster solution with the noise variable and the value
of Cramer’s V of the cluster solution without the noise variable. We call this difference
A. In this way, the deterioration of the clustering solution caused by adding an irrelevant
variable can be measured. If A is close to zero, the addition of a noise variable changed
the cluster solution very little. If the value is close to one, the solution was altered in a
very strong way.

6 Results

In a preliminary analysis, the value of Cramer’s V without noise was analyzed. Because
we wanted to work with clear a priori clusters, we chose the values for d in such a way
that in all cases the mean of the value of Cramer’s V was relatively high. The overall
mean of Cramer’s V without noise was 0.86. It is worth noting, however, that a signif-
icant effect for the clustering procedure was found. The fastclus procedure showed the
best performance, second came Ward’s method, followed by average and complete link-
age. The single linkage procedure performed less well than the other methods”.

not in PROC CLUSTER. For the hierarchical clustering methods we had to to extract that measure from
an analysis of variance (with the cluster solution as the independent variable and the p variables as the
dependent variables). A SAS macro was written to generate the data sets and to analyse them subsequently.
This took more than 11 CPU-hours on a IBM9672-mainframe computer.

"We should stress here that these results are highly influenced by the cluster configuration. If we would
have generated "chained’ clusters instead of spherical clusters, the single linkage method would probably
have performed much better.
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Table 2: Main effects, first and second order interactions for ANOVA of A

Source DF N F Pr>F Eff. Size
d 2 4537449 1084.07 0.0001 0.183784
m 5 24.57980 2349 0.000f 0.099558
v 2 53.53757 1279.1 0.0001 0.216848
D 2 0.385489 9.21 0.0001 0.001561
n 2 0.355982 8.5 0.0002 0.001442
mxd 10 4431847 211.77 0.0001 0.179507
vxd 4 19.50892 233.05 0.0001 0.079019
dxp 4 1.418802 16.95 0.0001 0.005747
dxn 4 0.180177 2.15 0.0717 0.000730
UvXm 10 12.44142 59.45 0.0001 0.050393
mxp 10 2.240457 10.71 0.0001 0.009075
mxn 10 0.847368 4.05 0.0001 0.003432
vXp 4 0.179146 2.14 0.0732 0.000726
vXn 4 0.23578 2.82 0.0238 0.000955
pXn 4 0.111443 1.33  0.2556 0.000451
vxmxd 20 19.65571 46.96 0.0001 0.079613
mxdxp 20 14.62272 3494 0.0001 0.059228
mxdxn 20 2317153 5.54 0.0001 0.009385
vXdXp 8 1.292221 7.72 0.0001 0.005234
vXxdXxn 8 0.146099 0.87 0.5387 0.000592
dxpxn 8 0.483008 2.88 0.0033 0.001956
vxmxp 20 1.192081 2.85 0.0001 0.004828
vxmxn 20 0.575066 1.37 0.1227 0.002329
mxpxn 20 0700113 1.67 0.0303 0.002836
UXPpXn 8 0.187199 1.12  0.3471 0.000758

Below we will present the results of our analysis of the effect of the noise variable on
the recovery by giving the mean value of A for each level of a factor (or combination of
factors). Instead of presenting all 31 tables (+ one overall mean) we will make a selection
based on an analysis of variance. The degree of deterioration due to the noise variable,
measured by A, was used as the dependent variable in the ANOVA. The independent vari-
ables were the design factors described in a previous section. In Table 2 we summarize
the results of the ANOVA for the five design factors that we considered in the simulation.
Because of the large number of cluster analyses that were used in this simulation it comes
as no surprise that most of the main effects of Table 2 are significant. We only want to
summarize the results of our simulation. That’s why, instead of using traditional signifi-
cance tests, we tried to capture the important effects with the following measure of effect
size (see Donoghue, 1995): S5

2 _ ef fect
= 755w @

where SSfect is the sum of squares of an effect and SSy is the total sum of squares.
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(a)

(b)

(c)

Figure 1: An example of three clusters in two dimensions without noise (a), in three
dimensions without noise (b), and in three dimensions with noise (c)



68 Istvan Hajnal and Geert Loosveldt

Table 3: Mean values of A for three levels of distances d between the cluster centroids

d Mean A
0.189338
0.091305
0.022853

(== J= NN

Table 4: Mean values of A for the six cluster procedures m

m Mean A
Centroid method | 0.182810
Average Linkage | 0.130260
Complete Linkage | 0.111535
Single Linkage 0.082501
Fastclus 0.081224
Ward’s method 0.018661

Applying, the somewhat arbitrary (but see Donoghue, 1995: 233), criterion of n? > .05,
the number of relevant variables p and cluster size n are “less important” effects. It is
clear that the variance in the noise variable v, the cluster procedure m and distance d are
very important. In the remainder of this paragraph we describe only the factors (and factor
combinations) with an associated effect size n° > .05 and the overall mean.

The overall mean of A was 0.10, which means that the addition of a noisy variable
decreased the value of Cramer’s V by 0.10 on average in our simulation. Table 3 gives
the mean value of A for the diffferent levels of distances that were used in the simulation.
When the initial clusters were very clear (d = 8), the addition of noise hardly affected
the cluster recovery (A=0.02); when the distances between the clusters were the smallest
(d = 4), the value of A increased to 0.19. An interesting finding, shown in Table 4, is that
the method of Ward yielded an average A of only 0.02, which suggests that the method
is not attenuated by irrelevant variables within the framework of this simulation. With a
value of 0.08 for A, the fastclus procedure loses the first position it held in the no noise
situation to Ward'’s method.

