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Probabilistic Models in Partitional Cluster Analysis

Hans H. Bock*

Abstract

Cluster analysis is designed for partitioning a set of objects into homoge-
neous classes by using observed data which carry information on the mutual
similarity or dissimilarity of objects. Clustering methods are often defined in
a heuristic or algorithmic way, emphasizing computational aspects and heuris-
tic motivations . In contrast, this paper considers the clustering problem in
a probabilistic framework and presents a survey on probabilistic models for
partition-type clustering structures . It is shown how clustering criteria and
grouping methods may be derived from these models in the case of vector-
valued data, dissimilarity matrices and similarity relations .

1 The clustering problem and its underlying data
The ability to classify objects into homogeneous classes on the basis of their mutual
similarities, dissimilarities or analogies is a basic element of human intelligence, an
undispensible tool for the recognition of visual and conceptual structures, and an in-
dispensable element for any abstract way of thinking . In the framework of statistics
and data analysis, the classification problem occurs typically when large sets of ob-
jects are described by huge amounts of data which can never be analyzed without a
preliminary step of information compression just by detecting or constructing a suf-
ficiently small number of homogeneous classes of (similarly behaving) objects whose
properties can be summarized by suitable class prototypes or class-specific feature
combinations which provide an easy insight into, and a concise overview of, the full
set of data. Or when it is conjectured that a given set of observations originates
from several sources and seems to show some obvious heterogeneities : then the reve-
lation of separate classes will reveal the hidden (possibly : causal) data structure and
allow the development of class-specific strategies for solving substance-related ques-
tions, such as class-specific therapies for patients, group-specific publicity campaigns
for attracting consumers, characterizing distinct types of social of psychological be-
haviour, distinguishing different types of soils or agricultural regions, locating single
outlier cases etc. The classification of employees into different salary groups or the
segmentation of the clients of an insurance company into types with their distinct
risk structure provide examples with a more organizational motivation .
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Clustering techniques are often considered as a part of exploratory statistics and
many proposed clustering methods are just presenting a computational algorithm
or some heuristic arguments, but proceed without any model assumptions or evalu-
ation criteria . In contrast to such approaches this paper emphasizes a model-based
inferential approach and presents a survey on some clustering or clustering-related
methods which result from probability models for the underlying data . : We show
how clustering strategies can be derived from these models by tools from classical
statistics . Such an approach clarifies the conditions under which a proposed clus-
tering method can be successful, and characterizes its performance .

Whilst we focus our presentation here on the description of probability models and
the construction of related k-means like algorithms, it should be emphasized that
the probabilistic approach extends to evaluation problems as well, e .g., when design-
ing formal significance tests in order to check the existence of a 'clustering structure'
or when defining models for 'purely random' (homogeneous) data constellations .
This point of view is described, with many references in Bock (1974, 1985, 1989a,
1996a, 1996b), Perruchet (1983), Jain & Dubes (1988), Godehardt (1990) and Gor-
don (1994, 1995) .

In the following, we consider a set 0 _ {1, . . .,n} of n objects k E 0 described by
data which are considered, in a probabilistic framework, as realizations of random
variables . Then any inherent clustering (or non-clustering) structure for the objects
must be characterized by the probability distribution of these variables . In this
paper we will consider the following data types :

a) n feature vectors x 1 , . . ., x,,, each with p metric or qualitative components, de-
scribing the observed properties of the n objects . These data are realizations
of n p-dimensional independent random vectors X1 , . . ., X,,_

b) A dissimilarity matrix (dkt)nxn where each entry dki characterizes the pairwise
dissimilarity of the two objects k, l E 0 (with 0 = dkk < dk, = d,k for all k,1) ;
they are realizations of n(n - 1)/2 random dissimilarities Dk,, k # 1 (with
0 - Dkk < Dk, = D,k for all k,1) .

c) A binary similarity relation (sk,)„Xn where 3k1 = 1 resp . = 0 indicates that the
two objects k, l are considered to be 'similar' or not (with skk = 1 for all k),
with corresponding binary random variables Ski . These data are equivalent to
a similarity graph G with n vertices (objects) and a link (edge) between two
different vertices k, I E 0 whenever Ski = 1 .

Whilst theoretically, any family of subsets of 0 may be considered as a 'classi-
fication' of 0, we will consider only partitional classifications here, i .e . a fam-
ily C = (C1, . . .,Cm) with m non-empty non-overlapping subsets Ci C 0 with
U;' 1C; = 0 where m is a suitable (or specified) number of classes .
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2 Partition-type models for random data vectors
X1 , . . . I Xn

In this section we consider the case where the data are n random feature vectors
X1 , . . ., X, from RP whose observed values are denoted by xl,	,, . We survey
briefly six more or less common ways of defining a clustering structure for these
data in terms of a probabilistic model . Thereby we must distinguish models which
incorporate explicitly an m-partition of the objects from those which describe a
'clustering tendency' only.

2.1 The fixed-classification model
This model assumes that the distribution of the vectors is described by a known
parametric family f ( • ; t9) of distribution densities over RP with a parameter 19 E

R9 . It supposes that there exists, for a fixed integer m, an unknown partition
C = (C1 , . . ., Cm) of 0 with m non-empty classes and m unknown class-specific
parameters 19 1 , . . ., 19 m compiled in the vector 0 = ( t91 i . . ., 19 m ) such that :

Xk - f( . ;i9i )

	

for all k E Ci, i = 1, . . .,m .

