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Relationship Between a Restricted Correlated
Uniqueness Model and a Direct Product Model
for Multitrait-Multimethod Data

Germa Coenders' and Willem E. Saris?

Abstract

This article proves the equivalence between two models which have been
suggested for modeling multiplicative method effects in multitrait-multimethod
matrices according to the definitions given in Campbell and O’Connell (1967).
These are the direct product model (Browne, 1984) and a correlated uniqueness
model (Marsh, 1989) with the constraints given by Coenders and Saris (in
press). This equivalence is shown to hold for designs with three methods. For
designs with more than three methods the constrained correlated uniqueness
model is more parsimonious and is equivalent to a direct product model in
which method effects can be unidimensionally ranked according to their
measurement quality. This equivalence will allow for a widespread use of the
correlated uniqueness model, which is a particular class of a confirmatory
factor analysis model and hence more easily accessible and understandable by
applied researchers. The proof is accompanied by an illustration on real data.

1 Introduction

Multitrait-Multimethod (MTMM) designs (Campbell and Fiske, 1959) consist of
multiple measures of a set of factors (fraits) with the same set of measurement
procedures (methods). So these designs include ¢xm measures, that is the number of
methods (m) times the number of traits (7).

The differences between methods can be any design characteristic which can be
shared by measurements of all traits, such as different response scale lengths or
category labels in questionnaires, different data collection procedures, different
raters, etc.
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Campbell and Fiske (1959) suggested using MTMM designs for convergent and
discriminant validation by directly examining the elements of the correlation matrix
among all £xm measurements, called MTMM matrix. This approach was cumbersome
and often led to confusion (Schmitt and Stults, 1986) so that from the early seventies
MTMM matrices began instead to be analyzed by means of covariance structure
analysis models (see for instance Bollen, 1989 as a general reference and Schmitt
and Stults (1986) for applications on MTMM data). These models are called MTMM
models.

Many different MTMM models have been suggested in the literature. Among
them are the correlated uniqueness (CU) model (Marsh, 1989; Marsh and Bailey,
1991), the confirmatory factor analysis (CFA) model for MTMM data (Althauser,
Heberlein and Scott, 1971; Alwin, 1974, Werts and Linn, 1970), the direct product
(DP) model (Browne, 1984, 1985), and the true score model for MTMM data (Saris
and Andrews, 1991).

The discussion about which of the above models should be preferred has
traditionally been linked to a discussion on the behaviour of method effects, which
determines to a large extent the structure of the MTMM matrix. Campbell and
O'Connell (1967) described two such alternative structures linked to two types of
method effects: additive and multiplicative. At that time, the direct examination of
correlation coefficients was still common practice so that Campbell and O'Connell's
conceptualization was not model-based but referred to the correlations themselves.

It took some time before clear links could be established between the concepts of
additive and multiplicative correlation structures and the models used by
practitioners. In fact, the terminology used in 1967 by Campbell and O'Connell led to
some misunderstanding. Some literature suggested that additive statistical models
such as the CFA and CU model were suitable only for analyzing additive MTMM
structures (for instance Bagozzi, 1993; Bagozzi and Yi, 1991; Cudeck, 1988; Schmitt
and Stults, 1986). The DP model was expressly developed for multiplicative
structures and, partly as a result of this misunderstanding, quickly gained popularity.

Kumar and Dillon (1992) pointed out that, in principle, the additive versus
multiplicative conceptualization in Campbell and O'Connell (1967) has nothing to do
with the additive versus multiplicative formulation of the models. Although these
authors, and also Dudgeon (1994), stated under which circumstances the CFA model
produces additive or multiplicative structures, their conclusions were not at all
straightforward. Browne (1989) also did a great deal of analytical work in order to
relate the DP model to a competing additive components of covariance model
suggested in Wothke (1984).

Coenders and Saris (in press) showed that it was possible to formulate
constrained versions of the CU model which produced multiplicative structures in
line with Campbell and O’Connell. The relationship between the muitiplicative
version of the CU model and the DP model is not straightforward and is dealt with in
this article, in which it is shown under which circumstances both models are
equivalent. This equivalence will allow researchers to use the restricted CU model,



Relationship Between a Restricted Correlated Uniqueness Model... 153

which is related to factor analysis models and therefore more accessible and
understandable.

2 MTMM matrices and models

2.1 The structure of an MTMM matrix

We next introduce some general comments on the elements of an MTMM matrix and
discuss the typical structure of such a matrix. A survey of life satisfaction carried out
in Catalonia (Spain) in 1989 will be used for illustration throughout the article. The
study considered 7 = 3 domains of life satisfaction (traits):

1. Life as a whole (t1).
2. Financial situation (t2).
3. Social contacts (t3).

Each trait was measured with m = 3 response scales ranging from “completely
dissatisfied" to "completely satisfied" (methods):

1. 100-point numeric scale (m1).
2. 5-point scale with all-labelled categories (m2).
3. 11-point scale (m3).

Details on the questionnaire and data collection can be found in Batista-Foguet,
Coenders and Sureda (1996). The sample size is 406. The correlation matrix and the
standard deviations of the nine measurements are given in Table 1.

