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Abstract

There have been several attempts to extend the notion of explained variation
to models for analyzing lifetime data, Cox models in particular . Most of the
authors have concentrated on overcoming the difficulty of using the censored
observations in the calculations, but did not pay enough attention to other,
equally important issues . We present a list of properties that a measure of
explained variation for the Cox model should have, and discuss these properties
with reference to the measures by . Kent and O'Quigley and by Korn and Simon .
We show that only the approach by Kent and O'Quigley gives good results . We
also stress the need for the use of such measures in survival studies .

1 . Introduction

Since the aim of any regression model is to explain the variability of the dependent
variable, it is desirable to generalize the definition of R2 , a customary measure of
explained variation in linear regression, to other models . The most natural way of
doing this is to apply the definition to such models . Unfortunately, this cannot be
done easily . R2 has several different interpretations of linear regression which lead to
different statistics in more general models and there is no obvious way of deciding
which definition to use . Some authors (Efron, 1978 ; Kvalseth, 1985 ; Nagelkerke,
1991) have tackled the problem of choosing the best definition and Kvalseth and
Nagelkerke even produced a list of properties that such generalized R Z should have .
The field of survival analysis, which is the subject of this work, shows that obeying
such 'general' properties may be difficult, if not impossible .
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Apart from the problem of choosing between different statistics, other difficulties
occur when one is trying to define the concept of explained variation in survival
analysis . For example, none of the definitions listed by Kvalseth can be directly
applied to survival data . Furthermore, even some definitions that can be applied (like

R Z =I -exp(-LR/n), see Magee, 1990) have properties that are not desirable for

such a measure . And the problems of meaningful interpretation and computational
difficulty should also not be overlooked .

Taking all this into account, it is not surprising that the search for a measure of
explained variation in survival analysis has only a brief history (Harrell et al ., 1982 ;
Harrell, 1986 ; Kent and O'Quigley, 1988 ; Korn and Simon, 1990; Schemper, 1990) .
It is interesting that different statistical packages (SPSS, NCSS, S-Plus) have
implemented different measures, while some major packages (SAS, BMDP) have still
not decided to include one . This is at least in part a consequence of the fact that no
measure is widely agreed upon . Also, a search of literature using SCI has shown that
these measures are only sporadically cited, which in view of the frequent use of
survival analysis in medical literature confirms that this subject is still in development .

Criteria for choosing between measures are developed here . For illustration, two
of the proposed measures are discussed, one by Kent and O'Quigley and the other by
Korn and Simon . These and other measures have been empirically compared
elsewhere (Stare, 1994 ; Schemper and Stare, 1996) .

We start with a motivating example .

1 .1 Survival after myocardial infarction

The study included patients who suffered myocardial infarction and were admitted to
the Centre for Cardiovascular Diseases in Ljubljana, from May 1, 1982 to December
31, 1987 . The study has been described in greater detail elsewhere (Stare, 1989 ;
Kenda, Turk, and Stare, 1992) . The aim of the study was to identify factors
associated with the duration of survival . Data on 1040 patients were collected, but
only 971 were complete and then used in proportional hazards regression analysis .

Results of the model fit are given in Output 2 .1 . All variables in the model are
dichotomous, except for age, which is continuous . The following is a short
explanation of the variables used in the table of estimates of maximum likelihood .

Heart arrythmia (ARRYTHM), took the value I if any kind of arrythmia was
present, and 0 otherwise . Cardiac failure (CARD FAI) was also a no-yes (0,1)
variable. The variable reinfarction (REINFARCT) was I if the infarction in question
was not the first infarction that a particular individual had suffered . Age entered the
analysis as a continuous variable . All remaining variables were again dichotomous,
having value 1 if a predictor was present, and 0 otherwise . Variables from
ANT TRAN to IMPOSSIB denote different localizations of the infarction ; anterior
transmural, anterior nontransmural and impossible to locate . Here, the inferior
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infarction was the reference group . The next group of variables (NOREHAB to SPA)
denotes different types of rehabilitation, with combined rehabilitation as the
reference group . GLUCOSE stands for disturbed tolerance for glucose, and
DIABETES is obvious . Here the group with neither diabetes or disturbed tolerance
for glucose was the reference group .

