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Asymptotics of Dynamics for Control in
Society

Vesna Omladič1

Abstract

In the discussed model of hierarchically ordered societies the macro struc-
tures of a society dynamically interact . This model helps to interpret some
social and political phenomena such as coalitions, their hierarchical levels and
the degrees of anarchy on a certain hierarchical level. The stability of the sys-
tem is certain in the constant parameter case . Asymptotic behaviour of this
kind of models is applied to the analysis of creating coalitions of two, three
and more political structures . In the case of additive resources the problem
is translated into a social choice problem with measurable value functions .

Keywords: Social power ; Social control ; Social choice ; Hierarchy ; Dynamical
systems ; Positive matrices .

1 Introduction
In his path breaking paper Allen (1992) proposes a model for the dynamics of
political power and control in a social system . In his paper various socio-political
phenomena such as coalitions, alliances, anarchy, and revolutions are introduced .
However, there is no good treatment of hierarchical order in political structure .
This partial imperfection of the model is improved by Omladič and Omladič (1994) .
It is a surprising feature of this model that the equilibria always exist and that
asymptotically the system always tends to it .

Let us present here in short the Allen's macro viewpoint : There is a finite number
of structures in the society, i.e. its control holding, power wielding categories, which
possess relative independence of each other . These categories exercise power over
other structures and subjects of the society through their substructures and various
organisations. Here are the somewhat simplified Allen's axioms on socio-political
power and control that are clearly independent of particular theories :

Axiom 1. Each of the structures attempts to exert power to control the others .

Axiom 2. Each of the structures accedes to the others a certain fraction of its
complete control .
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Axiom 3. Each structure acts in such a way to align the fraction of control that
another structure has over an object according to an intrinsic control column,
which may vary from structure to structure .

Denote by n the number of identifiable structures and let the structures he
denoted by Si , i = 1, 2, . . . , n . We will fix a structure (or an object) over which the
structures exert their power. For any indices i, j let pij denote the fraction of power
that structure Si accedes to structure Si out of what it has over the fixed object.
This matrix of power fractions is called power profile . It follows from this definition
that

n

,pij = 1,

	

( 1)
i=1

i .e. the n x n power profile matrix P = (pij) is column stochastic . This condition
means that all control that a certain structure S j has over the fixed object gets
allocated. For any structure we further define xj as the fraction of control that
structure Sj has over the object under consideration . We again must have that

n

x7

	

1,j=1
(2)

in order to preserve the total amount of control . These fractions form the power
fraction or control fraction vector x = (xj ) . Each structure has certain resources
or powers at its disposal in order to achieve its goals . Denote by rj the primary or
direct powers that structure Sj can exert to achieve its aims over the object . In order
to write down Allen's model in matrix notation we introduce the resource matrix
R = diag(r1,r2,...,rn,), notation e for the n-tuple made of l's and the resource
vector r = Re. Moreover, denote by (x, y) the usual scalar product between the real
n-tuples x, y E IRn . The model can now he written as

± = (PR - (r, x))x,

	

(3)

while conditions (1) and (2) become

Ptre = e and (x, e) = 1,

	

(4)

where ptr means the transposed matrix of matrix P .
A complete discussion of this model, including its comparison to some other

social models, was given by Allen (1992) . Nevertheless, a brief explanation of the
terms appearing in equation (3) will not he amiss . It relates the rates of growth (or
decrease) of fractions of control on the left-hand side with the difference between
the gained power and the acceded one on the right-hand siede . While the vector of
gained powers is equal to PRx and has a clear interpretation, the acceded one must
be proportional to the vector of fractions of control . Let us denote this proportion
by c to see that the right-hand side of (3) must he of the form PRx - cx . Now,
since the growth of the fraction of control of some structure can only he gained at
the expense of decrease of the fractions of control of some other structures, we must
have that the sum of the growth-rates must he zero . This implies that 0 = (e, x) _
(e, PRx) - c(e, x) _ (r, x) - c which determines the coefficient c uniquely .
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Hence, we search a solution x(t) of the system of differential equations (3)
satisfying a given initial condition x(0) . If we denote by 7{1 the hyper plane
{x c IR" ; (x, e) = 1}, and by A the simplex, obtained as an intersection of the
hyper plane 7{1 with the positive cone W,, then the second of the equations in (4)
means geometrically that we are seeking for a solution of (3) lying in the hyper
plane R1 . But the intrinsic condition that the entries of x are non-negative, because
they are fractions, actually requires x to remain in A . It was shown by Omladič
and Omladič (1994) that if this condition is imposed on the initial vector x(O) then
automatically x(t) E A for all t > 0 .