Campbell and Fiske (1959) suggested summarizing an MTMM data set by means
of the MTMM matrix which arranges the correlation matrix among all measurements
ordered by method. The authors referred to the different elements of such an MTMM
correlation matrix as follows: monotrait-heteromethod correlations involve two
measurements of the same trait using different methods; heterotrait-monomethod
correlations involve two measurements of different traits using the same method; and
heterotrait-heteromethod correlations involve two measurements of different traits
using different methods. The labels of the variables in Table 1 and the presentation of
the matrix in blocks following the method should help the reader locate the different
types of correlations.

All measures contain random measurement errors. In addition to these errors, the
methods used often produce a systematic response error which is called method
effect. So, in addition to trait or valid variance, MTMM measurements have two
sources of error variance: noise or random error variance and method or invalid
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variance. Since the second source of error variance is common for all measurements
using the same method, the resulting error terms will be correlated.

Table 1: Correlations and standard deviations of nine measurements of life satisfaction

Variable timl ©2ml t3ml tim2 €2m2 m2 tim3 ©2m3 t3m3
tl ml 1.000

2 ml 464 1.000

3 ml 340 223 1.000

tl m2 574 241 2330 1.000

2 m2 349 762 195 300 1.000

3 m2 175 019 646 .390 119 1.000

tl m3 639 346 309 630 326 .281 1.000

2 m3 399 .788 .166 251 791 052 420 1000

3 m3 276 121 657 282 143 692 445 237 1.000
Standard

deviation 24.079 24.901 22986 0943 1054 0937 2.163 2325 2.102

Random measurement errors tend to attenuate the correlations among observed
measurements with respect.to the correlations among the trait factors. On the
contrary, correlated measurement errors usually increase the correlations among
observed measurements in absolute value (at least if trait correlations are positive). In
an MTMM correlation matrix, heterotrait-monomethod correlations (which are in the
triangular blocks in Table 1) are in general larger in absolute value than heterotrait-
heteromethod correlations (which are outside the diagonal of the square blocks in
Table 1). In this respect, see for instance Andrews (1984).

Additive and multiplicative MTMM structures differ by the pattern of the
aforementioned differences between heteromethod and monomethod correlations.
Campbell and O'Connell (1967) suggested plotting monomethod correlations
(vertical axis) against heteromethod correlations (horizontal axis) for all pairs of
traits. The structure was called additive if, for any given two methods, there was a
unit-slope linear relationship between the heterotrait-monomethod correlations
involving one of the two methods and the heterotrait-heteromethod correlations. The
structure was called multiplicative if the slope of such relationship was larger than
one, in other words, if the differences between monomethod and heteromethod
correlations were higher when the heteromethod correlations were higher.

MTMM models are useful to provide the researcher with measurement quality
estimates (usually in the form of a variance decomposition into trait, error, and
method variance) and corrected trait correlations taking the effect of random errors
and method effects into account. Among them are the CU and DP models, which are
next reviewed.
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2.2 Correlated uniqueness (CU) model

The CU model (Kenny, 1976, Marsh, 1989; Marsh and Bailey, 1991) belongs to the
family of factor analysis models. The model is specified as:

X, = Ay &+ 8 Vi j 1)

where x;; is the measurement of trait / with method j, expressed in deviations from the
mean, J; is the random measurement error plus method effect component for x; ; &
are the standardized trait factors with correlations ¢ ; and A; is the loading of x;, on
& (when standardized and squared it can be interpreted as a measurement quality
indicator).

The specification includes the conventional assumption of no correlation between
trait factors and error terms:

cov(d; &) =0 vij i 2)

where i/, i',... identify the traits, and j, j',... the methods in all equations in this article.
Note that / may be equal to i’ and j may be equal to j’, unless the opposite is
expressly stated.

Covariances among error terms corresponding to pairs of variables measured
with the same method (monomethod error covariances) constitute unrestricted model
parameters which are represented as cov(S; d;;). The inclusion of such parameters is
a very straightforward manner of accounting for method effects. Covariances among
error terms corresponding to pairs of variables measured with two different methods
(heteromethod error covariances) are constrained to be zero:

cov(s; i) = 0 ifj=j’ 3)

The restriction in Equation 3 implies that only error covariances among
indicators sharing the same method can be explained by the CU model. In some
circumstances, some of the methods of measurement are so similar that Equation 3
cannot be expected to hold (de Wit, 1994). For instance, Andrews and Withey
(1976, chap. 6) consider six methods for measuring life satisfaction, five based on
self-ratings and one on other's ratings. The authors expected correlated measurement
errors to occur among all self-rating measures. In such a case the CU mode! would
be misspecified. The literature suggests that such phenomena are quite frequent and
high heteromethod error covariances are to be expected when all methods consist in
self rating (e.g. Bagozzi, 1993). Fortunately, some literature suggests that, even
when heteromethod error covariances are present, the bias of the estimates when
fitting the CU models is fairly minor (Marsh and Bailey, 1991; Saris, 1990a;
Scherpenzeel, 1995), at least if method effects are low. In any case, models that
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eliminate the assumption in Equation 3 have been shown to be too heavily
parametrized and to lead to problems such as failure to converge, inadmissible
estimates, or empirical underidentification (Andrews, 1984; Bagozzi and Yi, 1991;
Brannick and Spector, 1990; Kenny and Kashy, 1992; Marsh and Bailey, 1991;
Rindskopf, 1984; Saris, 1990b).