In Table 5, the means for A are shown for the three levels of variance v in the noise
variable. It clearly shows the obvious result that the higher the variance, the more the
cluster solutions are blurred.

A few interactions were also substantial (see Table 2). The variance v by cluster proce-
dure m interaction displayed in Figure 2 shows that the increase in variance v in the noise
had differential effects on the cluster methods. The single linkage and, especially, the
method of Ward seem to be only slightly affected by the increase in variance in the noise
variable. The centroid and complete linkage methods perform poorly once the variance is
high.

In Figure 3, which shows the interaction between the noise variance v and the distance
d, the combined effect of the two variables becomes very clear. In fact, this shows that
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Table 5: The mean values of A for the three levels of variance v in the noise

v | Mean A
510.196315
310.091954
1]0.015226
A
0.8
0.7 o

T T T T T IRABRERSANNEERRSRERES

0.3 0.4 0.5 0.6 0.7 0.8
R?

Figure 2: Mean values of A for the interaction of cluster procedure m and variance v in
the noise
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Figure 5: Mean values of A for the interaction of variance v in the noise, cluster procedure
m and distances d between the clusters

what is really important is the relationship between the variance of the noise variable and
the distances between the clusters. Figure 4 shows the interaction between distance d
and cluster procedure m. It is clear that the average linkage and the centroid method
were very negatively influenced by the noise variable when d was small. In the cases
of smallest distance (d = 4), these methods decreased the value of Cramer’s V by 0.40.
Ward’s method was only mildly affected. A very interesting observation is that single
linkage performs best when the true clustering is weak. A possible explanation is that
the single linkage method performed so poorly even without the noise variable that a
further decline was almost impossible. Finally, the last two figures show second order
interactions. The interpretation of these effects seems to be less straightforward than the
previous ones. In Figure 5, one can see that the combined effect of a high variance v in
the noise variable and a weak (true) clustering yields very high values for A, especially
for the average linkage and the centroid method. On the other hand, when the variance
of the noise variable is small (s = 1), there is almost no effect of distance (except for the
centroid and average linkage methods).

Although the effect of the number of variables p as such is not significant, it’s inter-
action with clustering method m and distance d, as shown in Figure 6, is significant. The
effect of additional relevant variables seems to be different for the different clustering
methods and the true clustering distances.

If cluster procedures are sensitive to noise variables, one can wonder whether the use
of the R? measure (for predicting the variable from the cluster) is informative for variable
selection purposes. In general, the correlation coefficient between A and R? for the noise
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Distance

Figure 6: Mean values of A for the interaction of the number of variables p, cluster
procedure m and distances d between the clusters

Table 6: Correlation coefficients between A and R? for the noise variable for the six

cluster procedures m

m Corr(A, R?)
Average Linkage 0.70
Centroid method 0.60
Complete Linkage 091
Single Linkage 0.25
Ward’s method 0.94
Fastclus 0.97
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Figure 7: Scatter plot of A and R? for the noise variable for k-means procedure

variable was 0.55 8. However, there were considerable differences between the different
clustering methods. In Table 6, the correlation coefficients for the different clustering
methods are shown. For the fastclus procedure, the correlation coefficient for A and the
R? of the noise variable is .97 (see Figure 7). In this case, selecting the variable(s) with a
high R? will not always lead to a correct decision: when the deterioration caused by the
noise variable is high, the R? value for the noise variable will be (relatively) high, and the
R?’s of the relevant variables will be somewhat lower. When the effect of noise is low,

the R? value of the noise variable will be low, and the R?’s of the relevant variables will
be high.

7 Conclusion

This simulation clearly shows that irrelevant variables can be a problem in the sense that
they can obscure an otherwise good cluster solution. Researchers should, therefore, care-
fully select variables that are of theoretical interest to the research problem, before at-
tempting a cluster analysis. In our simulation, the single linkage method performed rather
poorly in most cases, even without the addition of a noise variable. We also found that
Ward’s method was only mildly affected in our simulation. Ward’s method performed
better than any of the others. Even when the variance v of the noise variable was high,
the recovery was rather good. We should stress again that the results of this simulation

8 Although there is no reason to assume a linear relationship, we decided to use the correlation coefficient
based on visual inspection of the scatterplots.
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study are highly influenced by the cluster configuration. This is probably also why the
results are not always in concordance with some of the results mentioned in the literature
overview.

From a social scientist’s perspective, these results are rather unpleasant. Hypothesis
testing with classical cluster analysis is not possible because it lacks a thorough statistical
theory. We have to use a model-based approach (see, for example, Bock, 1996) in these
situations. Moreover, we have to be very careful if we want to use classical cluster analysis
for exploratory data analysis because the addition of a noisy variable can blur a cluster
solution.This conclusion is important. If classical cluster analysis methods are sensitive
to this type of error, it is not very useful in an exploratory setting, since researchers should
already know which variables are important for the cluster structure and which variables
are not.
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