Output 2.1 . Analysis of Myocardial Infarction Data

Summary of the Number of
Event and Censored Values

Total

	

Event

	

Censored

	

Per

	

cent
Censored

971

	

276

	

695

	

71 .58

Testing Global Null Hypothesis : BETA=O

Without

	

With
Criterion Covariates Covariates Model Chi-Square

-2 LOG L

	

3673 .059

	

3448.899

	

224.159
with 14 DF (p=0.0001)

Analysis of Maximum Likelihood Estimates

Parameter Pr > Hazard
Variable DF Estimate Chi-Square Ratio
ARYTHM 1 0.409149 0.0015 1 .50
INSUF 1 0.514078 0.0001 1 .67
REINFRCT 1 0.359499 0 .0267 1 .43
AGE 1 0.029568 0 .0001 1 .03
ANT_TRAN 1 0.464313 0 .0004 1 .59
NT_NONT 1 0.485578 0 .0482 1 .62
IMPOSSIB 1 0.065668 0 .8981 1 .06
NOREHAB 1 0.958082 0 .0706 2.60
NOTPRESC 1 0.916281 0 .0810 2.50
AMBUL 1 -0.025794 0.9647 0.97
HOSPITAL 1 0.443442 0 .4373 1 .55
SPA 1 0.258553 0 .6180 1 .29
GLUCOSE 1 0.011207 0 .9693 1 .01
DIABETES 1

	

0.410995 0 .0022

	

1 .50
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The study was concluded in 1992 . Although more than 40% of patients were
observed for more than 5 years, data is heavily censored, an indication of the low
death-rate in the group .

As can be seen, the model is highly significant, but none of the variables has a
very high hazard (HR) ratio, so the question of the usefulness of this model remained .

The model says that of two groups of people of equal age, with the first group
having all the risk factors present while the second group has no risk factors, the first
group has an almost 23-times-greater risk of dying than the second group (HR =
1 .50 . 1 .67 . 1 .43 . 1 .62 .2 .60 . 1 .50 = 22 .6) . This becomes much higher if one compares
older and younger groups .

A natural question to ask is : how good is this model? Is our prediction, based on
the known values of prognostic variables, close to what really happens, or is there
much left to explain?

The answer to such a question could be given by a measure analogous to the
coefficient of determination in ordinary least squares regression . As mentioned,
different measures of EV were proposed for the Cox model and Table I gives their
values for the above example .

Table 1 . Values of the measures for the infarction model .

V 1 V2 KS He Hcc HL KO
infarction 15

	

16

	

20

	

75 .50

	

05

	

45

V1 and V2 stand for Schemper's respective measures,
KS for Korn and Simon's measure with squared error
loss, He for Harrell's index of concordance, Hcc for the
adjusted index of concordance, HL for Harrell's measure
of explained likelihood, KO for Kent and O'Quigley's
approximation .

It is obvious that something is wrong - the values differ too much to make any
sense . We must therefore ask ourselves : what do we expect of such a measure? Since
its crucial properties follow from the characteristics of the Cox model, we briefly
discuss the model .

2 . The proportional hazards model

The model was proposed by Cox (1972) and is often named after him . Before
introducing the model, we must state some definitions .
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Let T be a non-negative random variable representing the lifetimes' of individuals
in a population. We will assume T to be continuous . In survival analysis we are
interested in the function

S(t) = P(T >_ t),

where P denotes the probability of the event in parenthesis . This function is called the
survival function. It is obvious that S(t) = I - F(t) , where F(t) denotes the
distribution function of the random variable T. In the study of survival time
distributions, a useful concept is the hazard function defined as

h(t) =

	

P(t<-T<t+AlIT>_t)
aim	

At

The hazard function may be interpreted as the instantaneous probability that an
individual will die in the interval [t, t + At] , provided that the event has not occurred
before the beginning of this interval . It can be easily shown that S(t) can be
expressed in terms of h(t) in the following way :