The questions of existence, uniqueness and asymptotic stability of the equilib-
rium points of system (3) were treated by Allen (1992) and Omladič and Omladič
(1994) . We want to present here briefly these results and give some applications
to the study of creating coalitions of political structures . The preliminary mathe-
matical and socio-political definitions and interpretations will be given in Section
2, while Section 3 is reserved for the presentation of the main results from Allen
(1992) and Omladič and and Omladič (1994) . In Section 4 we apply the theory to
the study of how two structures are creating coalitions, in Section 5 we consider
forming the coalitions of three structures in a model with additive resources, while
in Section 6 we give a general approach to this kind of problems .

2 Preliminaries
We shall write x > 0 for a vector x E IR", if it belongs to the positive cone IR+, i .e.
if all of its entries are non-negative . If they are all strictly positive, we shall write
x > 0. An analogous notation will he used for an n x n real matrix A. The spectral
radius of A, i.e . the maximum of the absolute values of its (complex) eigenvalues,
will he denoted by p(A) . We will only he interested in the real eigenvalues \ E IR
and corresponding real eigenvectors x E W. If we can find for a given eigenvalue
E IR a sequence of vectors x1 , . . . , x,,, E 1R", x,,, # 0, such that

Ax, = Ax 1 + x2, . . . , Ax.-i = Axm-1 + xm , Ax. = \xm,

we call xl a root vector, or equivalently generalised eigenvector of A at A . All our
root vectors will he taken at A = p(A) . The length m of this sequence is uniquely
determined by x1 provided that x,,, # 0 and will he called the order of root vector
x1 . The mathematical part of the results presented in this section may he found in
Gantmacher (1971), Schaefer (1975), Seneta (1981), and in Rothblum (1975), Zijm
(1983), Schneider (1986) .

A square non-negative matrix A is called irreducible if there is no permutation
matrix Q such that

Q 1rAQ = [
0B C .

C ]
A matrix will he said permutation matrix if it is made of zeros and ones such
that every column and every row contains exactly one entry equal to one . We
say that Q°rAQ is permutationally similar to A . The key result of the theory of
non-negative matrices was obtained almost a hundred years ago by Perron and
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Frobenius. It says that every n x n matrix A with non-negative entries has p(A)
as its eigenvalue and that there is an eigenvector x corresponding to this eigenvalue
such that x > 0 . Moreover, if A is irreducible, then p(A) > 0, and x > 0 is unique
up to a multiplicative constant . We sometimes call p(A) the PF eigenvalue and any
corresponding non-negative eigenvector a PF eigenvector of A .

Motivated by this theorem and in view of our applications we shall call a square
matrix A with non-negative entries to be of PF type, if

- p(A) > 0,

- there exists an eigenvector x > 0 with respect to eigenvalue A = p(A),

It is well-known that these matrices have the following canonical form . If a matrix
A is of PFtype then there is a permutation matrix Q and a block division such that

Ao

	

*

	

*

	

. . .

	

*-
0

	

Al

	

0

	

. . .

	

0
QtrAQ = 0

	

0 A2 . . . 0

	

(5)

0

	

0

	

0

	

. . . A,-

where r is the maximal number of linearly independent eigenvectors at the eigenvalue
A = p(A), p(A;) = p(A) and A; are irreducible for i = 1, 2, . . . , r, stars are some
non-zero blocks of appropriate dimension, and if the zeroth block exists, it holds
that p(A o) < p(A) .

Every non-negative matrix which is not nilpotent, i .e . having p(A) > 0, can
he expressed in a canonical form with PF matrices on the block diagonal . More
precisely: For every such matrix A there is a permutation matrix Q and a block
division such that

QtrAQ =

- AI

	

*

	

*

	

. . .