o521
931
o1
o2
032
o13
o23

933

Figure 1: Path diagram of the CU model for three traits and three methods

The path diagram in Figure 1 displays the model for a design with ¢ = 3 traits and
m = 3 methods. The variables measured with the same method appear together in the
diagram. Note that each variable is only affected by one trait factor and an error
term. Note also the error covariances for the pairs of variables measured with the
same method. The CU model can be shown to lead to the following implied variances
and covariances:

var(x;) = X, + var(8;)

cov(xy Xiy) = Ay Guir Ay ifi=i'andj #j' 1))
cov(xlj xe';) = )u,j ¢,,"/1,:,‘ + COV((S/] 5,:,’) I_fl #i'
cov(xy xy) = Ay Ay ifj=j'

where var(x; ) is a variance, cov(x; x;; ) is a heterotrait-heteromethod covariance,
cov(x; x;; ) is a heterotrait-monomethod covariance and cov(x; x;) is a monotrait-
heteromethod covariance. The terms cov(d; &) which are added to the heterotrait-
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monomethod covariances generally make them larger than the corresponding
heterotrait-heteromethod covariances. The equation also decomposes the variance of
the x; variables into trait variance ()f,-,») and error variance (var(d; )), the latter
including both random error and method variance.

Coenders and Saris (in press) showed that, despite having an additive
formulation, the CU model can account for multiplicative method effects if certain
constraints are introduced in the error covariance parameters:

COV((S,I 61‘/) =& ¢n'1ij A’i’/ Vj, iZi' (5)

where ¢; > 0 is a constant related to the Method j, ¢, is the correlation between
Traits i and i’ and the A's are trait loadings. The larger cov(d; J;;) is, the larger the
increase of monomethod correlations or covariances with respect to their
heteromethod counterparts is. Thus, the modeling of multiplicative method effects
implies that error covariance parameters related to Method j are larger in absolute
value when the trait correlation is larger in absolute value. This is precisely the role
of the term ¢;- in Equation 5, which makes error covariances to be proportional to
the trait correlations. The requirement for ¢; to be positive is introduced to
accomodate the empirically observed larger size of monomethod correlations with
respect to heteromethod correlations and makes error covariances positive if ¢, > 0
and negative if ¢ < 0. The A loadings play the role of scaling constants and make
the constrained model scale invariant in the sense given by Cudeck (1989). The
model can thus be fitted both to covariance and correlation matrices. Moreover,
the ¢;- and ¢; parameters. are scale free, which means that they take the same value
regardless of whether a covariance or a correlation matrix is analyzed.

Coenders and Saris (in press) show that the correlation structure implied by the
constrained CU model fulfils the definition of multiplicative structure given by
Campbell and O'Connell in 1967.

The estimation of the constrained CU model is possible with standard software
for structural equation models as long as non linear constraints are permitted. An
input file for the LISREL8 program (Joreskog and Sorbom, 1989, 1993) is given in
the Appendix.

A particularly interesting case of the CU model is the congeneric measurement
(CM) model, one of the most commonly used measurement error models (Jéreskog,
1969, 1971). It is not an MTMM model but its simplicity is such that it has
sometimes been used for the analysis of MTMM data, especially if method effects are
low (Widaman, 1985).

The specification of the CM model is identical to that of the CU model except for
Equation 3, which is reexpressed as:

cov(S; 8y) =0 ifizi'orj=j' (6)
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so that both heteromethod and monomethod error covariances are constrained to
zero and method effects are thus ignored. Note the absence of the cov(d; ;) terms
from the implied covariances, in comparison to Equation 4:

var(x;) = ,12,, + var(6;)

cov(xjxiy) = Ay G Aiye ifi#i'andj #j' @)
COV(XU x!']) = llj ¢u‘li'] Ifl #i'
cov(xy xy) = Ay Ay ifj=j'

The constrained CU model is not only related to Campbell and O'Connell's
definitions but also to another frequently used models for the analysis of
multiplicative MTMM data, namely the DP model, which is next presented. One
further section will discuss the equivalence of both models.

2.3 Direct product (DP) model

The DP model has been developed drawing from the work of Swain (1975) with the
specific aim of modeling multiplicative method effects. Unlike the previous models,
the DP Model (Browne, 1984, 1985, 1989; Cudeck, 1988) is not a factor analysis
model. It does not assume the variables to be related through a set of equations but
only specifies a certain implied structure for the variances and covariances’, which is
displayed in Equation 8:

varfx;) = (1 + e,j)zz,j

cov(xy Xiy) = Zy Ty Pur Zey ifi #i'andj#j' (8)
cov(Xy Xiy) = zy PirZiy ifi=i’
cov(Xy Xy) = 2y Ty 2y ifj=j'

where x;; is the measurement of Trait i with Method j, expressed in deviations from
the mean; z; is a scaling constant for x;; p; is the correlation between Traits i and i,
my is a method effect indicator® (in this model such effects are not given for every

3The DP model can also be viewed as a model for the observed measurements, which specifies them
as the product of two independent trait and method factors. However, the interpretation of such a
multiplicative model for the measurements is problematic and involves rethinking the current
measurement theory (Kumar and Dillon, 1992; Marsh and Grayson, 1995). In this section, the DP model
will be considered only in terms of its implications for the covariances or correlations. The paper will
show that the DP covariance structure is also compatible with an additive model (a restricted CU model)
for the observed measurements, whose interpretation is more appealing. The assumptions of the DP
model can then be understood to be the same as those of the appropriate restricted CU model.