S(t) = expC- Jh(u)du) .
o

(1)

Survival time cannot usually be directly related to explanatory variables via the
regression model because of the presence of censored data . Data is said to be
censored when exact lifetimes are known for only a portion of the individuals under
study ; and the remainder of the lifetimes are known only to exceed certain values .
Cox overcame this difficulty by using the hazard as the dependent variable in the
regression model . His model takes the form

h(11 .) = ho (t)e"',

	

(2)

where /1 is the vector of the parameters, x is the vector of the independent variables
and ho is the unspecified baseline hazard function . From (2) it follows that

A lifetime does not necessarily represent the time until the death of an individual but can be
the time up to the occurrence of some event that has elapsed from a well-defined starting point .
Sometimes the terms survival time or event time are used .

To be precise, such data is right censored . Other types of censoring exist, but we restrict our
consideration to this type, which is the most common in practice .
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h(tJx '

h(tlx,)
e

a property that gave the model its name . We note that this ratio is not time-
dependent .

Assume we haven individuals in a sample and let t„t2 , . . . . t,, be ordered observed
survival times, with k <_n since some observations may be censored. With R(t) we
shall denote the risk set at time t, the set of individuals that are still at risk just before
t . The fi coefficients of the model (2) are estimated by maximizing the so called
partial likelihood function

PL =fl,_
exp(fi'x, )

I exp(,a'x j )
JO(a)

which depends only on (3 . It is because of this method of estimation of (3 that
monotone transformations of time scale do not affect the estimates of (3. For
example, two models, illustrated in Figures 1 and 2, would have identical
coefficients .

3. Properties of measures of EV for the Cox model

Given this property of the model, it is then natural to require the same of the
measure. We can therefore state the first property which a measure of explained
variation for the Cox model should have :

3.1 Monotone transformations of the time scale should have no effect
on the measure

The second property comes from the fact that estimation of the coefficients in the
Cox model is assymptotically independent of censoring .

3.2 The measure should be independent of censoring (consistency!)

While there is general agreement with respect to the second property (with different
views about its actual importance), the first property is not viewed as necessary by all
the authors . On the other hand, only one measure obeys the second property, and
only one does not obey the first one. The second property, while desired, is difficult
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to achieve, but the first one comes naturally from the consideration of the problem .
The interested reader may consult original articles or Stare (1994) on this . As we
have already said, we shall discuss only two measures here .
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Figure 1 . Two-group exponential model (HR=64)

Figure 2. Two-group Weibull model (HR=64)

50 100 150

	

200

	

250

	

300

	

350

	

400
time



5 6

	

Janez Stare

Other issues have been considered in Stare (1994) and in the original articles .
These can be divided into two groups, those specific to the Cox model and those that
are generally required . The specific characteristics of the measures for the Cox model
are:

• the choice of the null model
• the effect of the sample size
•

	

computational difficulty

As these are not considered very important we will omit their discussion here .
Of course there are some general properties that every measure of explained

variation should possess . The most important seem to be :

• known upper and lower limits (1 and 0, say) . Actually, known limits are only
part of the problem . A measure can have such limits and still be too low or too
high for all practical purposes (see Stare, 1994) .

•

	

a measure must get higher as the model `fits better" . This "obvious"
requirement is not always obeyed .

• a measure must have a clear interpretation . This is of course a matter of
opinion, but all things being equal, a measure with a clearer interpretation
would be preferred .

Having stated the requirements we now proceed to discuss two measures, namely
the measures by Kent and O'Quigley and by Korn and Simon. The reasons for
choosing these two measures are the following :

•

	

Kent and O'Quigley's measure is the only one that fulfils the above-stated
requirements 1 . and 2 .

•

	

Korn and Simon's measure does not fulfil any of the two requirements and
therefore represents a different approach to solving the problem .

4. Kent and O'Quigley's measure of dependence

An information gain-based measure of dependence between the outcome variable and
the explanatory variables was proposed by Kent and O'Quigley in their 1988
Biometrika paper .

