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Comparison of the Logistic Regression Model
and the Linear Probability Model of

Categorical Data

Cveto Trampuž'

Abstract
The aim of this paper is to examine in what situations the interpretation

of results involving empirical data may differ, if in the analysis of mutual
relationships between all nominal variables, either a linear probability model
or a logistic regression model is used . An example is given where such
differences are possible if some of the conditional ratios of frequencies
(fy = 1 /fy = o) of the dependent variable y, at given values of the independent
variables, differ greatly from l .

Keywords : Logistic Regression ; Linear probability model ; Categorical
Data .

1 Introduction

1.1 Definition of the problem

In the investigation of the relationship between nominal variables various statistical

models can be used in the examination of the same problem using the same data .
The question which arises is whether the inferences regarding the relationship
between the variables considered may differ depending on the model used .

In this paper two models are compared : the linear probability model (with the
ordinary last squers method of estimating) and the logistic regression model (with

the maximum likelihood method of estimating) in which the independent variables
may have many different values . The findings for the logistics regression model
directly apply to the equivalent logit model .

It is known that selecting either of the two models may lead to different
conclusions regarding the relationships between nominal variables, if some of the
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conditional probabilities are greater than 0 .75 or less than 0 .25 (Goodman, 1978) .
The question of how precise the boundaries of the mentioned interval are, remains
open .

The primary purpose of this paper is to find an appropriate method of
comparison which allows the most general conclusions possible to be drawn .

One method of comparison is to find explicit formulas for parameter estimates
for both models as functions of the same empirical data and to examine how the
estimates of the parameters of the models formally vary, depending on the formula
used and depending on the variation in all or only some of the data .

This paper is not concerned with the appropriateness of the model in relation
to the meaning of the variables . Similarly, it does not deal with the problems of
statistical assessment of computed parameter estimates .

The simplest case, with one dependent and two independent variables (of
which one has two and the other three values), is used as the illustrative example .
The findings may of course be generalised to models with any number of
independent variables .

1.2 Presentation of given data in two-dimensional cross-
classification table

Multidimensional frequency tables may be expressed in the form of a two-
dimensional table where rows represent the values of the dependent variable and
columns represent a combination of the values of the other (independent)
variables . The frequencies in such a table are the initial input data for all further
computations .

As an illustrative example, such a table is presented in the case of three
variables .

Suppose we have a sample of N independent observations (y;, si , z;), where y,
denotes the value (coded as 0 or 1) of the dichotomous dependent variable Y, s i is
the value of the independent variable S (coded as 0 or 1) and z, is the value of the
independent variable Z (coded as 1 or 2 or 3) for the i` h subject (i = 1, 2, . . . , N) .
The dummy dichotomous variable is determined for each value of Z by the usual
procedure and denoted sequentially as Zl and Z2 :

1 if Z=kZk= 0 if Z*k

The data under consideration are the frequencies given in a three-dimensional
table which is presented in the form of a two-dimensional Table 1 .

The second row reading across columns shows how all the possible
combinations of the values of variables S and Z form the cells of the table (in any
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sequence desired, and denoted by just one index j) and hence the meaning of the
frequency fkj .

The table is introduced primarily in order to determine the quantities and their
denotations for use in the subsequent computations . The meaning of the notations
in Table 1 are :

fkj is the frequency of cell kj, (k= 0,1 ; j = 1,2, . . .,6),

N=EEfkj =Efk+ =Ef+ j .
k j

	

k

	

j

Table l . Presentation of a three-dimensional table in two dimensions

S Z
01 02 03 11

	

12 13
j

	

1

	

2

	

3

	

4

	

5

	

6
Y=0 fm foe fo3 fo4 fo5 f06 fo+
Y=1

	

f1

	

f12

	

f13

	

f14

	

f15

	

f16

	

fl+
f+1 f+2 f+3 f+4 f+5 f+6 N

2 Linear probability model

The general linear probability model is expressed as:

J
y, = jY_ bj xij + u; ,

	

(i=1,2, . . .,N)

	

(1)

where
Y is the dependent variable (y 1 equals either zero or one) ;
Xj denotes the independent variables, j = 2,3, . . .,J (which themselves have

two values or are dummy variables derived from nominal polytomous
variables) which may also be all possible products of the variables . The
values of the independent variables (including X 1 ) for i'h subject shall be
denoted as xi (x 11 =- 1) ;

bj unknown and sought parameters of the model ;
u error term ;
i index denoting the i`h subject from the sample of N size ;
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number of all variables in the model .