*The model is sometimes interpreted in a symmetric fashion in which the 7z and gy terms play
exactly the same role and are interpreted as correlations (Browne, 1984, 1985; Cudeck, 1988). Traits and
methods are viewed as two facets of the MTMM design. Throughout this article it is assumed that
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individual method, but for every combination of two of them); and e; can be
understood as a (standardized) random error variance. As shown in the equation, e,
contributes to the variances and not to the covariances and it thus leads to an
attenuation of correlations in the same way as a random error component does. A
measurement quality indicator can be obtained as //(/ + e; ). An unstandardized
random error variance can be obtained as e;z°;;

The DP model is scale invariant and the parameters ey, p;- and 7;- are scale free.

The pi , my and 7y pi terms in Equation 8 constitute the most interesting part
of the model and are interpreted as correlations between the corresponding x
variables disattenuated for the effect of random measurement error. These
disattenuated correlations take three possible forms:

1. A disattenuated heterotrait-monomethod correlation is equal to the p,
correlation between both traits.

2. A disattenuated heterotrait-heteromethod correlation is equal to the product
of the p;- correlation between both traits and the 7 coefficient corresponding
to the combination of both methods. The DP model takes method effects into
account by means of these =z coefficients because these coefficients are
constrained to be equal to or lower than / in absolute value and therefore
cause a reduction in the heterotrait-heteromethod correlations with respect to
the heterotrait-monomethod correlations. Thus, the lower the ;- 's are, the
larger the method effects are; if all the s coefficients were equal to /, no
reduction in the correlations would take place, which could be interpreted as
the absence of method effects. In fact, it will later be shown that a DP model
in which all 7 coefficients are constrained to be equal to 1 is equivalent to the
CM model. Note that, in the DP model, method effects reduce heteromethod
correlations whereas in the CU model they increase monomethod correlations.
Note also that this reduction in the heteromethod correlations is proportional
to the trait correlations: it is clear that the difference between the
heteromethod and monomethod correlations will be higher when the trait
correlation is higher, thus leading to a multiplicative MTMM structure in the
sense given by Campbell and O'Connell (1967).

3. A disattenuated monotrait-heteromethod correlation is equal to the
corresponding 7; coefficient. This leads to another interpretation of the =
coefficients which is by no means in conflict with the former one: once random
measurement error has been taken into account, a monotrait-heteromethod
correlation should be / except for the impact of method effects.

In the past, the model could not be estimated with standard software for
structural equation modeling unless it was reparametrized as a second order factor

researchers are mainly interested in corrected trait correlations and in measurement quality, which makes
the interpretation of g, as a trait correlation and of 7 as a method effect indicator more attractive.
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analysis model (Wothke and Browne, 1990), which was very cumbersome and hard
to interpret. As an alternative, Browne's program MUTMUM (Browne, 1985) could
be used. Nowadays, the inclusion of non-linear constraints in some standard software
for structural equation models makes the estimation easier. A parametrization of the
DP model as a first order factor analysis model with non-linear constraints is shown
in the appendix, where an input file for the LISRELS8 program is also given.

3 Relationship between the CU and DP models

This section will show the conditions under which the constrained CU model
specified with Equations 1, 2, 3 and 5 and the DP model are equivalent. The
equivalence between the models will be both analytically derived and illustrated on
the data in Table 1, which will allow the reader to better relate the parameter values
of the equivalent models. Two equivalent models have the same number of free
parameters and, for any set of parameters of one model, there exists a set of
parameters of the other model which yields an identical implied covariance matrix.
For two models to be locally equivalent, equivalence only needs to hold in the
regions of the parameter spaces where the parameter values of both models are
admissible and both models are empirically identified. Local equivalence is proven by
just showing the aforementioned existence of a set of parameters which yields an
identical implied covariance matrix. See Luijben (1989) for a more formal definition
and examples. Throughout the article we understand equivalence as meaning local
equivalence, as in Luijben (1989).

3.1 Equivalence between the CM and DP models

Prior to relating the CU and DP models, we will show that the CM model is
equivalent to a DP model in which all z; elements are constrained to / so that there
are no method effects. We will call this model a no-method-effect DP model. This
equivalence will shed light on the relationship between the DP model and models of
the factor analysis family. This is particularly relevant due to the fact that the DP
model has always been presented as belonging to a completely different class of
models. Trivially, the CM model is also equivalent to a CU model in which all cov(§;
&5 ) error covariance parameters are constrained to zero (i.e. in which there are no
method effects either), which increases the convenience of using the CM model as a
starting point for the comparison of the CU and DP models.