	

*

0

	

A2

	

*

	

. . .

	

*

	

*
0

	

0 A3 . . . *

	

*

0

	

0

	

0 . . . Ak

	

*
0 0 0

	

0 Ak+j

(6)

where k is the highest possible order of PF root vectors p(Al ) = p(A), At are of PF
type for 1 = 1, 2, • . , k, and if the (k+l)-st block exists, it holds that p(Ak+l) < p(A) .

The block form of A given in (6) is essentially unique . We can easily deduce
from this canonical form a striking generalisation of the Perron-Frobenius theorem
due to Rothblum . Namely, for any non-negative and non-nilpotent matrix there
exist non-negative and non-zero root vectors forming a basis of the entire root space
corresponding to PF eigenvalue . Each of the blocks At for 1 = 1, 2, . . . , k in (6)
has a block representation as given in (5) . The dimension of the root space equals
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the total number of irreducible blocks having the PF eigenvalue equal to p(A) that
appear after introducing (5) into (6) .

It will turn out that the behaviour of the solution x of system (3) depends on the
structure of matrix A = PR which contains the power profile of the society under
consideration, weighted by the actual primary powers that socio-political structures
exercise over the fixed structure in question . In view of this application we will
present some obvious interpretations of the above notions .

Let us first introduce the notion of subordination . We will call a structure Sj
to he immediately subordinated to structure S; if p;; > 0, and subordinated to it if
there is a sequence of indices i = io, i 1 , . . . , i,,, = j such that structure with index
i t is immediately subordinated to structure with index ir_ 1 for all r = 1, 2, . . . , m .
Therefore, immediate subordination means that structure S j is acceding some of
its primary power to structure S;, while subordination means that this structure
is acceding some of its powers to some structure which is acceding some of that
to another, and so on, which is acceding some of it to structure S ; . We will say in
accordance with [Oml] that a set of structures S is a coalition if all the structures that
belong to S are sharing their powers with each other in some more or less intrinsic
way, i .e . they are all subordinated to each other, and if the structures outside S may
he subordinated to them, or may subordinate them, but none of them can do both.
For any set of structures S, and in particular for any coalition, the according matrix
As obtained from A by cutting out all the rows and columns with indices that do
not belong to S will he called its inner power matrix. A coalition will he said to he
in power if its inner power matrix has the same PF eigenvalue as the whole of A .

Recall the form (6) of matrix A . A structure Sj will he said to belong to the l-th
hierarchical level, for l = 1, 2, . . ., k, k + 1, if index j belongs (after being permuted
by permutation corresponding to matrix Q) to the l-th block of (6) . Thus, the inner
power matrix of the l-th hierarchical level is A l . It is clear that if one structure
belongs to a certain hierarchical level, then all the structures that are in coalition
with it belong to the same level, so that we can talk about the hierarchical level of
a coalition. It turns out that every coalition in power belongs to one of the first k
blocks in (6) .

The actual inner power relations between structures of a certain hierarchical level
may he seen from the canonical form (5) . The blocks 1, 2, . . . , r represent all the
coalitions in power. They do not co-operate and are subordinated to the coalitions
on the zeroth block that are not in power . The top structures do not have enough
power of their own, nevertheless, they become almost equally powerful as the non-
cooperative coalitions in power that are subordinated to them, because they are
gaining the power from them due to their hierarchical position . The number of
coalitions in power on a certain level of hierarchy is called the degree of anarchy of
this hierarchical level . If there is only one coalition in power on level l, say, we will
term that there is no anarchy on this level .
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3 Stability theorems
This section is devoted to the presentation of some of the main results of Allen
(1992) and Omladič and Omladič (1994) on stability of the solution of (3) . An
explicit solution to this system may he written as

eAtx(0)

	

(7)
X(t)

_ ( e,eAtx(0))
.

Let l he a fixed hierarchical level and write its inner power matrix according to
(5)

A t =

Co

	

*

	

*

	

. . .

	

*
0

	

C,

	

0

	

• . .