The expected value of variable y ; (denoted as P) is the probability that y,
equals one for the given values of the independent variables .

i
P i = E(Yi) = P(yi = 1/x1) = 1: bj x 1j

j =1

The equations for the computation of the estimates of the parameters are :

N
E 1 (Yi - Pi) = 0

N

Ylx1j(y1- pi)
= 0 , j=2,3, . . .,J .

(2)

It is evident from Table 1 that some subjects have the same value of xi . Let J
denote the number of distinct values among x i . The number of subjects with
xi=xj will be denoted by F+j (j=1,2, . . .,J ; EF+j = N). Let F 1J denote the number
of 'responses', y=1, among the F +j subjects with x 1=xj (EF 1J = Fl+ ) . F1+ is the
total number of subjects with y=1 . It follows that there are J distinct values of Pi
only .

The estimate for distinct values of probability Pj is denoted by pj and the
estimate for b j is denoted by Bj (j=1,2, . . .,J) .

For the purpose of further comparison with the logistic regression model the
equations (2) are modified into a form which makes it explicitly evident how the
parameters Bj and pj are dependent on the empirical data F +j and Flj both for the
saturated model as well as any other feasible non-saturated model.

The equations (2) may be expressed in a matrix form (derivation is simple, but
because it takes up a lot of space it is not presented here) . All matrices are of
order JxJ :

E1DTF1 = E1DTFp
0 = EZD - 'p,

	

(3)

where
D is the 'design' matrix for the saturated model (where the values of the

independent variables are coded as 1 and 0) . It is determined such that the
equation :

p = DB
is valid ;

E l is the diagonal matrix which has zeroes or ones along the diagonal . At
those points where the saturated model parameters bj are set at 0 (in order
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to define a nonsaturated model) the diagonal elements of matrix E l are set
at 0. By means of E, then each feasible non-saturated model is defined . In
the case of a saturated model all E l 's diagonal elements are equal to 1 ;

E2 is the diagonal matrix whose diagonal elements are zeroes except at the
points where the parameter bj is set at 0 . In the case of a saturated model
E2 has only zeroes on the diagonal (E l + E2 = identity matrix) ;

P

	

is the vector of Pi : P
T = (P,, Pz> • • • . Pi) ;

e

	

is the vector of ones only : eT = ( 1, 1, . . ., 1) ;
0 is the vector of zeroes only : OT = ( 0, 0, . . ., 0) ;
F 1 is the vector with values f, i which have the same meaning as in Table 1 :

TF, = U1 I, fix,

	

fli) ;
F is the diagonal matrix with elements f+i which have the same meaning as

in Table 1 :

f+j 00... 0
0 f+z 0 . . . 0

0 0

	

0 . . . f+,

Equations (3) may be combined or 'added' (the second part of the equation is
inserted in the first part; matrices El and E2 assure correct 'addition') and may be
expressed as a single system of linear equations :

E1DTF, = (E 1DTF + E2D-')P

	

(4)

Let as assume that the independent variables are not linearly interdependent .
Without providing a proof it may be noted that the matrix (E 1DTF + E2D -1 ) has a
rank equal to the number of the unknown, hence p may be determined from the
equation (4) .

Matrix H is introduced to shorten the presentation of the solution of the
equation (4) :

H = (E,DTF + EZD-1 )-' E,DT .

The equation for p then is :

p=HF, .

Since the equation :

DB=p,
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also holds, the computation of B is expressed as :

B = D- 'p

	

or

	

(5)
B=D_'HF, .