The no-method-effect DP and CM models have the same number of free
parameters: mt z; or A; parameters; {(1-1)/2 p, or ¢ parameters; and mi e; or
var(5,) parameters. The variances and covariances implied by the no-method-effect
DP model can be rewritten from Equation 8 as:
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var(x;) = (1 + e,,)z2,,-

Cov(xXy Xiy) = 2y PurZiy 9)
COV(Xy Xiy) = 2y Pir Zsy

cov(Xy xy) = 2z

If welet 4y =z, ; ¢ = pwr ; and var(§,) = zz,, e; , then Equation 7, which
contains the variances and covariances implied by the CM model, becomes identical
to Equation 9:

var(x;) = 2y + var(8; )= 27y + 2 e; = (1 +e,)7,

cov(xy Xiy) = Ay @i Aiy = 2y P 2y (10)
cov(xy Xiy) = Ay hiy = 2y Pir Ziy

cov(x; Xy ) = Ay Ay =z;zy

Thus, for any set of the no-method-effect DP model parameters there exists a set
of CM model parameters which makes the implied variances and covariances of both
models the same. So, it has been proven that the CM model and the no-method-
edffect DP model are equivalent. This equivalence holds for any values of 7 and m as
long as both models are identified.

3.2 Equivalence between the restricted CU and DP models
We are now in a better position to understand the equivalence between the
constrained CU model and the standard DP model. The variances and covariances

implied with the constrained CU model are similar to those in Equation 7 except for
the addition of the parameters in Equation 5:

var(x;) = /12,1 + var(dy;)

cov(x; Xiy) = Ay G Ay ifizi'andj =)' (1)
covixyxiy) = Ay Ay (1 +¢ ) ifi =i’
cov(xy Xy ) = Ay Ay ifj #j'

These ¢; parameters lead to an increase in the monomethod covariances. The
unconstrained DP model in Equation 8 also introduces a set of additional 7
parameters with respect to Equation 9. These additional 7; parameters lead to a
decrease in the heteromethod covariances. These two different ways of introducing
method effects by the CU and DP models will result in the CU 4, loadings no longer
being equal to the z; parameters. Neither can the var(8, ) parameters be directly
obtained from the e, parameters as before. The relationship between the CU and DP
models is no longer straightforward and will require certain additional conditions.
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A necessary condition for equivalence is that the number of parameters of both
models be the same. Both models have tm z; or A; parameters, #(t-1)/2 p;. or ¢
parameters and tm e;; or var(d;) parameters. However, the unconstrained DP model
has m(m-1)/2 m; parameters while the constrained CU model has m ¢, parameters
and these two numbers of parameters coincide only for m = 3.

For this reason, we will consider a constrained DP model in which the =
coefficients can be decomposed into method specific coefficients:

Ty =d d V=)' (12)

where 0 < d; <1 and 0 <d; <[ are the coefficients of Method j and Method j’.
The lower the value of d; is, the higher the method effects of Method j are. In the so
constrained DP model there exist m d; parameters, so that the number of parameters
of the constrained DP model equals that of the constrained CU model. The implied
variances and covariances in Equation 8 must be rewritten as:

var(xy) = (1 + e,,‘)zz,-,-

cov(xy Xiy) = d;izy pi dp Zip ifi #i'andj #j' (13)
cov(Xy Xiy) = Zy PurZiy : ifi i’
cov(xy xy) = d;zy dy zy ifj#j'

We next prove that the constrained CU model with the constraint in Equation 5
and the constrained DP model with the constraint in Equation 12 are equivalent by
showing that a set of parameters of the constrained CU model can be obtained from
the parameters of the constrained DP model and yields identical implied variances
and covariances.

The parameters of the constrained CU model can be expressed from the
parameters of the constrained DP models as follows. First, the A's can be expressed
as a function of the d's and the z's as:

Ay =dyzy (14)

so that the A's will be equal or lower than the z's. The larger z's in the constrained DP
model can be understood as a compensation for the reduction in the covariances
caused by the 7, terms.

The constrained CU error variances can be expressed as:

var(8;) =zz‘.,ﬂ(e,,+ I-a‘z,) (15)
which shows that they depend on the corresponding z's and e's, and also on a

constant linked to the method. Note that these error variances are equal or larger
than z’; e, , which are the error variances that one would compute directly from the



Relationship Between a Restricted Correlated Uniqueness Model... 163

constrained DP model parameters. This is so because in the constrained CU model,
correlations are only attenuated by random measurement errors, while in the
constrained DP model they are further reduced by the 7 parameters. In can even be
the case that the e’s are negative, which constitutes a non-admissible solution of the
constrained DP model, while the var(5,)'s are positive.

What is most interesting about the parameter relationships is that they result in
trait correlations being numerically the same for both models, in spite of the different
way in which they take method effects into account:

Piir = ¢ii' (16)
Finally, the CU ¢’s can be expressed as:
c=1Ud -1 an

which shows that error covariances will be larger if d is lower. The d’s are in general
lower when the 7's are lower, that is when method effects are higher.

Given these relationships between the parameters of both models, it can be
shown that the implied variances and covariances are the same for both models:

var(x;) = lz,j + var(6y) = dzj zz,] + zz,;,' e; + z2U -zzu- dzj =(l+ e,])zzq

cov(y Xiy) = Ay b huy = iz, pur o2y (18)
covixy Xiy) = Ay udiy (1+ ¢ )=dizy pir dziy / &= 2 piziy

cov(xy Xy ) = Ay Ay =d;z; dj zyp

It has thus been proven that both models are equivalent.

