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(Stabilnost bločnega modeliranja)

Doktorska disertacija

Ljubljana, 2012



Acknowledgements

This thesis would not have been possible without the help, guidance and support of
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Abstract

Stability of blockmodeling

Social networks consist of actors and relations among them. An obvious graphical rep-
resentation is a graph with vertices for actors and arcs for ties between them. Such a
raw presentation usually does not provide a satisfying representation. The purpose of
social network analyses is to detect simple and useful descriptions of the fundamental
structures of relationships from large and seemingly incoherent networks. A widely
used technique for finding such structural patterns is generalized blockmodeling.

The fact is that the social network data (usually gathered with surveys) are measured
with errors. An error in social network analysis occur when there is an extra tie or
a missing tie according to the true underlying and unobservable structure. Types of
errors found in literature are classified into three categories: the boundary specifica-
tion problem, errors caused by questionnaire format, and errors caused by actors. The
boundary specification problem concerns rules of inclusion for actors in a network. In
the realist approach actors in the network determine the boundaries of the network
themselves, while in the nominalist approach the boundaries are determined by the
researcher. Errors caused by questionnaire can be divided into three subcategories:
errors caused by free or fixed choice design, using recall or recognition method, and
direction of question. Errors caused by actors can be divided into three subgroups:
actor non-response, non-response on tie, and measurement errors.

Combining both facts, wide usefulness of generalized blockmodeling and that social
networks are measured with errors, results in the decision to investigate the impact of
errors to the results of blockmodeling.

A result of a blockmodeling is a partition of actors determining positions of actors
and an image matrix with determined block types. Actors are partitioned into clusters
based on selected type of equivalence (the most known is the structural equivalence)
or simply with selection of allowed block types according to philosophy of generalized
equivalence. According to the result of blockmodeling two indices for comparison of
blockmodels are presented. The first one is the Adjusted Rand Index which measures
the agreement between pairs of partitions, and the second index compares block types
and their position in the image matrices to compute the proportion of incorrect blocks.



In extensive simulation studies the blockmodels established from the whole starting
network and blockmodels obtained from the measured network with introduced er-
rors are compared with indices of blockmodeling stability described above. In the
simulations studies two types of networks are used: real networks known from the
literature and simulated network based on a desired structure where the size of the
network, the number of clusters, types of blocks and their positions in image matrix,
and probabilities of ties in blocks are taken into account.

First, the blockmodels of real networks gathered without limitation of number of choi-
ces (free choice design) are compared to the measured blockmodels established from
networks with limited number of choices. In addition, the impact of direction of ques-
tion (asking about giving or receiving social support) on blockmodeling is presented.

An extensive part of dissertation is dedicated to the actor (and tie) non-response. We
investigated the impact of different non-response treatments on the identified block-
models. Three different regimes of actor non-response are used (random selection of
nonrespondents and based on indegree or outdegree) and then with those measured
networks different non-response treatments are used. The simplest nonresponse treat-
ment is the complete-case approach where nonrespondents are deleted from the net-
work and therefore a smaller network is obtained. In the reconstruction procedure
the unobserved outgoing ties are replaced with corresponding incoming ties for that
actor. The deficiency of the reconstruction procedure is that for two nonrespondents
the reconstruction of ties between them is not possible. Another treatment uses the
modal value of incoming ties and is termed imputation based on mode. For binary
networks this implies imputing ones if actors are popular given their received ties.
The reconstruction procedure can be combined with imputations based on mode for
ties between nonrespondents. Based on the results of the simulations we established
that selection of the best nonresponse treatment depends on the level of the symmetry
of the network.

The tie non-response occurs if an actor participates in the research, but does not pro-
vide the response on all network members. Recommendations about the best missing
data treatment are almost the same as in the case of actor non-response.

The stability of blockmodeling to randomly changed ties is performed with different
types of both, networks and equivalences. The structural equivalence turns out to be
highly stable, which is not true in the case of the regular and generalized equivalence.
The detailed insight into the performance of regular equivalence in network with ran-
domly introduced small amount of errors is provided.