	

(2.1)

Assuming m to be known we can estimate the two 'parameters' C and 0 by the
maximum likelihood method which leads to the following m.l . clustering criterion
(using the negative log likelihood) :

m

g(C, 0 )

	

1: E [-log f(xk ;0i)]
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(2.2)
i=1 kEC;

Various special cases of this model will be considered in section 3 . Here we mention
only that an optimal pair (C, 0) can be found or at least approximated by selecting an
arbitrary (random or skilfully chosen) initial m-partition C° and minimizing (2 .2)
with respect to C and 0 in turn . The resulting well-known k-means clustering
algorithm proceeds by iterating, for t = 0, 1, 2, . . ., the following two steps :

(I) For the present partition Ct minimize (2 .2) with respect to the unknown pa-
rameter 0 . The solution is provided by the maximum likelihood estimate
9t := 9(C') .

(II) For the obtained parameter vector 0 = Ot minimize (2 .2) with respect to the
unknown m-partition C . The solution is given by a so-called minimum distance
partitionor maximum probability assignment Ct }1 = C(Ot) which comprizes the
classes:

C,it+1
._ {k E 0 1 f (xk ;19 ;) _ . max {f (xk ;19~)} }, i = 1, . . ., m,

	

(2.3)
J 1, .. .,m

where we must eventually adjust for ties in the 'boundaries' of the resulting
classes, and care for possibly empty classes .
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In fact, this algorithm yields a sequence C°, 00 , C 1 , 01 , . . . of successively improving
partitions and parameter values which attains a stationary criterion value g(C',0')
after a finite number of iterations (iterative minimum-distance clustering, Bock 1974 ;
nudes dynamiques, Schroeder 1976) . Note that the convergence of the resulting
sequence of partitions to a 'stationary' one has never been formally proved (the-
oretically, there might be a cycle of oscillating partitions in the end), but I know
of no non-trivial example of such a behaviour, and in practice, a stationary parti-
tion is typically obtained after a few iterations . - Other approximate optimization
methods (combinatorial enumeration, pairwise exchange strategies, dynamic pro-
gramming, simulated annealing etc.) are described in Bock (1974), Späth (1985),
Klein and Dubes (1989), Selim and Asultan (1991), Sun et al. (1994) and Hansen
et al . (1994, 1996) .

As an alternative to the maximum likelihood methods several authors have pro-
posed a Bayesian approach which leads (under suitable prior assumptions and loss
functions) to the optimization of a posterior risk (posterior probability) for the un-
known m-partition C (see, e.g ., Bock 1972, 1974, Binder 1978 and, for segmented
prediction, Bernardo 1994) .

2.2 The mixture model

Whilst a mixture density f (x) = E,°_ 1 7ri f (x ;19 1 ) suggests intuitively m underlying
classes or subpopulations Ili described by class-specific densities f (x ; ,9 i ), the usual
mixture approach considers essentially n independent data vectors X,, . . ., X„ all
with the same (marginal) density f (x) and focusses primarily on the estimation
of the unknown parameters 7ri and 79i . In fact, such a model involves no explicit
clustering of objects even if the corresponding (estimated) posterior probabilities
?ri := 7ri f (xk ; 79i)/ f (xk) suggest a related 'fuzzy' classification.

As a more clustering-oriented alternative, we may consider, in addition to X,, . . ., X,,,
m random binary class indicator vectors I,, . . ., I„ where Ik = ei (the i-th unit
vector in {0,1}m) denotes that the k-th object (or Xk) originates from the i-th
subpopulation Hi such that Ik has a multinomial distribution Ik - mult(1 ; 7r,, . . ., 7rm )
with probabilities 7r,, . . ., 7r,,, adding up to 1 . These n indicators define a random
(unobservable) partition C of 0 with classes Ci = {k E O1Ik = e i } which enters
the joint likelihood function of the n i .i .d . pairs (Ik, Xk) . When minimizing the
minus log likelihood function 1(7r, 0 ; I,, . . ., I,,, x,, . . ., x.), we minimize not only with
respect to the unknown parameters 7r, 0, but also with respect to the 'missing values'
h, . . ., I„ (equivalently: with respect to the induced partition C where the number
of classes is bounded by m) . Substituting the m .l. estimates fri = JCid/n into 1( .)
yields finally the following partition-type clustering criterion :

m

	

m
9(C, 0 ) = E E [- logf(xk ; di)] -n •

	

(ICil/n) • log(ICil/n) -+ minc,e (2 .4)
i=1 kEC;

	

i=1

which adds an entropy term to the criterion (2 .2) (Anderson 1985, Bock 1996a) .

Mixtures are thoroughly investigated by Titterington, Smith & Makov (1985), Red-
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ner & Walker (1984) and McLachlan & Basford (1988), the relationship to clustering
and the determination of the class number m is fully discussed, e.g ., in Windham
(1987), McLachlan & Basford (1988), Windham & Cutler (1992, 1994), Furman &
Lindsay (1994), Roeder (1994), Bozdogan (1994) and Bock (1996a) .

2.3 Multimodality and high-density clusters

Any distribution density f(x) can be characterized by its level sets B(c) :_ {x E
RPif(x) > c} with c ranging between 0 and oo . 'High-density clusters' ('density-
contour clusters') at a fixed level c are defined as the connected components 13 1 (c), B2(c), . . .
of the level set B(c) . They characterize, for a multimodal density f, the domains
of local point aggregations when sampling from f, and when increasing the level
c from 0 to oo they are successively reduced in size and split into subclasses in a
pseudo-hierarchical way until they disappear at a sufficiently large level c (Bock
1974, chap. 28.c; Hartigan 1975, chap . 11 .13, 1985) .