As regards the generality of this finding, the requirement in Equation 12 will
usually hold if m = 3 unless the 7 parameters take very unusual values (which
would lead to negative ¢; values which are considered non-admissible). Thus, the
unconstrained DP model is equivalent to the constrained CU model when m = 3 .
This is very meaningful because designs with three methods are by far the most
common in MTMM research. Designs with less than three methods sometimes lead to
models which are underidentified or at least to rather unstable estimates. Designs
with more than three methods suffer from the high cost connected with profusely
repeated measurement.

If m > 3, the constrained CU and DP models are more parsimonious than the
standard DP model. More particularly, the constrained CU and DP models assume
that one single parameter is enough to express the quality of a method. In other
words, methods can be arranged in a continuum according to their quality. Thus, a
method with a high value of ¢; or a low value of d; leads to monomethod correlations
that are substantially higher than the heteromethod correlations regardless of which
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Table 2: Equivalence between the DP and constrained CU models.
Comparison of parameter estimates whenm =3

Standard DP model Constrained CU model
Variable z; e;® Ay var( §)
tl ml 20.70 0.32 17.65 252.01
2 ml 24.64 -0.03 21.01 146.34
3 ml 22.05 0.15 18.80 207.94
tl m2 0.84 0.26 0.73 0.36
2 m2 1.08 -0.01 0.93 0.27
3 m2 0.92 1.08 0.80 0.28
tl m3 2.00 1.14 1.74 1.56
2 m3 238 0.07 2.06 1.02
t3 m3 2.14 0.00 1.86 1.15

Traits Pt Methods e Traits b

tl 2 .39 ml m2 .74 tlt2 39 54.61 0.09 0.47
tlt3 48 ml m3- 74 tIt3 A48 60.21 0.09 0.52
23 .26 m2 m3 75 23 26 38.68 0.06 033
d; d; ds ¢ c; c3
85 .87 87 38 .33 33

df  ystat.  pvalue df st pvalue

21 62.90 <.001 21 62.90 <.001

* The non-admissible negative estimates were not significantly different from the admissibility boundary
of 0 and were not constrained to 0 so as to preserve the equivalence between the models. The problem
can be attributed to the fact that error variances expressed by the DP parameters are lower than those
expressed by the CU parameters.

other method it is combined with. If m > 3 the unconstrained DP model offers the
possibility that methods be clustered, in such a way that two methods, both with high
method effects but with similar behaviours, may produce high mutual heteromethod
correlations, or that two methods, both with low method effects, may produce low
mutual heteromethod correlations. The presence of such clusters of methods with
similar behaviours implies the presence of heteromethod error covariances, which
cannot be accounted for by the CU model. If m > 3, then a test of the constraints in
Equation 12 could reveal the existence of clusters of methods (i.e. heteromethod
error covariances). When m -~ 3 and heteromethod error covariances are present, the
standard DP model should be preferred over the constrained DP and CU models.
When m > 3 and heteromethod error covariances are absent, the more parsimonious



Relationship Between a Restricted Correlated Uniqueness Model... 165

constrained DP and CU models should be preferred over the standard DP
model. When m = 3, the presence of heteromethod error covariances cannot either be
tested or taken into account with the DP model.

To illustrate the equivalence of the models and the relationships among their
parameter values, we separately fitted both of them to the covariance matrix
computed from Table 1. Since m = 3, no additional constraints need to be introduced
to the DP model to ensure equivalence. Table 2 shows the maximum likelihood
estimates of both models, obtained with the LISRELS program using the input files in
the appendix. The ¢; and d; parameters are not directly provided by LISRELS but
they were computed by hand from Equations S and 12 and included in the table.
According to both types of parameters, Method 1 is the one leading to the highest
method effects. Allowing for rounding errors, the remaining parameters can be
related as specified in Equations 14 to 17. Note the larger values of the z; terms with
respect to the A; terms. Note also that, within a method, CU error covariances are
larger for pairs of variables measuring traits whose correlation is larger. The trait
correlations are the same for both models, as well as the goodness of fit statistic and
the degrees of freedom, as it should always be for two models which are equivalent.

4 Discussion

This article has shown that a CU model with constraints leading to multiplicative
method effects as defined by Campbell and O’Connell (1967) is equivalent to the
standard DP model for designs with 3 methods and to a constrained DP model for
designs with more than 3 methods. This constrained DP model assumes that methods
can be placed in a continuum according to their effects.

The DP model has always been presented as belonging to a special class of
models, with no apparent links to the models of the factor analysis family, outside the
very complicated second-order model discussed by Wothke and Browne (1990). We
have shown that the DP and constrained CU models, although formally very
different, behave in a very similar way, performing the same corrections on trait
correlations and relying on similar assumptions. The derived relationship between the
DP and constrained CU models allows us to better interpret the meaning of the
parameters and assumptions of the DP model and solve some of the frequent
misunderstandings which appear in the literature on this subject.