In addition, we try to answer the question if the relative changes in network charac-
teristics and actors properties are able to predict the stability of blockmodeling and to
what extent. One of the main conclusions is that all indices, which were used as pre-
dictors, have more power to predict the position membership of the actors than the
percent of incorrectly identified block types.

In real studies the real underlying structure (presented with whole networks) is un-



known, which makes the comparison between whole and measured network impossi-
ble. Therefore, the impact of properties of measured network (alone) to the blockmod-
eling stability was investigated.

At the end limitations of the simulation studies are pointed out together with ideas for
further research. We also provide short instructions for the researchers as the summary
of our findings.

Keywords: social network, blockmodeling, stability of blockmodeling, error, non-
response treatment



Povzetek
Stabilnost bločnega modeliranja

Socialna omrežja so sestavljena iz akterjev in relacij med njimi. Grafično jih lahko
predstavimo z grafi, kjer točke predstavljajo akterje, usmerjene povezave pa relacije
oziroma povezave med njimi. Takšna groba predstavitev navadno ne zagotavlja za-
dovoljivega prikaza. Namen analize socialnih omrežij je poiskati iz velikih, navadno
nepovezanih omrežij, preprost in uporaben opis temeljnih struktur. Pogosto upora-
bljana tehnika za iskanje takih strukturnih vzorcev je posplošeno bločno modeliranje.

Dejstvo je, da so podatki socialnih omrežij (zbrani navadno z anketami) merjeni z
napakami. Napaka se v socialnem omrežju pojavi, ko je v omrežju dodatna pove-
zava ali ko povezava manjka glede na pravo prikrito strukturo. Tipe napak, ki smo
jih našli v literaturi, smo razvrstili v tri skupine: problem določitve mej omrežja, na-
pake, povzročene z zasnovo vprašalnika, ter napake, povzročene s strani akterjev. Pro-
blem določitve mej omrežja se nanaša na pravila za vključevanje akterjev v omrežje.
V realističnem pristopu akterji sami določijo meje omrežja, medtem ko pri nomina-
lističnem pristopu meje omrežja določi raziskovalec. Napake, povzročene z zasnovo
vprašalnika, se nadalje delijo v tri podskupine: napake zaradi omejevanja oziroma ne-
omejevanja števila izbir, uporaba metode prepoznavanja oziroma spominske metode
in napake zaradi smeri zastavljenih vprašanj. Napake, povzročene s strani akterjev, so
sestavljene iz treh podskupin: neodgovori akterjev, neodgovori na povezavi ter mer-
ske napake.

Kombiniranje obeh predstavljenih dejstev, torej pogostosti uporabe bločnega modeli-
ranja in dejstva, da so socialna omrežja merjena z napakami, je pripeljalo do odločitve,
da preučimo vpliv napak na rezultate bločnega modeliranja.

Rezultat bločnega modeliranja je razvrstitev akterjev, ki določa položaj akterjev, ter
bločna matrika z določenimi tipi blokov. Akterji so razvrščeni v skupine na podlagi
izbrane enakovrednosti (najbolj znana je strukturna enakovrednost) ali preprosto z iz-
borom dovoljenih tipov blokov glede na koncept posplošene enakovrednosti. Skladno
z rezultati bločnega modeliranja smo izbrali dva kazalnika za primerjavo bločnih mo-
delov. Prvi kazalnik je prilagojeni Randov kazalnik, ki meri ujemanje med dvema raz-
vrstitvama. Drugi kazalnik primerja tipe blokov in njihov položaj v bločni matriki ter
se izračuna kot delež napačno razvrščenih blokov.

V obsežnih simulacijskih študijah z obema predstavljenima kazalnikoma primerjamo



bločne modele, dobljene iz popolnih omrežij, z bločnimi modeli izmerjenih omrežij.
Pri tem uporabljamo dva tipa omrežij: iz literature znana realna omrežja in simuli-
rana omrežja na podlagi želene strukture, kjer smo upoštevali velikost omrežja, število
skupin, tipe blokov in njihov položaj v bločni matriki ter verjetnosti povezav v posa-
meznih blokih.