Starting from n observed data points x1i . . .,x,,, suitable estimates Bi(c) for Bi (c)
can be obtained as the level sets of a (non-parametric or kernel-type) density esti-
mate f of f . From these sets suitable object clusters CC(c) := hi ( c) fl {xl, . . ., x„}
are easily constructed . It should be noted, however, that a visual display of high-
density clusters or any easily interpretable formal description of their shape or of
their boundaries is difficult for dimensions larger than two . - There exist many
modifications of this basic clustering procedure, e.g . those using k-nearest neig-
bour distances and methods that start from discretized (grey-level) density values
(e.g ., for digitalized pictures) and incorporate morphological operations such as the
dilatation and erosion of binary sets or the thinning and thickening of (boundary)
functions, thus operations which are well-known from pattern recognition and image
analysis (see Postaire 1993, Sbihi & Postaire 1995) .

There were attempts to characterize the clustering tendency inherent in a density f
respectively in the induced distribution P1 by real-valued functionals of f, e.g . by
the probability excess mass function defined by

E(c)

	

J [f(x) - c]+ dx = IB[f (x) - c] dx

m
sup

	

[(Pj(Bi) - c • volp(Bi)] =: E ( m ) ( c) .

	

(2.5)
(B1Bm) i=1

This index can be interpreted as the percentage of the density f which lies beyond
the level c, or as the difference between the probability masses contained in the
Bi(c) under P1 and a uniform distribution, respectively . The equality= holds for
any m-modal density f if the supremum is taken over all sets of m disjoint connected
subsets Bi of RP . For the related theory and resulting clustering tests see Müller &
Sawitzki (1991) and Sawitzki (1995) .
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2.4 Mode clusters

A closely related approach starts from the idea that the local maxima (modes)
6,b2, . . . of a (smooth) multimodal density f can be considered as the kernels of
suitable cluster regions D1, D2 , . . . in RP where Di is the set of all x E RP which
attain, after some hill-climbing relocation procedure (to be specified), the i-th mode
~, . Point clusters for a sample x1, . . ., x„ are usually built up by a similar relocating
process using a (smooth) density estimate f (Bock 1974, §28) .

2.5 Clustered point processes

Spatial statistics provides a series of models for clustered point constellations X1 , X2 , . . .
in an (often finite) domain G C RP . Typical examples include the non-homogeneous
Poisson process with a (multimodal) intensity function A(x), and the Neyman-Scott
process where in a first stage parent Poisson points Yl,Y2 , . . . are randomly located
in G and in a second stage a random (Poisson distributed) number N1 of daugh-
ter points X, 1 iX,2 , . . ., X,N, is located around Y,• (e .g., with a Gaussian distribution
.N (Y•, U 2 IP ) or with a uniform distribution in the ball B(Y, r) for some radius r > 0) .
Statistical analysis concerns primarily the estimation of the incorporated parame-
ters (A, a2 , r etc. ; see Ripley 1981, Cressie 1991) and insofar the clustering tendency
only (instead of locating single clusters).

2.6 Markovian models

A similar approach for modeling the clustering tendency of data points is provided
by Markovian fields on RP or on a lattice L of 'sites' (e .g ., the pixels of a rectangular
screen or of a discretized image) . Considering, for brevity, this latter case for a finite
rectangular a x b array of sites L = {k = (i, j) I i, j integer, 1 < i < a,1 < j < b} in
the two-dimensional lattice of integers in R2 , we may associate with each site k E L a
random binary variable Xk which takes its value 1 (resp . 0) if the pixel k is coloured
in black (r esp . i n white ; similarly for more than two 'grey' levels) . Since each pixel
k = (i, j) has four neigbours k1 = (i+1, j), k 2 = (i-1, j), k3 = (i, j+1), k4 = (i, j-1)
(at the boundary of L there might be fewer of them), we may define 'clusters' as the
connected sets of neighbouring black sites k E L . The behaviour of these random
clusters is described by the joint distribution of the ab random variables Xk which is
modeled here by a Markovian field : For each k E L, the conditional distribution of
Xk given the other values Xi, I E L - {k}, depends only on the colouring at the four
neighbour sites k1 , k2, k3 , k4 which form the 'boundary' 8(k) of k . More specifically :
P(Xk = xIX, = xi,l E L - {k}) = P(Xk = xlXk, = xk,,Xk, = xk„Xk3 =
xk„ Xk, = xk,) for all x, xi, xk„ E {0,1} such that there may be 2° = 16 different
distributions for Xk which describe the tendency of Xk to be coloured like its four
neigbours. Some of these distributions will be identical if we introduce horizontal
or vertical homogeneity constraints, and the clustering or non-clustering tendency
is controlled by suitable interaction parameters which are to be estimated from an
observed 'picture' {xkl k E L} . - Markovian models are investigated, e .g ., in Darroch
et al . (1980), Wermuth & Lauritzen (1983), Cross & Jain (1983), Geman & Geman
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(1984), Devijver & Dekesel (1988), Whittaker (1990) and Winkler (1994) .

3 Some fixed-classification models for data
vectors Xl, . . ., Xn

The fixed classification model described in section 2 . provides a very flexible tool
for clustering purposes since suitable specifications of the density f (normal, double
exponential etc.), of the class-specific parameters 19i (central points or hyperplanes,
variances, interactions etc .) and the inclusion of parameter constraints can cope with
many special needs of practice and yield various interesting clustering methods . In
the following we present a (by no means exhaustive) list of special cases together
with a short description of the corresponding k-means algorithms . More details may
be found in Bock (1974, 1987, 1996a, 1996b), Diday (1979), Späth (1985) and the
following references .