Using the same model (defined by E l and E2 ) and with constant frequencies F,
matrices H and D - ' H show how the values of p or B vary with changes in
frequencies F, . The F, frequencies can only be changed at the 0 < F, < F interval .
The frequencies F may also be changed, but then the matrix H must be
recomputed .

NUMERICAL EXAMPLE

Table 2 : Example of hypothetical data

SZ
01

	

02

	

03

	

11

	

12

	

13
j=

	

1

	

2

	

3

	

4

	

5

	

6
Y=O 37 11 51 62 19 65 245
Y= 1 136 61 170 173 80 176 796

173 72 221 235 99 241 1041

An example with only three nominal variables is given . Any conclusions may of
course be generalised to a model with more nominal variables .
The saturated model has the following form :

Y = b, + b2S + b 3Z1 + b4Z2 + b 5SZ1 + b 6SZ2 + u,

	

(6)

where the symbols have the same denotation as in the general model (1) described .
Index i has been dropped to simplify the notation .

The computation of pl and Bj is presented in matrix form for saturated and
any feasible nonsaturated model from (6) .

The values of the matrices and vectors are presented for the saturated model
(6) first. These matrices and vectors are constant for all non-saturated models . The
values of F, and F are taken from Table 2 .

1 1 1 0 1 0

	

0 0 0 0 0 1
1

	

1 0 1 0 1

	

0 0 1 0 0 -1
D= 1 1 0 0 0 0

	

D-' = 0 0 0 1 0 -l
1 0 1 0 0 0

	

0 0 0 0 1 -1
1 0 0 1 0 0

	

1 0 -1 -1 0

	

1
1 0 0 0 0 0

	

0

	

0 -l

	

1
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The method of computing the design matrix D is simple . As it is not pertinent
here it is described only briefly :
We proceed from the model (6) . For every combination of values of the
independent variables S and Z (there are 6 such combinations in the present
example) first the values of the variables S, Z1 and Z2 are determined (columns
2,3 and 4 of D) and then by multiplying S by Z1 and S by Z2 the variables SZ1
and SZ2 are constructed (column 5 and 6), so that the equation p=DB is valid .
In the first column of matrix D there are only ones .

The matrix D"' is only presented here as an example of the validity of the
assertion that the sum of the elements by rows equals 0 (except for the first row
which determines the constant parameter of the model) .

173 0 0 0 0 0
0 72 0 0 0 0

F = 0 0 221 0 0 0
0 0 0 235 0 0
0 0 0 0 99 0
0 0 0 0 0 241

F 1T = ( 136, 61, 170, 173, 80, 176),
eT = (1,1,1,1,1,1),
T
P = (P1,P2,P3,P4,P5,P6) is the vector of the unknown estimates of p j ,
BT = (B1,B2,B3,B4,B5,B6 ) is the vector of the unknown estimates of bj .

Equation (3) holds for the saturated model as well as for all feasible non-
saturated models with the selected variables in model (6) . Non-saturated models
are defined only by selection of different combinations of ones and zeroes on the
diagonal matrix E, and E2 .

For example consider the following non-saturated model :

Y = b 1 + b 2S + b 3Z1 + b4Z2 + u ,

	

(7)

The values of matrix E, and E 2 on the above model are :

E 1 = diag(1, 1, 1, 1, 0, 0)
E2 = diag(0, 0, 0, 0, 1, 1) .
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Matrix H multiplied by 100 :

0 .3744 0.1299 0.1171 0 .1499 -0 .0945 -0 .1074
0.1299 0.7154 0.1177 -0 .0957 0.4898 -0 .1079

100H = 0 .1171 0.1171 0.3225 -0 .0862 -0 .0856 0.1192
0 .1499 -0 .0957 -0 .0856 0.3152 0.0696 0.0790
-0.0945 0 .4898 -0 .0856 0.0696 0.6539 0.0785
-0.1074 -0 .1079 0.1192 0.0790 0.0785 0.3056