	

0
0

	

0 C2 • . .

	

0

- 0

	

0

	

0

	

. . . Cr
where C1 , C2 , . . . , Cr are the inner power matrices of coalitions of this hierarchical
level which are in power, while Co is the inner power matrix of the rest of the
structures of this level which are not in power . Write any vector x with as many
entries as there are structures on the l-th level according to this block division as

x=

Since At is of PF type, all of its root vectors are of the first order and there are
exactly r linearly independent ones . It turns out that one can choose root vectors
in such a way that

xl =

ul
V1
0

0

, X2 =

U2
0
V2

0

xo
x l
x2

, xr =

,

0

	

0

	

0

	

• • • Ak
. . .

	

0

	

Ak+1

ur
0
0

,

,

where uj , vj > 0 for j = 1, 2, . . . , r .
In the bigger matrix (6) we can find r root vectors of order l of the matrix

- A,

	

*

	

*

	

. . .

	

*

	

* -
0

	

A2

	

*

	

• • •

	

*

0

	

0

	

A3 • • •
A=

(8)

(9)
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using the r partial vectors given above . The root vectors can he chosen so that

y1 =

W11
W21

WI-11

X1

0

Y2 -

W12 -

W22

wt-12

X2
0

0

	

_ 0 -

	 , yr =

w1r
W2r

WI-ir

xr
0

- 0

where wpq > 0 for p = 1, 2, . . . , l - 1 and q = 1, 2, . . ., r.
For an arbitrary hierarchical level l' let Pi' denote the co-ordinate wise projection

on the block of structures of the l'-th hierarchical level with the inner power matrix
Air . Here, l' can he any index l' = 1, 2, . . . , k + 1 . Thus, for the fixed hierarchical
level l' = l and for vectors in (10) it holds that Pty; = xi for i = 1, 2, . . . , r . For
any fraction-control vector x E A we have that Pjx represents the fractions of
control given to the structures on the l-th hierarchical level . Similarly let PS he
the projection to the block corresponding to any set S of structures . We say that
a fraction-control vector x E A gives immediate control to a structure S i if xi > 0 .
We say that it gives immediate control to a coalition S if Psx # 0 . Further, we say
that it gives control to a coalition in power if it gives immediate control to it or to
a structure subordinated to it . In this case we call its hierarchical level to be the
lowest level 1, i .e. the greatest index 1, such that it gives control to a coalition in
power on the 1-th hierarchical level . The following theorems were given in Omladič
and Omladič (1994) .

Theorem A. The equilibrium exists and gives immediate control only to struc-
tures on the fast hierarchical level . Let (8) be the inner power matrix of that level
and let xi and yi with l = 1, normed so that they belong to i , for i = 1, 2, . . . , r be
given respectively by (9) and (10) . Then all the equilibrium points that are giving
control to some coalition in power are exactly the convex combinations of these r
points. In particular, the equilibrium is unique if and only if there is no anarchy on
the first hierarchical level .

Theorem B. Assume that the control is given initially, i .e. by the initial condi-
tion x(0), to a coalition in power. Then solution (7) of system (3) exists and so does
the limit limt .,_ x(t) = x which is equal to one of the equilibrium points. Thus,
this limit gives control only to structures on the first hierarchical level . The limit is
unique and independent of the initial condition if and only if there is no anarchy on
the first hierarchical level .

Theorem C. Assume that the control is given initially, i .e . by the initial con-
dition x(0), to a coalition in power and let l be its hierarchical level. Then, there
exist an equilibrium point u and constants K, c > 0 such that

li x(t) - ull < Kt -1 if 1>1

	

and

	

li x(t) - uIl < Ke-" if 1=1 .
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In both cases 1
1

.
11
is any norm on IR" fixed in advance.

4 Two-way coalitions: constant resources

Consider the simplest possible situation of any interest in which there are two struc-
tures S, and S2 with resources r and s. Without loss of generality we may assume
that r > s since otherwise we could interchange the two structures . If the two
structures do not want to co-operate, there is nothing to analyse : The only possible
weighted power profile matrix is

Proposition A .

1 . If r > s, there is no anarchy on the first hierarchical level which consists only
of the first structure .

2 . If r = s, the degree of anarchy on the first (and only) hierarchical level is 2.