The fact that the 7 parameters have often been called method correlations is the
source of one of such misunderstanding. In fact, these parameters have sometimes
been interpreted as sources of heteromethod error covariances. Quite differently,
high values of 7; (i.e. close to one) do not show that heteromethod error covariances
are high but that method effects are low; in other words, that the differences between
monomethod and heteromethod correlations are low (DP interpretation), or that
monomethod error covariances are low (CU interpretation). In the extreme, if all 7z
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terms are equal to one, then there are no method effects at all and, accordingly, the
DP model becomes equivalent to the CM model As a result of this
misunderstanding, some literature (e.g. Bagozzi, 1993) claims that, unlike the CU
model, the standard DP model can account for heteromethod error covariances by
means of the 7;- parameters. This is indeed so if m > 3, but not otherwise.

The claim made by Campbell and O'Connell (1982) that, under some
circumstances, monomethod correlations should be more realistic than heteromethod
correlations, together with the fact that the DP model trait correlations are related to
monomethod correlations, could lead to another misunderstanding: it could be
suggested that the trait correlation estimates obtained from the DP model can be
more appropriate than those obtained from the CU model. We have shown that the
pi parameters of the constrained DP model equal the ¢, parameters of the CU
model, so that they both can be interpreted as trait factor correlations which are
corrected for both random errors and method effects in exactly the same way.

Researchers willing to model multiplicative method effects can then use the
constrained CU model instead of the standard DP model. The CU model offers the
advantage of being more comparable to standard models. Note that the CU model
may be used also if m > 3. In this case, it is only equivalent to the constrained DP
model but it continues to model multiplicative method effects in the sense given by
Campbell and O'Connell (1967). As far as we know, the CU model has never been
used to deal with multiplicative MTMM structures, probably because the additive
formulation of the model did not suggest this possibility. Many a researcher who
finds the DP model hard to interpret can benefit from adopting the CU family of
models instead.

A drawback of the CU model is that it assumes that heteromethod error
covariances are zero but models which relax this assumption often lead to problems
as was mentioned. The standard DP model can only relax this assumption when m >
3. In our opinion, this drawback is more than compensated for by the CU model's
lack of practical problems: Marsh (1989) and Marsh and Bailey (1991) report that
the CU model rarely leads to problems of empirical underidentification, failure to
converge or inadmissible estimates. Moreover these authors show that, even in the
cases in which the CU model is misspecified due to the presence of heteromethod
error covariances, the CU estimates are closer to the population parameter values
than the estimates of aslternative correctly specified but highly unstable models. This
is so because the lower sampling variability of the CU estimates outweighs the bias
arising from the violation of the model's assumptions.
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Appendix
Parametrization of the constrained CU model

The parametrization we suggest involves the usual specification of a CU model with
the appropriate non-linear constraints in the non-zero error covariances. The
constraints are introduced in the following way: m cov(8;, 85 ) error covariances
concerning Traits 1 and 2 are taken as free parameters and the remaining cov(s, 8;;)
error covariances with i >/ and i’ > 2 are expressed as a function of cov(é;; &5):

The parametrization we suggest involves the usual specification of a CU model
with the appropriate non-linear constraints in the non-zero error covariances. The
constraints are introduced in the following way: m cov(d;; 8y ) error covariances
concerning Traits 1 and 2 are taken as free parameters and the remaining cov(S; &)
error covariances with / >/ and i' > 2 are expressed as a function of cov(5; &y ):

Gir Ay Ay
COV((Sy(S,;) =COV(51]'521) —_— Vj,i?], i'>2
P12 Ay

A LISRELS input file for # = 3 and m = 3 is provided below. Note that in this file
subindexes refer to the row and column of a matrix of parameters, and not to the trait
and method.

LISREL8 INPUT FILE FOR CONSTRAINED CU MODEL (3 TRAITS X 3 METHODS)

! NO= REQUIRES THE SAMPLE SIZE

DA NI=9 NO= MA=CM

LA

'tl ml' 't2 ml' 't3 ml’ 't1l m2' 't2 m2' 't3 m2' 'tl m3' 't2 m3' 't3 m3’

! CM= REQUIRES A FILENAME FOR A LOWER TRIANGULAR COVARIANCE MATRIX

! VARIABLES MEASURED WITH THE SAME METHOD MUST APPEAR TOGETHER IN THE MATRIX
CM=

MO RX=9 NK=3 ILX=FU,FI PH=ST TD=SY,FI

LK

‘T1* 'T2' ‘T3

FRIX 11IX221LX33IX41LX52I1LX63ILX711LX821X93
FRTD 11T 22T 33T 44T55T66TDT7TT7TDS88TD IS
FRTD 2 1TD 3 1TD32TD54TD 64T065TD877T97 TS 8
! MULTIPLICATIVE NON-LINEAR CONSTRAINTS ACCORDING TO DEFINITION M2
CO TD(3,1)=TD(2,1) *PH(3,1) *LX(3,3) *PH(2,1) **-1.0*LX(2,2) **-