Matrix D-i H multiplied by 100 :

-0.1074 -0 .1074 0.1192 0 .0790 0.0785 0.3056
0.2245 0 .2256 0.2033 -0 .1652 -0 .1641 -0 .1864

100D' = 0.2573 0.0123 -0 .2054 0.2361 -0 .0089 -0 .2266
0.0129 0.5977 -0 .2048 -0 .0095 0.5754 -0 .2271
0.0000 0 .0000 0 .0000 0.0000 0.0000 0 .0000
0.0000 0.0000 0.0000 0.0000 0.0000 0 .0000

Parameters p and B :

j

	

p

	

b
1 0.7823 0 .7282
2 0.8496 0.0433
3 0.7715 0 .0108
4 0.7390 0.0781
5 0.8064 0.0000
6 0.7282 0 .0000

3 Logistic regression model

Let us assume that for the sample size of N observations we have the values for
the dependent variable Y (with values 0 and 1) and m-1 independent nominal
polytomous variables X2, X3	Xm. In the computations their internal values
(the values of design variables) are determined by the method of coding . Hereafter
the same coding scheme is considered as in the linear probability model .

To present the model and formula for computing the estimates of the model
parameter the following symbols and quantities are used (to simplify the notation,
index i which determines the index of the subjects, is omitted wherever it is not
essential) :

OT =
(R ,, 02, -- • , 13m, • • - , R)),

	

vector of unknown parameters (3 j ,

TX = (X,, X 2 , . . . , Xm , . . . , X3 ), vector

	

of

	

independent variables,

	

with
Xm+,, . . .,X3 denoting the possible mutual products of the independent variables
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X2 , X	X.. All values of 'variable' X 1 are ones. The values of all the
independent variables for the i`h subject shall be denoted as x i (xi , _- 1) .

The unknown conditional probability of the event P ;(Y=1/x i ) is denoted by n; :

it ; = E(Yi/x;) = P(y 1=1/x ;) ,

the estimate of n i is denoted by p i ' .

Further, let us introduce

Yi = 01 + R2X,2 + R3X13 + . . .+ (3JX i1 and

it ; = exp( Yj)/[1+exp( yi)]

The usual equation for computing the parameters of the logistic regression model
under the maximum likelihood method is :

N

E(Yl - pi) = 0
i=1

N

E xl,(Y1- p1) = 0 , j=2,3, . . .,J .
i=1

(8)

It has been already noted that some subjects have the same value of x i. Let J
denote the number of distinct values among x i . The number of subjects with
x;=xj (j=1,2, . . .,J) will be denoted by F+j ; EF+j = N). Let F 1j denote the
number of 'responses', y=1, among the F+j subjects with x ;=xj (EF 1 = F1+ is
the total number of subjects with y=1) . It follows that there are J distinct values
of n; or yi only . Let pj ' (j=1,2, . . .,J) denote the estimate of the distinct values of
probability 7c ; , Bj ' denote the estimate of parameters [3j and gj denote the estimate
of the distinct values of y; .

The equations (8) may be expressed in a matrix form that is the same as that
introduced into the linear probability model (3) :

E,DTF, = E,DTFp'
0 = E2D-1g . (9)

Matrices D, E1 , E 2 , F and vectors F, and 0 have exactly the same meaning
as in the linear probability model (3) .
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p' is the vector of pi', P'T = (PI', P2., , P;') ;
g is the vector of gj : gT = (g,, g2 , , g1 ) ;
B' is the vector of B j ' : B' T = (B,', B2 ', . . . , B 1 ') .

The meaning of p' is identical to that of p in (3) . Consequently p and p' are
directly comparable quantities .

In the equations (9) a feasible non-saturated logistic regression model may be
defined with an appropriate selection of zeroes and ones in matrices E l and E2 .

Matrix D is a design matrix of the saturated logistic regression model . It may
be determined in the same way as that described before . It is almost always given
in computations in the framework of computer program packages .

For logistic regression models the equation holds :

g = DB' .