Indeed, if r > s, the PF eigenvalue is r and the corresponding eigenvector is

x= ['0] .

In this case the first structure is in power so that it gains all the control in the long
run. In case that r = s, vector x is still a PF eigenvector, but we have another one

y= ['l] .

In this case both structures are in power, and, because they do not co-operate, the
degree of anarchy on the only hierarchical level is 2 . Actually, the system is in the
state of pure anarchy, since we only have two structures in it . The limiting point of
the solution always exists, but may attain any possible vector of fractions from A .

A richer theory may he obtained when we allow the two structures to co-operate.
We can view the columns of the power profile matrix

P=[ 1 a a ] respectively q=[1 b b ]

as strategies or policies that the two structures have in order to achieve their goals
when creating the coalition . Here, a and b may he any real numbers from the interval
[0, 1] . The weighted power profile matrix in this situation becomes

A= [
ra

	

s(1-b)]
r(1 - a)

	

sb



Asymptotics of Dynamics for Control in Society

	

173

Proposition B .

1 . If r > s and if each structure is maximising its asymptotical fraction of control,
it is optimal for the first structure to choose a = 1. The second one cannot
prevent the first one to gain all the control in the long run .

2. If r = s all the possible a, b E [0, 1) lead to a non-anarchic distribution of
control between the two structures.

The PF eigenvalue p of A clearly satisfies the quadratic equation

p2 - ( ra + sb)p + rs(a + b - 1) = 0.

	

(11)

We can easily compute p from here in terms of a and b, since it must he the bigger
of the two real solutions of this equation. Then, we can express the entries of the PF
eigenvector x, defined by (A - p)x = 0 in terms of a and b. Then, we can maximise
the asymptotical fraction of control of each of the two structures . Thus, S1 wants
the first entry of x to be as big as possible, and S2 wants the second one to he as
big as possible. Thus, their preferences are antagonistic .

We will do this now using a trick that will simplify the computations substan-
tially. Starting from equation (11) we will not, at first, compute p in terms of a and
b, but we will compute b in terms of a and p. What we get is

b- p2 -rap+rs(a-1)
s(p - r)

Equation (A - p)x = 0 yields a system of linear equations in x 1 and x 2 :

(ra - p)xi + s(1 - b)x2 = 0
r(1 - a)xl + (sb - p)x2 = 0 .

Let us now insert the above expression for b into it to obtain

(ra - p)xl + -p2 + (s + ra)p - rsa
x2 = 0

(p - r)

r(1 - a)xl +

	

r(1-a) (p -s) x2

	

= 0 .
(p - r)

Since the determinant of the system is zero, we can keep only one of the equations .
We also have to recall the normalising condition x 1 + x 2 = 1 in order to get after a
short, but straightforward computation :

x 1 = p
-s

and x2 = r- p
r - s

	

r - s

Now, note that x 1 and x 2 can he computed using these formulas only when r > s .
Therefore, assume this condition and observe that these two numbers do not depend
on a and b explicitely, but only through p as a solution of equation (11) . If we find
out that they are non-negative, we will know that they are the wanted equilibrium
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fractions of control . However, it is well-known that the PF eigenvalue of any non-
negative matrix lies between the minimum and the maximum sum of its rows or
columns. Since the sum of the first column of A is r and the sum of the second is s,
it follows that xi, x2 > 0 .

We have thus seen that in the case r > s we must have that r > p > s and it is
in the interest of S1 to make p as big as possible, while it is in the interest of S2 to
make p as small as possible . Thus, the antagonism between the two structures may
easily he expressed through p. If there is no other criteria it seems that it is the
best policy for the first structure to keep all the power to itself, thus pushing the
second one out of power and out of control . In this case S2 has no means to cope
with the situtation. Whatever it does, it always remains on the second hierarchical
level which is not in power . In a long run, all the control goes to S, .