They first note that the conditional distribution of T given a vector X of random
variables X,, . . .,X, is specified only up to a monotone transformation of T . This is a
consequence of using partial likelihood in estimating coefficients (see Kalbfleisch and
Prentice, 1981) . Therefore, for any monotone increasing function O(•) , T' _ 0(T)
also satisfies the Cox model with the same regression coefficients . One can then find
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0 such that the base hazard function is of the form ho (t) = ae"t a - ' , for any
p and a > 0 . We shall denote by 8 a vector of coefficients in the Cox model and by x
a vector of values taken by X. Since from (2)

h(t) = ae"t° -'e",

we have from (1)
Ih/~)dh

	

-J "
S(t) = e

	

=e

The variable Y' = log T' then follows a linear regression model

with a= a', and the error e follows the standardized extreme value distribution (see
Lawless, 1982, pages 17-19 and 141) . a and p are scale and location parameters,
respectively.

Note that the above argument is theoretical and that finding a suitable
transformation would in practice be impossible if no parametric form of baseline
hazard was given . The point is that we can start to think in terms of the conditional
distribution of Y given X being modelled by

Y = -ap - U/3'X + o-e,

where the error variate a follows some specified distribution with a probability
density function f(•) . We shall restrict our consideration to the extreme value
distribution, in which case T = ey then follows the Weibull distribution .

Let 0 = (Q, p, o-2 ) denote the parameters of the model . Let O, _ (/l, , p, , a, z

denote the true values of the parameters . We shall usually have /8, ;t 0. Consider two
hypotheses H0:l= 0 and H, : no restrictions on ,13 . Denote the marginal distribution of
X by G(dx) . Define 0„ to be the value of 0 maximizing the expected log likelihood

0 (0, 0, ) = if log{f (yl x; 0 )}f (yl x;0, l"yG(dr)

F = 2(D(O, ; 0,) - (D(O o ; 0, )).

(3)

over 0 satisfying Ho . Here f (yIx; 0) = of(ay + p + fTx) with a = a-' . Kullback and
Leibler (1951) defined the information gain by

(4)
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As a measure of dependence between Y and X, Kent (1983) proposed

kYG = 1- e - " .

This is motivated by the fact that in the linear regression model with normal

errors (f (y) = (2,r) - ' i2 exp(- y2 /2)), p,ZG reduces to the squared multiple correlation
coefficient between Y and X.

For the Weibull model, the expected log likelihood can be written in closed form .
In general, estimation of information gain is quite involved. Kent and O'Quigley
proposed an approximation for a Weibull model to be

A
AV

. A A+I

(5)

where A =/3Tffl and S2 is the covariance matrix of X. This is estimated by the sample
covariance matrix S .

Kent and O'Quigley note the following properties of their measure :

i) 0<- gG < 1, p'G -* 1 when II I -> oo. kc,, will be 0 ifHo is true, but this may not
hold for a misspecified model .

ii) j is invariant under linear transformations of Y and X. It depends only on
the regression coefficients /3 and on the marginal distribution of X, but not on
,u or a .

iii) For a sample of n independent observations {(x ; , y; ); i = 1, . . . , n} without
censoring, the estimate of F is just n- ' times the usual log likelihood ratio
statistic for testing Ho versus H, . Then p(G becomes

AG
=1-e(

The same measure has been defined by Maddala (1983) and discussed by Magee
(1990) for the binomial logit model and by Schemper (1992) for the Cox model . He
showed that the measure depends on censoring and on the validity of the model's
assumptions .

It is of course obvious that (5) satisfies both requirements stated on page 7, but
the same can seen for the information gain measure .

It is clear from (3) and (4) that the value oft will depend on the values of

log{f(ylx ;O,)/.f(yIx; 00 ) (6)
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These will be greater with greater difference between the two probability spaces

(S2, F, A) and (b2, F, ft, ), where the probability measures are represented by the

respective densities f(ylx ;e,) . Or, in the words of Kullback and Leibler (1951), if
H,.,i = 0,1, is the hypothesis that x was selected from the population whose
probability measure is p,, then (6) is the information in x for discrimination between
Ho and H, .