Once g has been computed, B' may be obtained by :

B'= D -' g .

	

(10)

It may be observed that equations (9) are similar to equations (3) except that
on the right-hand side of the second part of equations (9) it is not directly p' but g
which is a non-linear function of p' :

g; = log[P;'/(1-P;')j .

From the equations (5) and (10) can be seen, that parameters B are the
function of the differences PP - Pp (j#j') and parameters B' are the functions of
the differences yj - yj , at the same indexes j and j', determined by the matrix D - ' .

The first part of the equations (9) are linear equations for computing p' just as
the first part of equations (3) are for computing p .

The second part of the equations (9) are polynomials of p j ' which may
decompose into linear factors depending on the model .

The logistic regression model includes the log ratio : gj/2 . It is shown in Table
3 that the difference : [gj /2 - (2pj '-l)] is small at pj' - (1/2) . Consequently the
expression gj/2 may be substituted by linear approximation 2p j'-1 0=1,2_ .,J) in
the second part of the equations (9) .
To demonstrate this the Taylor exponential series is presented :

(1/2)log[r/(1-r)] - (2r-1) + (2r-1) 3 /3 + (2r-1) 5/5 + . . . .

Consider the linear term only and find the extent to which these two quantities
differ for various values of r :
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Table 3 . The difference between (1/2)log[r/(1-r)] and (2r-1) for various values of r .

r

	

(1/2)log[r/(1-r)]

	

(2r-1)

	

Absolute error

0.50 0.00000 0.00000 0.00000
0.60 0 .20273 0 .20000 0.00273
0.65 0.30952 0.30000 0.00952
0.70 0 .42365 0 .40000 0.02365
0.75 0 .54931 0 .50000 0.04931
0 .80 0 .69315 0.60000 0.09315
0 .85 0.86730 0.70000 0.16730
0.90 1 .09861 0.80000 0 .29861
0.99

	

2 .29756

	

0.98000

	

1 .31756

It is evident from Table 3 that the value of (1/2)log[r/(1-r)] and (2r-1) begin
to differ to a greater degree when the value of r is in the interval 0 .75 < r<0 .25 .
How the error of these approximations influences errors in solving the equations
(11) remains an open question . For more precise conclusions this problem should
be examined by numerical analysis methods .

To compare further the results of the two models under examination, in the
second part of the equations (9) vector g is replaced by the linear approximation
2(2p'-e) .
Taking into account the fact that

E2D - ' C = 0 holds,

where C is the vector with all elements equal to any constant c, we get a linear
system of equations for computation of the approximation of p' . This
approximation is denoted by p" :

E,DTF, = E 1DTFp"
0 = E2D - 'p" .

	

(11)

p" may be computed from the above equations by the same procedure used with
the linear probability model . The first and second part of equation (11) may be
added and matrix H defined :

H = (E,DTF + E 2 D"' )-' E,DT .

For computation of p" the following formula is valid :

p" = HF, .
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Parameter B" is computed by the formula :

B" = D_'9" ,

where

gj" = log[Pj"/(1-pj")] .

Equations (9) allow certain conclusions concerning the comparison of the
results obtained by the two methods .

For equations (9) it is also quite simple to make an iteration procedure for a
computation of p' and B' .

NUMERICAL EXAMPLE

If we take the matrices and vectors for the logistic model similar to those of the
probability linear model and the same data from Table 2, then

p" and B" are computed by approximation (11),
p' and B' are computed by the iteration procedure from equations (9) :

Table 4: Parameters p', p", B' and B" :

J

	

P'

	

p

	

B'

	

B"

1 0.7828 0.7823 0.9801 0.9857
2 0.8446 0.8496 0.2433 0.2310
3 0.7727 0.7715 0.0586 0.0552
4 0.7386 0.7390 0.4696 0.4408
5 0 .8100 0.8064 0.0000 0.0070
6 0.7271 0.7282 0.0000 0.0740

4 Conclusions

4.1 The form of the equations (3) and (9) makes it possible to determine with both
the logistic and the probability linear regression models (for a saturated and all
feasible non-saturated models) how the values of computed parameters vary if the
values of F, and F are changed .