It remains to treat the case when r = s . In this case we clearly have p = r .
Because the two structures are willing to co-operate, we suppose a, b < 1 . It follows
that the only PF eigenvector is given by

_ 1-b

	

1-a
x7

2-a-b
and xz- 2-a-b'

Since the positions of the two players in this antagonistic game is symmetric they
may decide to go for the Nash bargaining and split the control equally . Note that
this condition forces a = b. This means that S1 must accede the same portion of its
primary power to S2 as the other way arround . The final result in this case seems
the same as in the non-cooperative possiblity. However, if they did not co-operate,
the system would he in pure anarchy and the asymptotic result unclear . So, it seems
better for the two structures to settle on one half of the control each .

5 Three-way coalitions: additive resources
In the previous section we considered the problem of forming coalitions in a model
with constant resources . The problem of creating coalitions in this case was trans-
formed into a very simple antagonistic game with two players . Coalitions of three
and more structures could he studied in a similar way, but results would not differ
substantially. In the kind of antagonistic games the players with different power
would separate, coalitions could only he formed between structures of equal power
and in this case the strongest structure or coalition would win .

It may also be interesting to treat a non-antagonistic situation in which the
structures are actually gaining resources when entering a coalition . A possible model
may he based on the following assumptions : Every structure S; has its individual
resources . However, for a structure that entered a coalition formed by more struc-
tures its resources equal the sum of the individual resources of all the members of
the coalition . We also assume that the goal of the structures in question is to raise
as much control as possible in a long run . According to the model presented in the
previous section this means that each of them wants its entry in the limit of the
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solution of (3) to he as big as possible, and this implies that its entry in the PF
eigenvector of A should he as big as possible . It is natural to refer to this kind
of rules for creating coalitions as model with additive resources . These models are
motivated by situtations where structures are forming a group voting through the
weighted majority rule . In this case the individual resources of a structure may mean
its weight in the voting procedure . After forming a coalition the total resources of
any structure in the coalition become the sum of the voting weights of its members .

Let us consider a three-way model with additive resources . Assume that the three
structures under consideration have individual resources equal to r > s > t . We
will analyse the model using decision theory and the reader will he assumed familiar
with elementary notions of this theory as presented in French (1986), say. We first
pose the question whether the first structure is prepared to go into a coalition or
not. If it stays alone, and if the other two stay alone as well, it will gain the maximal
possible fraction of control, i .e. it will gain the whole control . However, if the other
two decide for a coalition, matrix A of the model becomes

r 0 0
0 s s .

	

(12)
0 t t

Now, if r > s + t the PF eigenvalue of this matrix is r with eigenvector x = (1, 0, 0)t'
and the first structure still prefers to stay alone . If, on the other hand, r < s + t,
then the PF eigenvalue of A becomes s + t with normalised eigenvector

[0

	

s

	

t

	

tr

	

(13)x= S S+I~

In this case the first structure loses the control completely.

Proposition C. Assume that r >_ s > t and that each structure is maximising
its asymptotical fraction of control using the Wald's maximin return criterion when
in a situtation of strict uncertainty .

1 . If r > s + t and it is optimal for the first structure not to accede any power to
the others. The other two cannot prevent the first one to gain all the control
in the long run .

2. If r < s + t the coalition {S2, S3} is the only one that is making both partners
the most satisfied. It can gain all the power and all the control in the long
run.

Let us study the second case in somewhat more detail . Since there is no way
in our model how to estimate the probability that the other two structures would
form a coalition, the first structure finds itself in a situtation of strict uncertainty.
Because staying alone results in no control and creating a coalition results in some
control (as may he seen from (12) and (13) after permuting the structures and their
resources accordingly), the structure will most certainly go for co-operation if it
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chooses the Wald's maximin return criterion . Now, what are the choices within this
case? The coalition {S1, S2} results in a fraction ,r+a of control, coalition {S1 , S3}
results in a fraction r+t , while overall coalition results in r+s+t provided that the
other partners are willing to co-operate in this way. As the goal of the structure is
to gain the maximal possible control, it is clear from r > s > t that S 1 ranks its
possibilities for a coalition like this : 1 . {S,, S3}, 2. {S 1 , S2 }, 3. complete coalition,
4 . no coalition .

Next, suppose that the other two possible partners have made an analogous
analysis of the situation. Their considerations should then result in a ranking : 1.
{S2, S3}, 2 . {S 1 , S2 }, 3 . complete coalition, 4 . no coalition for S2 ; and 1. {S2, S3 },
2. {S1 , S3 }, 3. complete coalition, 4 . no coalition for S3 . Can we guess the final
result of these considerations? A short glance at the rankings shows that coalition
{S2 , S3} is the only one that is making both partners the most satisfied .