Najprej tako primerjamo bločna modela, dobljena iz omrežij brez omejitev, z bločnim
modelom, dobljenim iz omrežja z omejenim številom izbir. V nadaljevanju predsta-
vimo vpliv smeri zastavljenega vprašanja (npr. dajanje oziroma sprejemanje socialne
opore) na bločni model.

Obsežen del disertacije je posvečen neodgovorom akterjev ter neodgovorom na po-
vezavah. Raziskovali smo vpliv različnih tretmajev za manjkajoče podatke na posta-
vljeni bločni model. Nerespondente smo generirali na tri različne načine (naključno in
na podlagi vhodne oziroma izhodne stopnje), nato pa smo na teh izmerjenih omrežjih
uporabili različne tretmaje. Najpreprostejši tretma je pristop popolnih podatkov, kjer
so nerespondenti odstranjeni iz omrežja, tako da dobimo v bistvu manjše omrežje. Pri
rekonstrukciji so nezabeležene izhodne povezave zamenjane z ustreznimi vhodnimi
povezavami. Pomanjkljivost rekonstrukcije je, da manjkajočih povezav med dvema
nerespondentoma ne moremo nadomestiti brez dodatnih imputacij. Tretji tretma upo-
rablja modus vhodnih povezav za nadomeščanje manjkajočih vrednosti, zato ga ime-
nujemo imputacije na podlagi modusa. Rekonstrukcijo lahko kombiniramo z impu-
tacijami na podlagi modusa za povezave med nerespondenti. Na podlagi rezultatov
simulacij smo ugotovili, da je izbira najboljšega tretmaja za manjkajoče podatke zaradi
neodgovorov odvisna od stopnje simetrije omrežja.

Neodgovor na povezavi povzročijo akterji, ki sicer sodelujejo v raziskavi, vendar ne za-
gotovijo odgovorov o vseh povezavah. Priporočila glede najboljšega tretmaja so zelo
podobna kot v primeru neodgovorov akterja.

Stabilnost bločnega modeliranja na naključno spremenjene povezave smo izvedli z
različnimi tipi omrežij in enakovrednosti. Strukturna enakovrednost se je izkazala kot
izjemno stabilna, medtem ko velja za regularno in posplošeno enakovrednost ravno
obratno. Prikazali smo tudi natančnejši vpogled v obnašanje regularne enakovredno-
sti v primeru majhnega odstotka naključnih napak.

V nadaljevanju smo poskušali odgovoriti še na vprašanje, ali lahko relativne spre-
membe v karakteristikah omrežja in značilnostih akterjev napovedo stabilnost bločnega
modeliranja in v kakšnem obsegu. Ena izmed glavnih ugotovitev je, da so vse v mode-
lih uporabljene spremenljivke uspešnejše pri napovedovanju razvrstitve akterjev kot
pri napovedovanju odstotka napačno razvrščenih blokov.

V realnih raziskavah ne poznamo resnične prikrite strukture (predstavljene s popol-
nim omrežjem), zato je tudi primerjava popolnega in izmerjenega omrežja nemogoča.
Zato smo namesto razlik v karakteristikah omrežja preučili tudi vpliv lastnosti izmer-
jenega omrežja na stabilnost bločnega modeliranja.



Na koncu so predstavljene omejitve raziskave oziroma simulacij skupaj z idejami za
nadaljnje raziskovalno delo. Na podlagi dobljeni rezultatov smo podali tudi nekaj
kratkih napotkov oziroma priporočil za raziskovalce socialnih omrežij, ki se nanašajo
tako na samo zasnovo raziskave kot tudi na analizo omrežij z bločnim modeliranjem.

Ključne besede: socialno omrežje, bločno modeliranje, stabilnost bločnega modelira-
nja, napaka, tretma neodgovorov
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10.6 Ocena stabilnosti bločnega modeliranja glede na napake v zasnovi raziskave336
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1 Introduction

The aim of this dissertation is to investigate how stable are established blockmodels,

and hence blockmodeling, to different types of errors in the research design. The im-

pact of different types of errors to different network characteristics has been examined

by several authors but never with generalized blockmodeling (Doreian et al., 2005).