3.1 The classical center-oriented normal distribution cases
(1) If we assume that all m hidden clusters have (approximately) the same spher-
ical shape centered at a class-specific mean, we are led to the normal distribution
clustering model :

Xk -Np (,ui, a2 lp )

	

for all k E Ci, i = 1, . . ., m .

	

(3.1)

The maximum likelihood estimation of the unknown partition C = (C,, . . ., Cm ) and
the unknown parameter p = (pi, . . ., p,,) E J XP leads to the clustering criterion :

m

g(C,µ) := 1: E IIxk -µi ll
2

-4 Min,

	

(3.2)
i=1 kEC;

and to its two essentially equivalent versions : the variance criterion (sum-of-squares
criterion) :

Mg(C) := 1: 1: l lxk - ac, I 2 -4 min,
i=1 kEC;

and the best-location criterion :
n

7(µ) :_ E i minor {llx k - µM2} -* min .

	

(3.4)
k=1

	

A

The corresponding classical k-means algorithm proceeds, for t = 0, 1, 2, . . ., as follows :

(1 .1 ) Calculate the class-specific means Y c -, .. .Ycm for them classes of the partition
Ct ;

(1 .11) Take as the next partition Ct }1 the minimum distance partition generated by
the m class means resulting from (1 .1) with classes :
Gy`1+1

:_ {k E 0 1 Ilxk - Yc; I I = _min {llx k - zC ~ I I}

	

m. (3 .5)
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(2) A closely related model results if we assume spherical clusters of varying diame-
ters by assuming anN;(pi, o; I) distribution in Ci with unknown variances a? (Bock
1974, chap . 11) . Proceeding one step further, we may allow for eventual correla-
tions between the p coordinates of Xk . In fact, if we assume the same dependence
structure in all m classes we obtain the model :

Xk - X,(pi, a z • E)

	

for all k E Ci, i = 1, . . ., m .

	

(3.6)

with an unknown covariance matrix E = Cov(Xk) such that the clusters corre-
spond to m parallel ellipsoidal clouds of points scattered around the centers p i . The
maximum likelihood approach yields here the determinantal clustering criterion :

IW(C)I -> min

	

(3.7)

where the scatter matrix W(C) is defined by :
m

	

m

W (C) := ~, W(C1) := E E (xk - xC:)(xk - xc, )'.

	

(3.8)
i=1

	

i=1 kEC;

Whilst (3 .8) is the analogue of the variance criterion (3 .3), it has an equivalent
version which is the analogue of (3.2) (but not of (2.2)!) :

m

IW(C,p)I =IE E(xk - pi)(xk - pi)'I -* min .

	

(3.9)
i=1 kEC;

The corresponding k-means algorithm proceeds essentially as before :

(2 .1) Calculate the class-specific means Ycl, . . .act for the m classes of the present
partition Ct , and estimate E by the corresponding scatter-based estimator
tt :=W(C t)/n .

(2 .11) Determine, as the next partition Ct }1 , the minimum distance partition gener-
ated by the m class means ac, as in (3 .5), but using the Mahalanobis distance
induced by Et or W(O) instead of the Euclidean one :

G,it+1
:_ {k E 0 I I Ixk - ac ; IIw(ct)-1 = minor { I Ixk - act I Iw(ct)- , } } (3 .10)

for i = 1, . . ., m .

(3) Finally we may consider a normal model incorporating m class-specific depen-
dence structures of the form :

Xk -1V5 (pi, Ej)

	

for all k E C,, i = 1, . . ., m

	

(3.11)

with m unknown covariance matrices Ei and point clusters of ellipsoidal shape, but
with eventually different orientations and diameters . The corresponding likelihood
clustering criterion is given by :

m

IIIn,'W(Ci)I'

	

-> min

	

(3.12)
i=1
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where ni := IC11 denotes the size of the class Ci (with n 1 + • • • nm = n) . This
criterion is quite sensitive to near-singularity of any W(Ci) . The same holds for the
alternative (non-equivalent) modified-metric variance criterion :

m

g(C, Q, p) := E E IIxk - pi I IQ,-, -+ min,

	

(3.13)
i=1 kEC;

where we minimize not only over C and p = (pi	m), but also with respect to
m positive definite matrices Q1 i . . ., Qm (constrained by IQ ;I = 1) which determine
the metrics which are used inside the classes Ci . The following adaptive-distance
clustering algorithm is just the k-means algorithm for (3 .13) (Diday & Govaert
1974, Späth 1985) :

(3 .I ) Calculate the class-specific means YC,, . . .YCm for the m classes of the present
partition Ct ;

(3 .I1 ) Determine the optimal metrics inside the classes by calculating the class-
specific scatter matrices Q; = W(C;)/IW(C;)I1I , i = 1, . . .,m;

(3 .111) Determine, as the next partition Ct+ 1 , the minimum distance partition gener-
ated by the m class means acc as in (3.10), but using in Ci the Mahalanobis
distance induced by Q; :

{k E0IIIxk-xC!II( )_,= i minm{11xk-Xc,JI 1 4, 1_,}} (3.14)

for i = 1, . . ., m .

It can be shown that this algorithm looks for a local minimum of the criterion :
m

g(C)

	

IW(Ci)I'1' -4 min .