In the next section we will propose an algorithm predicting the result in general
case of n structures that will give the same answer. To conclude the section let
us point out that this model could he improved in many ways to become more
sophisticated . For instance, we could alow some partners within the coalition not to
co-operate. This would simply mean that they are not exchanging mutually their
individual powers . Thus, if in the above situation after the three structures have
already decided for a complete coalition we want to compare the case of total co-
operation with the possibility that the second two structures are non-cooperative,
then we have to compare the PF eigenvectors and eigenvalues of matrices

r r r

	

r r r
A= s s s and A'= s s 00

t t t

	

t o t

Inserting explicit figures r = 22, s = 15, t = 14, into it, we obtain that the PF
eigenvalue of A is p = 51 and the eigenvector is r = (0.431,0 .294,0 .275) t ', while the
same results for A' are p = 43 .8 and the eigenvector is r = (0 .502,0 .262,0 .236)` .
This means that non-cooperation of the two structures decreases somewhat the
power of the whole coalition measured by p, while inside the coalition structure S 1
is gaining over 15% of its control at the expense of the mutually non-cooperating
partners. Let us point out that this example is motivated by the situation within
the government coalition after the 1992 elections in the Republic of Slovenia .

6 General model with additive resources
We will now try to generalise the model with additive resources presented in previous
section. Thus, we suppose that in addition to Allen's axioms the following axioms
are satisfied.

Axiom 4. Every structure has its individual resources .

Axiom 5 . The resources of any structure in a coalition equal the sum of the
individual resources of its members, but it accedes all the gained power to the
other members of the coalition .
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Axiom 6. The goal of the structures is to attain maximal possible control in a long
run.

We have thus obtained a model about which we will he hopefully able to tell more
than about the general one introduced by Allen (1992) and Omladič and Omladič
(1994) . Actually, we would like to predict on the basis of these data what kind of
coalitions will these structures create. We will denote the number of structures by
n again. Denote by N the set of indices {1,2, . . .,n} . Any coalition can then he
represented by a subset Ic C N so that for coalition C we have that

C {Si l i E Ic } .

Let us try to see what are the PF eigenvector and eigenvalue of matrix A in case
that coalition C has been formed . Assume that this coalition has k members and
assume further for the sake of easier handling with computations that actually C =
{1, 2, . . ., k} . Note that if this was not so, we could permute the indices to achieve
this in order to get the formulas below .

Therefore, matrix A must he of the form

r l

	

rl

	

. . .

	

rl

A = L CO
D J

, where C = r2 r2 . . . r2

rk rk . . . rk

is the inner power matrix of the coalition C and D is the inner power matrix of the
set of structures which do not belong to this coalition to he denoted by D . Of course,
each of the matrices C and D has a PF eigenvalue and corresponding eigenvector
or even more of them. Since in our model the only possible way of acceding the
power to some structure is to enter a coalition, we conclude that members of C do
not co-operate in any way with the structures outside the coalition. This can he
seen from the block diagonal structure of matrix A .

Let us compute the PF eigenvector and eigenvalue of matrix C . Note that e is
a left PF eigenvector of C with corresponding eigenvalue equal to p(C) = E 1 ri .
The same eigenvalue must yield the wanted right eigenvector as well . The easiest
way to find it seems to go through an observation that C is diagonally similar to
its transpose C tr, similarity being performed by a matrix having ri on the main
diagonal. After a short computation we see that the vector

T tr
x - E;-, ri E;_1 ri

	

Ei-1 rti
is the corresponding eigenvector of C . All the members of coalition can therefore
find their fraction of control in a long run in this vector provided that their total
power, i .e . p(C), is greater than the total power of the rest of the structures, i .e .
p(D) .