T.
1.
CO TD(3,2)=TD(2,1) *PH(3,2) *LX(3,3) *PH(2,1) **-1.0*LX(1,1) **-1.
CO TD(6,4)=TD(5,4) *PH(3,1) *LX(6,3) *PH(2,1) **-1 . 0*LX(5,2) **-1.
CO TD(6,5)=TD(5,4) *PH(3,2) *LX(6,3) *PH(2,1) **-1_ 0*LX(4,1) **-1.
CO TD(9,7)=TD(8,7) *PH(3,1) *IX(9,3) *PH(2,1) **-1.0*LX(8,2) **-1.
CO TD(9,8)=TD(8,7) *PH(3,2) *LX(9,3) *PH(2,1) **-1.0*LX(7,1) **-1.
OU ME=ML
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Parametrization of the DP model

The parametrization we suggest is that of a factor analysis model with constrained
factor covariance matrix. In this parametrization there are mt factors and each of the
mi x;; observed variables loads only on one &; factor and has a zero error variance:

xy = A5 ¢,

The factor covariance matrix contains the terms / + e, in the diagonal and the
disattenuated correlations outside the diagonal. The values outside the diagonal must
then be constrained to appropriate products among a set of free my and
parameters. The 4; factor loadings play the role of the z; terms.

Below are the implied variances and covariances of this parametrization and of
the DP model:

var(x;) = var(§,,-)22,, =(1+ et/)zz']

cov(xy Xiy) = cov(&y iy )Ay Ay = By i 2y 2y
cov(xy xiy) = cov(&y &iy) Ay Ay = pirzyziy
cov(x; xy) = cov(&y &y )y Ay = mpzizy

A LISRELS input file for # = 3 and m = 3 is provided below.
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LISREL8 INPUT FILE FOR DP MODEL (3 TRAITS X 3 METHODS)

PARAMETRIZED AS A FA MODEL WITH 9 FACTORS WITH NON-LINEAR CONSTRAINTS
THE OFF-DIAGONAL PHI MATRIX IS THE 9X9 DISATTENUATED CORRELATION MATRIX
THE DIAGONAL OF PHI CONTAINS l+e(ij) AND IS UNCONSTRAINED

LX CONTAINS THE SCALING FACTORS z(ij)

! NO= REQUIRES THE SAMPLE SIZE

DA NI=9 NO= MA=CM

LA

"tl ml' ‘t2 ml' 't3 ml' 'tl m2' 't2 m2' 't3 m2' 'tl m3' 't2 m3' 't3 m3'

! CM= REQUIRES A FILENAME FOR A LOWER TRIANGULAR COVARIANCE MATRIX

| VARIABLES MEASURED WITH THE SAME METHOD MUST APPEAR TOGETHER IN THE MATRIX
CM=

MO NX=9 NK=9 TD=2E LX=DI,FR PH=SY,FR

LK

*TIM1' 'T2M1' 'T3M1' 'TIM2' 'T2M2' 'T3M2' 'TIM3' 'T2M3' 'T3M3'

! RESTRICTIONS TO THE STRUCTURE OF THE DISATTENUATED CORRELATION MATRIX

' DISATTENUATED HETEROTRAIT-MONOMETHOD CORREL. rho(ii') EQUAL FOR ALL METHODS
EQ PH 2 1 PH S5 4 PH 8 7

EQ PH 3 1 PH 6 4 PH 9 7

EQ PH 3 2 PH 6 5S PH 9 8

! DISATTENUATED MONOTRAIT-HETEROMETHOD CORREL. pi(jj') EQUAL FOR ALL TRAITS
EQPH 41 PHS52 PH 63

EQPH 71 PH 82 PH 93

EQPH 74 PHB8S5 PH 96

! 18 DISATTENUATED HETEROTRAIT-HETEROMETHOD CORRELATIONS

! CONSTRAINED TO THE PRODUCT OF ONE rho(ii') TERM AND ONE pi(jj') TERM
CO PH(5,1)=PH(2,1) *PH(4,1)

CO PH(6,1)=PH(3,1) *PH(4,1)

CO PH(6,2)=PH(3,2) *PH(4,1)

CO PH(4,2)=PH(2,1) *PH(4,1)

CO PH(4,3)=PH(3,1) *PH(4,1)

CO PH(5,3)=PH(3,2) *PH(4,1)

CO PH(8,1)=PH(2,1) *PH(7,1)

CO PH(9,1)=PH(3,1) *PH(7,1)

CO PH(9,2)=PH(3,2) *PH(7,1)

CO PH(7,2)=PH(2,1) *PH(7,1)

CO PH(7,3)=PH(3,1) *PH(7,1)

CO PH(8,3)=PH(3,2) *PH(7,1)

CO PH(8,4)=PH(2,1) *PH(7,4)

CO PH(9,4)=PH(3,1) *PH(7,4)

CO PH(9,S5)=PH(3,2) *PH(7,4)

CO PH(7,5)=PH(2,1) *PH(7,4)

CcO PH(7,6)=PH(3,1) *PH(7,4)

CO PH(8,6)=PH(3,2) *PH(7,4)

t STARTING VALUES FOR THE ESTIMATION

! WE RECOMMEND GIVING THE LX PARAMETERS VALUES CLOSE TO THE STANDARD
DEVIATIONS

ST .5PH 2 1PH31PHS332
ST .9PH 41PH71PHT7TA4
ST .91X111Xx221Xx33ILX44ILX551LX66ILX77I1LX88IX99
ST1.3 PH 11 PH22PH33PHi44PH55PH66PH77PHS8S8PHDYY

OU NS ME=ML
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