	

(3.15)
i=1

Note that the previous construction (3 .14) must be amended by some further criteria
which avoid the singularity of the resulting scatter matrices W(C;t 1 ) in the next step
(in particular: IC+1 I > p + 1) . - Various aspects of clustering with non-Euclidean
metrics are discussed by Marriott (1982) and Art et al . (1982) .

3.2 Principal component clustering
Instead of characterizing each class Ci by its center point pi, it may be useful for
some applications to characterize Ci by a class-specific hyperplane Hi of RP of a given
(low) dimension s < p, say, and to assume that all observation vectors Xk belonging
to this same class are distributed near the hyperplane Hi . A corresponding normal
distribution model assumes that there exists, in addition to the unknown m-partition
C = (C 1 , . . ., Cm ), a system of s-dimensional hyperplanes 4l = (H1 , . . ., Hm) in RP such
that :

Xk -NP (pk, v 2IP)

	

for all k = 1, . . ., n
with

	

pk E Hi

	

for all k E Ci, i = 1, . . .,m .

	

(3.16)
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Thus in each class the expectations µk = E[Xk] are all contained in the correspond-
ing hyperplane Hi . Denoting by PH(x) the orthogonal projection of a point x E RP
onto a hyperplane H, the maximum likelihood method leads to the clustering crite-
rion :

m

9(C+H+µ)

	

~, IIxk-piII
2

-*

	

min

	

,

	

(3.17)
i=1 kEC,

	

C,H,µ under (3.16)

and its two equivalent versions :

m

	

m

9(C, x)

	

I lxk - PH (xk)II 2 =

	

> d(xk, Hi) -> min

	

(3.18)
i=1 kEC ;

	

i=1 kEC;

and:

7(9-l) :_ E min. d(x k , Hi) -1 m{in .

	

(3.19)
k=1 j= I

where d(x, H) := min sEH{IIx - y 112} is the squared orthogonal distance of a point
x E RP from a hyperplane H .

The corresponding principal component clustering algorithm has been described by
Bock (1969, 1974, chap . 17, 1987) and Diday (1979, chap . 8) and proceeds as
follows :

(U) For the given m-partitition C` minimize (3 .18) with respect to the hyperplanes
Hi . The minimization of the i-th term in (3 .18) is well-known from principal
component analysis where it is shown that for the i-th class Ci the optimal
hyperplane is given by H, = Yc, + [v!1 , . . ., v ;,], i .e . by the hyperplane which
passes through the mean xC c and is spanned by the first s orthogonal eigen-
vectors v; 1 , . . ., v;, E RP of the scatter matrix W (C,) (i .e . those which belong
to the s largest eigenvalues) .

(4 .11) Determine, as the next partition Ct+ 1 , the minimum-distance partition gener-
ated by the m hyperplanes Hi resulting from (4 .I) :

Cit+1 ._ {k E 0 d(xk, H; ) = . min {d(xk, H`)}~)} }, i = 1, . . ., m . (3 .20)
~-1m

It is obvious how to generalize the clustering model (3 .16) and the previous algo-
rithm in order to allow for p dependent coordinates in Xk just by assuming an
NP (,u k , E) or an NP(p k , Ei) distribution in Ci . Another modification considers, in
addition to the s class-specific dimensions (unit vectors) vi l , . . ., vim for Hi, some
further common dimensions (unit vectors) w1 i . . ., wr such that Hi has the form
Hi = ai + [w1 , . . ., w r , vi1 , . . ., vi,] with a dimension r + s (Bock 1987). Generalizations
of this type necessitate, however, a very large amount of data due to the numerous
parameters to be estimated, and the interpretation and evaluation of the results is
by no means an easy task .
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3.3 Regression clustering
Instead of characterizing the classes by their principal component hyperplanes we
may characterize them by regression hyperplanes as well . A suitable model needs,
however, two types of data for each object kiO : A deterministic explanatory vector
zk E Rt and a random observation (target) vector Xk E RP. Then the data consist
of the n pairs (z t ,XI), . . ., (z,,, X„) in R`+P . An example is provided by n consumers
where zk describes some real-valued social or life-style characteristics of the k-th
person while Xk contains the data on the products he buys or on his preference
structure with respect to a basket of merchandises (for a discrete version see section
3.7 below) . In these cases a p-dimensional characteristic hyperplane for the i-th
class C; may be put in the regression form H; = {x = a; + Biz I z E Rt} with a
fixed vector a; E RP and a p x t matrix B; of unknown regression coefficients .

A corresponding fixed-classification model is provided by :

Xk - .M,(µk = a; + B;zk, o 2IP )

	

for all k E C;, i = 1, . . ., m

	

(3.21)

(Bock 1969, Charles 1977, Späth 1979, 1982) . This model yields the same m .l .
clustering criterion as in (3 .18), but with the 'vertical' distance measure d(xk, H;) :=
IIxk - a; - B;zkll' . The corresponding k-means regression clustering algorithm
proceeds as follows :

(5 .1 ) For each class C; of the m-partitition C t we calculate the regression hyperplane
H, = {x = a; + B,z I z E Rt} corresponding to the n; observations in C; and
passing through the point (Tc,,Yc:) in Rt+P .

(5.11) We determine, as the next partition Ct+ 1 , the minimum distance partition
generated by the m hyperplanes H; :

{k E 0 1 d(xk, H;) = _min {d(xk, Hj )} }, i = 1, . . .,m. (3 .22)

Note that DeSarbo and Cron (1988) have proposed a mixture type model for regres-
sion clustering .