5. Korn and Simon's measure

We give here an outline of the `loss function' approach by Korn and Simon (1990) .
If we predict a survival time of an individual to be p and his actual survival time

is t, then some loss is incurred . Such loss is a function of p and t which we denote as
L(t, p) and call a loss function. Many different forms of loss function can be used,
the only requirement being that with a greater difference between t and p, the loss is
also greater . Korn and Simon consider several such loss functions, of which we will
discuss the following one :

L(t, p) = (I* - p)' ,

	

(7)

where t' = min(t, To) and o is the censoring time above which we have no interest in
the survival process. A prediction p=To should therefore be interpreted as a
prediction of 'survival greater than or equal to T ' . With an observed time t ? 70 , such
a prediction incurs no loss . With To =oo (7) becomes

L(t, p) = (t - p) ' .

For a given loss function, expected risk is defined for a survival curve S by

RL (S(•)) = min f L(t, p)dF(t),

where F(t) = 1- S(t) is the distribution function of the random variable 72 . Korn and
Simon call a p achieving this minimum the 'optimal predictor' . The optimal predictors
for the two loss functions (7) and (8) are E(T') and E(T) .

(8)

2 We give here an intuitive explanation of the above definition :
Let p be a predicted survival time for a group of n subjects which are the same as far as the

values of covariates are concerned . Let ti be the actual survival time of subject i . Then the loss
incurred from predicting p instead of ti is L(ti,p) . We are interested in the sum (integral) of all
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The problem with survival analysis data is that losses usually cannot be
calculated, because of the censored observations . To calculate the expected risk for a
subject with given covariate vector x;, Korn and Simon use the predicted survival

curve S(tlx,), which is calculated from what is assumed to be a correctly specified

model. They define the explained variation of the survival model to be the
proportional reduction in risk obtained by using the model for prediction over the
null model :

RL [So

	

RL [S(. Ix, )]
explained variation =

RJSo (-)]

They define the null model to be

S ' (t) = 1

	

S(tJX ; .

which is a mixture distribution of the modelled survival distributions .
The following properties of this measure can be seen from the definition :

•

	

first, censored observations represent no problem in calculating this measure .
•

	

second, using the loss function (7), a time range of interest can be specified .
•

	

third, for different values of T, the measure will also be different .
•

	

fourth, any transformation of time scale will affect the measure .
•

	

fifth, the measure is clearly model dependent .

The fourth property clearly contradicts requirement 1 . of section 3 . Requirement
2. will be satisfied only if the expected risks can be calculated for To =oo . In practice,
data is often censored because the data is analyzed before all deaths in the sample
occur, so the upper limit of T is imposed by the data at hand, making the measure
dependent on censoring .

losses Z L(t;, p) and we want to make this sum as small as possible . We would regard a value of
p which minimizes this sum as the best possible predictor for a given group of subjects . The above
sum of losses of course depends on the distribution of ti . If ti are close top it is small ; if far from p.

then it is large . So, in the definition (1 .9) the integral sign represents the sum and the distribution
of T is represented by dF(t) .
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6. Conclusions

The most important conclusion is : use only the Kent and O'Quigley measure .
Second, the quest for a measure of explained variation in survival analysis is not

at an end. An important feature of the Cox model is the possibility of including time-
dependent covariates and these cannot be used with any of the measures mentioned .
The measure introduced recently by O'Quigley and Flandre (1994) promises to solve
this problem while preserving both of the two most important properties .

On the other hand, people may not find these approaches too appealing because
of the difficulties with their interpretation . In this respect, Schemper's recent proposal
(see Schemper and Stare, 1996) is certainly a candidate to fare better .

One final word about the necessity of regularly using measures of predictive
power in survival studies . It is of course well-known that statistical significance has
nothing to do with the predictive power of prognostic variables . Still, too many
models are built relying solely on statistical significance . More importantly, explained
variation is sometimes confused with the goodness of fit (see a good discussion on
this in Korn and Simon, 1990a and 1990b) . We note that correct specification of the
model only ensures that predictions will be correct on average, but does not imply
precise individual predictions .
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