4.2 The second part of the equations (9) includes a log ratio : gj/2 . The quantities
gj/2 and (2pj '-1) are approximately the same for values of p j ' at the interval
approximately from 0 .25 to 0 .75 . Consequently the expression g;/2 may be
substituted by the expression 2p j '-1 in the second part of the equations (9) . If the
computed values for pj ' are at the interval cited, then the results obtained for the
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two models are approximately the same and do not allow different inferences
regarding the relationship between the examined variables to be made . Practical
examples show, however, that the results obtained by applying either of the two
models do not differ, although some of estimates pj ' are outside the mentioned
range (Goodman, 1976) . A detailed numerical analysis of equations (9) would
provide a more exact answer as to whether the rang 0 .25 to 0 .75 can be changed .
If the value of p j ' differs little for the different j so that p j ' = c ± ej , [ej < c(1-c)]
is valid, where c is any constant at the interval : 0<c±6< 1 then constant c in the
second part of equations (9) influences the result only minimally . Only the
differences between c are important . The errors are minimal at c - 1/2 .

4.3 The second part of the equations (9) are polynomials of p j ' which may
decompose into linear factors depending on the model . In the case that second part
of the equations (9) break up into linear factors (in such cases there exist explicit
expression for estimations p'), the equations (9) and the equations (3) are
equivalent . It is also known that the estimations of p and p' are always the same
for the saturated model .

4 .4 Differences in the interpretation of the results obtained by use of either model
on the same data may therefore be expected to arise when the odds ratios :
[pj'/(1-pj')]/[pj .'/(1-p;,')], j',j=1,2, . . .,J differ considerably from 1 at least for a
pair j' and j (j#j') which has a great (numerically critical) influence on solving
equations (9) . In a similar situation the results obtained by the linear probability
model might be incorrect. Estimates for P might be greater than 1 or negative .
Practical examples show, that the logistic regression models fit the data better
when some odds ratios differ considerably from 1 .

5 Numerical example

We have selected the following model as an example :

Y = b,+b2S+b 3Zl+b4Z2+b5Tl+b6T2+b7T3+b8SZ1+b 9SZ2+b 10ST1+b„ST2
+b12ST3+b 13Z1T1+b 14Z1T2+b15ZlT3+b16Z2T1+b17Z2T2+b,8Z2T3 + u ,

where in addition to variables Y, S and Z, used for the accompanying example,
variable T which has four values (1,2,3,4) was introduced . Similarly as in variable
Z, dichotomous variables T1, T2 and T3 with the values 0 and 1 were derived
from variable T . Variables SZ1, . . ., Z2T3 are the products of dichotomous
variables S, Zl and T3 , generated in the same way as described in Section 1 for
model (6) . We do not present the design matrix because of its size .
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The data is fictitious and selected in such a way that some ratios foj/f, j differ
greatly from 1, so that possible differences in the interpretation of results obtained
with one or the other model could be demonstrated .

Table 5 : Computed parameters p and B for the linear probabjlity model,
and p' and B' for the logistic regression model

SZT

	

f+j

	

f,j

	

f, j /f+j

	

foj/f,j

	

p

	

fij/(Pf+j)

	

P'

	

f,j/(P'f+j)

011

	

57

	

12

	

0.211

	

3.75 0.1376 1 .53

	

0.1411

	

1 .49
012

	

59

	

12

	

0.203

	

3 .92 0.1620 1 .26

	

0.1692

	

l .20
013

	

24

	

7

	

0.292

	

2.43 0.2131 l .37

	

0.2072

	

l .41
014

	

33

	

1

	

0.030

	

32.00 0.2875 0.11

	

0.2728

	

0.11
021

	

21

	

2

	

0.095

	

9.50 0.0553 1 .72

	

0.0903

	

1.05
022

	

24

	

6

	

0.250

	