3 .4 Projection pursuit clustering
For high-dimensional data Xl , . . ., X„ E RP it can be difficult to interpret the results
of a clustering strategy in a direct way and we may therefore be interested in an opti-
mal and suggestive visualization of the clustering structure in a low-dimensional (say :
s-dimensional) representation of the data and clusters in R . The most straightfor-
ward solution is to display all observed data points xl , . . ., x„ together with the con-
structed classification in the usual s-dimensional principal component plane, but this
neglects totally the classification point-of-view . In contrast, the following clustering
method combines the dimension reduction idea with the classification approach and
will be particularly useful in situations where it is conjectured from the outset that
in spite of a (high) dimension p of the data the main information provided by the
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classes C1 , . . ., Cm is of a low-dimensional type .

The common-hyperplane clustering model assumes that there exists an unknown
s-dimensional hyperplane H = a + [vl , . . .v,] in RP such that all m class centers pi
are elements of H:

Xk - Np(p i , a2 lp)

	

for all k E Ci, i = 1, . . ., m,

	

(3.23)
with

	

pi E H

	

for all i = 1, . . .,m .

This model has been proposed and investigated by Bock (1987) . With the estimates
a = T and µi = PH(ac,) it leads to the clustering criterion :

m

	

m

9(C, H) ~, ni • 117c; - PH(Tc;) I I 2 + E E 11xk - xc, I I2 -a min . (3 .24)
i=1

	

i=1kEC;

A suitable breakdown of this criterion yields, as a k-means strategy, the following
projection pursuit clustering algorithm (Bock 1987) :

(5 .1 ) For the given m-partitition C` minimize (3.24) with respect to the hyperplane
H. The solution is provided by the hyperplane H° = 7 + [v 1', . . ., v;] where
vi, . . ., v; E RP are the s first eigenvectors of the between-classes scatter matrix

m
B(C)

	

ni • (x ci - x)(xc, - x)'
i=1

of Ct, i .e . those which belong to the largest eigenvalues of this matrix .

(5.I1) For the given hyperplane Ht, select the partition C t}1 which minimizes (3.24)
with respect to C . This is equivalent to minimizing the variance clustering
criterion

m

9W(C) >, >J II PH , (xk) - PHt(xc,)I J 2 - min
i=1 kEC;

(3 .25)

for the n projected data points PHI (xk) E Ht . This minimization can be (ap-
proximately) performed, e .g ., by applying the basic k-means algorithm (1 .1),
(1 .II) to the projections PHI(xk) .

It is interesting to note that this same algorithm has been obtained by Diday (1979,
chap. 9 : analyse typologique discriminante) when looking for a pair (C, H) which
maximizes the variance of the projected points PH(xk) between the m classes of C,
i .e. E;"=1 ni llPH(aci ) - pH (y )112 .

3.5 Minimum volume clustering

Hardy & Rasson (1982) and Rasson et al . (1988) proposed and investigated a
clustering model where each class Ci corresponds to a convex set Si of Rp such that
S1 , . . ., Sm -re pairwise disjoint and have each a positive p-dimensional Lebesgue
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measure )(S1) . Denoting by R(S) the uniform distribution in a convex set S, this
model is given by :

Xk -.R(S;)

	

for all k E C;, i = 1, . . .,m .

	

(3.26)

with m unknown disjoint convex sets S1, . . ., Sm . Since, for a sample yj, . . ., y„ from
R(Si), the maximum likelihood estimator for S; is determined by the convex hull
S; = conv(y1, . . ., y,) of this sample (see Rasson 1979), the m .l . clustering criterion
belonging to the model (3.25) is given by:

m
g(C)

	

IC;d • log(vol(C,)) -* min .

	

(3 .27)

where vol(C;) := A(conv({xk I k E C,})) is a measure of the extent of the class
C; such that (3 .27) can be interpreted as looking for convex hulls S1 as small as
possible . A corresponding exchange clustering algorithm proceeds by successively
checking for each data point xk if it should be better transferred from its present
class C1 to another one C;. Denoting by n ; = 1C11 the size of the class C;, such
a transfer will reduce the criterion (3.27) iff n1vol(C;) - (n; - 1)vol(C1 - {k}) >
(n,+1)vol(C,+{k})-n1vol(C3) . Any such algorithm is computationally demanding
since the multiple determination of convex hulls and of their volumes is very time-
consuming.

3.6 Entropy clustering

Whilst in the previous sections we have considered quantitative data vectors, the
fixed-classification model lends itself to the analysis of qualitative or nominal data
as well . This will be illustrated here for the case where the p components of the
observed data vectors Xk = (Xkl, . . ., Xkp)' are of a qualitative (nominal) type . More
specifically, suppose that the v-th component Xk„ of Xk takes its values in a finite set
of alternatives X„ = {l, . . ., s„} such that Xk has its values in the cartesian product
X := II'=1 Xv . In this case, the data can be summarized in a p-dimensional contin-
gency table N = (ny ) yEX where each of the s := s l s2 . . . s p cells y = (y l , . . ., yp) E X
contains the observed number n, = ny, . .. yp of observations k with Xk = y.

We want to partition the set 0 of objects into m classes C; each characterized
by a class-specific dependence structure between the components of Xk (cf . sec-
tion 3 .1) . Such a dependence structure is usually modeled by a loglinear model
involving a vector 0 E R' of interaction (association) parameters and main ef-
fects . Due to space limitations we mention only that such a model involves typically
a dummy binary vector z(y) E R' which characterizes the location of each 'cell'
y E X in the contingency table . Then P(Xk = y) is assumed to have the 'log-
linear' form P(Xk = y) = p(y,v9) := exp{z'(y),9 - µ(v9)} for y E X where the
scalar product z'(y),9 picks from v9 just the components needed for the cell y and
µ(v9) := log(E 5 exp{z'(y)v9}) is a normalizing constant . - With this notation we
consider the following probabilistic clustering model for the unknown m-partition
C :

P(Xk = y) = exp{z (y)v9, - µ(v9 1 )} for y E X, k E C1, i = 1_.m .