Now, what happens if their power is no greater than the power of the others?
Actually, the possible members of the coalition have found themselves in a situation
of strict uncertainty in this case . Namely, they have no idea of what kind of coalitions
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the others may consider or decide for . There are at least four well-known criteria to
treat the kind of situation . For various reasons it is the Wald's pessimistic approach
that seems the most appropriate for the situation, mainly because it appears to he
the only among the considered ones to assure an easily obtainable preference relation
that can he expressed with a measurable value function as will he seen in the sequel.
And this is a very important and useful fact that will he needed in further analysis .

So, if we want to use the Wald's maximin return principle on the asymptotical
fraction of control, we have to find the worst possible situation for the members of
coalition . Using Perron-Frobenius theory it can he seen that D has the greatest
possible PF eigenvalue exactly when all the structures from D form a coalition. In
this case their PF eigenvalue clearly becomes p(D) computed by the same formula
from the individual power resources of the members of D as p(C) above. Thus,
p(D) must he the sum of their individual resources . Hence, in the worst case the
members of C have to compare their total power with the total power of their
potential oponents . If they are stronger, then they have nothing to worry about,
hut, if they are weaker, then none of them will have any control in a long run, so
that their pessimistically expected outcome will he zero . Finally, if they are equally
powerful, the system is in anarchy of degree two on the only hierarchical level and the
outcome is again unpredictible . However, since we have to go again for the Wald's
pessimistic approach for the sake of consistency, there is a chance that members of
C will get nothing in a long run and they should set their value functions to zero in
this situation as well .

We have thus obtained the following value function for the preferences that a
macro structure S; has towards possible coalitions C:

r- if i E C and p(C) > p(D)vi(C) = P(C)

	

where
0

	

otherwise

p(C) = E rj and similarly p(D) _

	

rj .

	

(14)

jElc

	

JVIc

Since the values used in creating this function are fractions of control which is more
than just an ordinal variable, actually, we believe that it is an interval variable in this
setting, it follows that the so obtained function is not only an order value function,
it is a measurable valued function. It remains to consider the overall outcome after
all the structures have already analysed the situation and evaluated all the possible
coalitions .

We know from the theory of social choice that there may be some controversy
about creating the group preferences from the indivual ones . The well-known Ar-
row's paradox is showing that there is no general pattern of making rational, demo-
cratic, and fair group decisions on the basis of their individual preferences . However,
in a more restricted model, where all the individuals have a common measure for
expressing their preferences, there is a chance for that . The starting measure that
the macro structures are using according to the above axioms is the fraction of their
control in a long run and this has clearly the same meaning to all of them within
our model .
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We are now in position to use one of the results from the theory of social choice
such as Theorem 8.2 (French, 1986), say, in order to obtain our main result .

Main Theorem. In the model with additive resources the mesurable value
functions vi (C) to measure the preference relation of a structure S; towards coalitions
C based on the Wald's maximin return criterion is given by (14) . If v is any n-
dimensional differentiable function with everywhere positive partial derivatives, then

w(C) = v(vl(C),v2(C), . . .,vn(C))

defines a fair order value function for the preferences of the group towards these
coalitions.

We refer the reader to [Fre] for a detailed discussion of the meaning of the word
"fair" in this theorem. Let us give a brief discussion of this result . A possible
function v that comes naturally to one's mind might he

n

v (x 1, X2, . . . , 2n) _

	

2 2I .
j=1

Using (14) we get

P2(C~ if p(C) > p(D)w (C) =
1

P(C)

	

where
0

	

otherwise

P(C) = Y_ rj, P2(C) = E r,, and p(D) = F r, .
jEIC

	

jEIC

	

j¢IC
Thus, in order to predict the "right" coalition in power, we have to solve the following
non-linear optimisation problem :

Find coalition C' such that

w(C) = max w(C)

subject to constraints
P(C) > p(D)-

As an illustration take the main example from the previous section . It is clear
that under the assumption s + t > r we have that

z

	

z

	

z

	

z

	

z

	

2
w({1,2}) = (r + s)2'

w({1,3}) = (r+ )2 , w({2,3})
= (s+ t) 2 '

r 2
and w({1, 2, 3}) = + sz + t 2

(r + s + t) 2 '

A straightforward consideration shows that coalition 12,31 has the optimal value
and is therefore preferred the most by these structures as we have already guessed
in the previous section .
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