3.00 0.2288 1 .09

	

0.2315

	

l .08
023

	

12

	

2

	

0.167

	

5.00 0.1152 l .45

	

0.1345

	

l.24
024

	

15

	

1

	

0.067

	

14.00 0.1977 0.34

	

0.1289 0.52
031

	

68

	

13

	

0.191

	

4.23 0.2646 0 .72

	

0.2509 0.76
032 67

	

16

	

0.239

	

3.19 0.2829 0.84

	

0.2756 0.87
033

	

33

	

6

	

0 .182

	

4.50 0.2576 0 .71

	

0 .2549 0.71
034

	

53

	

52

	

0.981

	

0.02 0.7839 l .25

	

0.8125

	

l .21
111

	

83

	

23

	

0.277

	

2.61 0.3272 0.85

	

0.3248 0.85
112 66

	

14

	

0.212

	

3 .71 0.2492 0.85

	

0.2427 0.87
113

	

31

	

10

	

0.323

	

2.10 0.3834 0 .84

	

0.3880 0.83
114

	

55

	

15

	

0.273

	

2.67 0.1184 2 .30

	

0.1272

	

2.14
121

	

36

	

7

	

0.194

	

4.14 0.2177 0.89

	

0.1973

	

0.99
122

	

26

	

7

	

0.269

	

2.71 0.2888 0 .93

	

0.2863

	

0.94
123

	

14

	

3

	

0.214

	

3 .67 0.2584 0 .83

	

0.2418 0.89
124 23

	

2

	

0.087

	

10.50 0.0015 57 .32

	

0.0464

	

l .87
131

	

98

	

31

	

0.316

	

2.16 0.2654 1 .19

	

0.2749

	

1.15
132

	

72

	

16

	

0.222

	

3.50 0 .1812 1 .23

	

0.1880

	

1.18
133

	

23

	

8

	

0.348

	

l .88 0.2390 l .46

	

0.2429

	

l.43
134 48

	

10

	

0.208

	

3.80 0.4261 0 .49

	

0.3945 0.53

The indication SZT in the first column of Table 5 above denotes combinations
of values of variables S, Z, and T and hence the meaning of frequencies f, j and
f+j in the two-dimensional table made out of the four-dimensional table, similar as
described for Table 1 .

In Table 6 symbol sig(T) denotes significance of statistics T for the linear
probability model, symbol sig(W) denotes significance of Wald's statistics for the
logistic regression model . On the basis of these two statistics we might make some
inferences regarding the relationship between the examined variables .

The example presented indicates that the interpretation of results based on
statistics sig(T) and sig(W) might differ in variables T1, T3 and XZ2 .

Estimations for p and p' do not differ considerably . Differences occur mostly
where p is small (table cells : 021 and 124) .
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Table 6

Variable

	

B

	

sig(T)

	

B'

	

sig(W)

C

	

0.4261

	

0.000 -0 .4285

	

0.116
X

	

0.3579 0 .001

	

1 .8951

	

0.000
Z1 -0 .3076 0 .000 -1 .4971 0.000
Z2 -0 .4245 0 .000 -2 .5946 0.000
T1 -0.1607 0.012 -0 .5414 0.108
T2 -0 .2449 0 .000 -1 .0345 0.005
T3 -0.1870 0.032 -0 .7081 0.139

XZ1-0.18890.001-0.95010.005
XZ2 -0 .1617 0 .034 -0 .7828 0.113
XT1 -0 .3586 0 .000 -2 .0192 0.000
XT2 -0.2562 0 .001 -l .3987 0.002
XT3 -0.3393 0 .000 -l .8310 0.001
Z1T1 0.3695 0.000 l .7351 0.000
Z1T2 0.3756 0.000 l .8222 0.000
Z1T3 0.4520 0.000 2.1779 0.000
Z2T1 0.3769 0.000 2.1614 0.006
Z2T2 0.5322 0.000 3 .1442 0.000
Z2T3

	

0.4439 0.001

	

2.5885 0.004
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