	

(3 .28)
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For the data vectors x1, . . ., x„ the m . 1 . clustering criterion is given by :
m

g(C, 9) := E{ICiI • µ(19i) - E z ( xk)79i} -> min .

	

(3.29)
i=1

	

kEC;

A short calculation shows that this is equivalent to the following entropy clustering
criterion:

m

g(C) :_

	

JCil • H(X,+9i) -+ min .

	

(3.30)
i=1

where i is the maximum likelihood estimate of the interaction vector in the class
Ci and H(X,19i) := - EYEX p(y, fli) • log p(y,19i) > 0 is Shannon's entropy for
the probability distribution p( ., 19i) in Ci . The resulting k-means algorithm is fully
described in Bock (1986, 1994) . Note that the present classification problem yields
a decomposition of the global contingency table H into m tables JVi of the same
size, but with distinct dependence structures . The method has also been proposed
by Celeux & Govaert (1991) .

3 .7 Logistic regression clustering with entropy measures
In analogy to regression clustering for quantitative data (see section 3 .3) we can
formulate a logistic regression clustering model for nominal data as well . Here this
will be exemplified for the binary case when we observe, for each object k E 0, a
random 0/1 target variable Xk which is assumed to be dependent on a non-random
observed vector zk E R' which describes s explanatory variables (quantitative or
qualitative) such that this dependence is given by a class-specific logistic model .
More specifically, we assume that for our data (z 1 , X 1 ), . . ., (z,,, X„) there exists an
unknown m-partition C and m class-specific parameters 191, . . .,'Vm E R' such that
the distribution of Xk involves the linear combination Pik = zk19 i of the explanatory
variables belonging to the k-th object and the logistic link function p = h(0) _
(1 + e-n)- ' in the following way :

P(Xk = 1) =

	

1
1 + e_z,a, = h(Qik) = : pik for k E Ci, i = 1, . . .m

	

(3.31)

or, equivalently:

P(Xk = x) = P,k( 1 - pik)'
_ ' = exp{x . zk19i - a(zk,9 i )} for x E {0, 1}, (3 .32)

k E Ci, i = 1, . . .m .

with the function a(,(3) := log(1 + eO) = - log(1 - p) .

It can be shown that the m . 1 . clustering criterion (2.2) belonging to this model
reduces, as an analogue to (3 .3), to :

m
g(C) := E E H(Pik,1 - pik) -> min

i=1 kEC;
(3 .33)
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where h i is the m.l . estimate of t9 ;) in Ci which yields the estimated probabilities
pik := h(zkt9i), and H(p, l - p) := -[plogp+ (1 -p) log(1 -p)] is the usual entropy
function for a binary variable . The minimization of this entropy-based clustering
criterion proceeds by the corresponding k-means algorithm :

(6.1 ) Calculate, for the given m-partitition C t , the m .l . estimates for 9 i by solving
the likelihood equations :

xkzk = 1: pkizk

	

i = 1, . . ., m .

	

(3.34)
kEC;

	

kEC;

(6 .11) Given the estimates t9 1 , . . ., t9,„, the maximum probability partition Ct+' is ob-
tained by assigning each object k E 0 to the class C ;+ ' for which:

pk ; = h(zk t9 ;) ~ maxi if xk = 1
pk ; = h(zkt9i) -> mini if Xk = 0 .

Details can be found in Bock (1986, 1994) .

4 A probability model for dissimilarity data
Parametric and probabilistic clustering models for dissimilarity data have been rarely
proposed in the literature . We describe here a fixed-classification model which has
been proposed by Bock (1989b): Let us assume that the similarity relations between
the n objects are determined by an observed n x n matrix (dk,) of pairwise dissim-
ilarities . The model starts with the idea that in a homogeneous or unstructured
population all (2) random nonnegative dissimilarities Dkt with k < I are indepen-
dently distributed with the same (standardized) distribution, e .g ., an exponential
distribution exp(1) .

In contrast, the clustering model states that, for a fixed unknown m-partition
C = (C1 , . . ., Cm ) of the objects, the observable dissimilarities Dk, with k < I are
distributed according to:

Dk, - 79i; • Dk,

	

for all k E Ci, I E Ci

	

(4.1)

with scaling factors t9 ; i > 0 which describe the reduction or increase of the stan-
dard dissimilarities in and between the classes, respectively (typically with side
constraints i9i; < t9,i for all i, j) . They must be estimated, together with C, from
the observed matrix (dk,)„ x ,,, e .g . by maximizing the likelihood . Note that the in-
dependence assumption is somewhat unrealistic due to the approximate transitivity
property of real-case similarities and must be weakened for practical applications .

The method can be exemplified for the cited case of a standard exponential distribu-
tion where Dk, has the density t9~i' . exp{-dk,/t9ii} for k E C;, I E Ci (and dk, > 0) .
This yields the (minus log) likelihood clustering criterion :

g(C,O) :_

	

nii[dii/t9ii+logt9ii] -4 mien .

	

(4.2)
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where for i # j : nij := JCi l • JCjI and d;j := n ;j1 EkEC,,IEC, dkl is the average
dissimilarity between the classes C1,Cj ; and for i = j : n ; ;- := ~~C,~) and
-

nii
1

' Ek,IEC;,k<l dki •

Substituting here the (unconstrained) m .l . estimates ~ij = d;j we obtain the very
suggestive log-distance clustering criterion :

9(C)

	

9(C, d) -
(n)

_

	

n;jlogd;j -> min .

	

(4.3)
1<i<j<m

5 Clustering models for random similarity
relations

In this section we consider the case where, for any pair k, I of objects, only the two
alternatives s ki = 1 (i .e ., the objects are rated to be 'similar') or ski = 0 (i .e ., they
are 'dissimilar') are possible . In our stochastic framework this leads to a random
binary similarity relation S = ( Ski) on 0 (with P(Skk = 1, Ski = Sik for all k, l) =
1) . S is equivalent to a random graph G with n vertices and a random number
N = E > k<I Ski of links kl with Ski = 1 . We mention three clustering models for
this situation :

5 .1 The fixed-classification model
This model postulates the existence of an unknown m-partition C = (C 1 , . . ., Cm )
of 0 and of a symmetric matrix p = (p,j)mxm of unknown class-specific linking
probabilities pij = pj; (typically with pii > pij for all i, j) such that all (2) link
indicators Ski with k < I are independently distributed with :

P(Ski = 1) = pij

	

for all k E C1, I E Cj

	

(5.1)

(Bock 1989b) . Applying the maximum likelihood method for estimating the un-
known C and (pij) amounts to minimizing the clustering criterion :

g(C,p)

	

- ~; [Nij logpij + (nil - Nij) log( 1 - pij)] i mn

	

(5.2)
1<,<3<m

where for i < j N;j is the number of pairs {k, l} with k E C;, I E Cj with a link
Ski = 1, and nij = 1C1 1 JC1J whilst for i = j n ;; = ( I2'l ) denotes the number of
different pairs {k,l} with k E Ci,! E Cj, k < I as in the previous section . Obviously
pij := N;j/n;j is the m .l . estimate for p;j if the side constraints are neglected .

5.2 An error perturbation model
This model describes the unknown partition C by an equivalence relation p =
(pki)nxn with pki = 1 if and only if the objects k, l E 0 belor ; to the same class of
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C. The model assumes that the indicators pki with k < I are randomly perturbed in
the way that pki = 1 is replaced by 0 with probability a, and pki = 0 is replaced by 1
with probability p, all perturbations being independent and symmetry being main-
tained . This yields an observable random symmetric reflexive relation S = ( Ski)nx,,
with () independent entries and P(Ski = 1) = pki(1 - a) + (1 - pki)/3 for k < 1 .
Suitable clustering methods have to estimate the unknown parameters a,,3 as well
as the unknown partition C (including m) from the observed matrix S (Frank 1978) .
Note that this is a special case of the previous model 5 .1 with p,, = 1-a and pq = Q
for i 4 j .

5.3 Markov graphs for similarity relations:
Frank & Strauss (1986) have proposed a model for a random graph G, i .e. a joint
distribution for the (z) link indicators Ski, which allows for some dependence be-
tween neighbouring links Ski, Sit sharing a common object 1 . More specifically, it
is assumed that for each pair of object pairs {k,1}, {r, t} the link indicators Ski, Sit
are conditionally independent given all other indicators S,„„ provided that {k, l, r, t}
comprises 4 different objects (this excludes overlapping pairs {k,1} and {l, t} where
conditional dependence is not excluded) . It can be shown that the resulting marginal
distribution of S is equivalent to a Markov field on a related graph I' (whose vertices
are the (2) pairs of objects), and a classical theorem of Hammersley and Clifford
states that the joint distribution of all Ski with k < 1 has, under some homogeneity
and symmetry conditions, the form :

n-1
P(S = s) = coast . . exp{a . N3(G) + E 3t . Mt(G)} .

	

(5.3)
t=1

where G is the graph corresponding to the given realization s = (Ski) of S, N3(G)
is the number of triads (complete subsets of size 3) in G, and Mt(G) the number of
t-stars (a k E 0 linked with exactly t other objects) in G; a > 0 and Qt E R are
unknown model parameters for transitivity and clustering, respectively . The esti-
mation of these parameters requires extensive analytical and computational efforts .
Similar models have been proposed in network analysis, e.g ., by Holland & Leinhardt
(1981), Bollobas (1985), Fienberg, Meyer & Wasserman (1985) and Wasserman &
Anderson (1987) . Banks & Carley (1994) give a survey and propose a probability
model of the type P(S = s) = c(o) . exp{o - d(s, s')} for all s where s' describes
a fixed 'central' similarity graph (e.g ., one implied by a partition C), d(s, s") is a
measure of the deviation between two similarity relations s, s', and the dispersion or
scaling parameter o influences the normalizing constant c(o) . The relation of these
models (which were typically proposed in a sociological framework) to the definition
and construction of clusters and classifications is not yet fully understood .

6 Conclusions

In this paper we have proposed a series of probability-based clustering models and
derived suitable clustering criteria or clustering algorithms. These proposals could
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be extended by statistical tests for clustering structures, evaluation methods for the
resulting classifications, and similar models for hierarchical or tree-like classifications
(see the references cited in the introduction) . Whilst these methods are certainly
useful for analyzing and assessing clustering tendencies, we want to conclude with the
remark that it is evident that in practical situations typically no single probability
model will completely fit the data . For example, real data sets will usually contain
several types of clusters at the same time, so we must try to combine the positive
results of several clustering and testing strategies in order to get an acceptable final
classification .
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