1.1 A short overview

Generalized blockmodeling is an useful, increasingly and widely used technique for

finding structural patterns in social networks. Network consists of a set of actors with

relation(s) defined on them. A relation can be any type of contact, connection, or a

tie between a pair of actors (Knoke and Yang, 2008). The goal of the blockmodeling

is to reduce a large incoherent network to a smaller comprehensible and simply inter-

pretable structure (Batagelj et al., 2004). In more detail, the purpose of the blockmodel-

ing procedure is to partition the network actors into clusters (discrete subgroups called

positions), and, at the same time, to partition the set of ties into blocks which are de-

termined by the positions (Faust and Wasserman, 1992; Doreian et al., 2005).

Actors are partitioned into clusters based on some type of equivalence. The best known

and widely used types are structural and regular equivalence. The extension is gener-

alized equivalence which can be defined by a set of allowed block types.

The appropriate ways of comparing two blockmodels are established. The result of

using a blockmodeling procedure is a partition (of actors) determining positions and

image matrix with selected block types. The stability of a blockmodel to an error can
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be defined or measured with two indices. The whole starting blockmodel and the

measured blockmodel from network with introduced errors have to be be compared.

The first index, the Adjusted Rand Index, measures the agreement between both parti-

tions and the second index compares block types in image matrices and their positions

and is calculated as the percent of incorrectly identified block types. The described

indices agree with two central ideas of social network analysis pointed out by Dor-

eian (2008).”The first is that the structure of a social network, as a whole, is important

to collective outcomes at the level of the network. The second is that the location oc-

cupied in a network is important for outcomes at the actor level” (Doreian, 2008, pg. 3).

The errors in the research design can be classified into three categories: the boundary

specification problem, errors caused by design, and errors caused by actors. A ques-

tionnaire can be a large source of errors, especially with specification of number of

choices and recall method. The impact on the established blockmodel also has the di-

rection of question where the perceptions of giving or receiving of social support can be

gathered. An important source of errors could also be actors themselves. They could

refuse to respond to the entire questionnaire or only to a particular tie. For actor (and

tie) non-response different possible treatments are examined, such as the complete-

case approach, reconstruction procedure and imputations. The measurement errors

where there is a discrepancy between the true value of a concept and the observed (or

measured) value of that concept. The definition of measurement error in the social net-

work analysis is presented together with its main sources.

In this dissertation an evaluation of an impact of different errors to the blockmodeling

results is investigated. First, the scheme of simulation studies is presented together

with whole networks and their blockmodels used in the simulations. Beside the real

networks known from the literature simulated networks with desired parameters are

used as well. In the studies the amount and types of errors are controlled. The most sta-

ble type of equivalence and the best treatments in case of non-response are determined.

The predictive power of differences in network characteristic between whole starting
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network and measured network with introduced errors to the stability of blockmodel-

ing is examined. In addition, the characteristics of measured network and their impact

of blockmodeling stability is presented.

Simulations are performed in an R environment with a package called Blockmodeling

(Žiberna, 2008) and the visualization of networks is made in Pajek (Batagelj and Mrvar,

2010a,b).

1.2 Structure of the dissertation

The first part includes Chapters 2 to 4 where the main topics are introduced with the

overview of the relevant literature. In Chapter 2 basic definitions of a network and

relations with aim of the social network analysis are presented. The network charac-

teristics and measures of centrality and prestige that are analyzed in the simulations

are presented. In Chapter 3 the purpose and concepts of generalized blockmodeling

are presented together with definitions of structural, regular, and generalized equiv-

alence. An overview of different approaches to blockmodeling is presented with an

emphasis on generalized blockmodeling. In Chapter 4 the review and classification of

errors in research design are presented. The main categories of errors are: the bound-

ary specification problem, errors introduced by design, and errors caused by actors.

The comparison of errors from the social network data collection process and from the

ordinary surveys is provided.

In Chapter 5 two indices for measuring the blockmodeling stability are presented: the

Adjusted Rand Index and the proportion of incorrect block types.

Chapter 6 presents the basic scheme of simulations and two broad types of networks

which are used in the evaluation of blockmodeling stability. First, the networks are

classified into real and simulated networks and later also according to the type of

equivalence used in blockmodeling procedure.
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Chapter 7 is the core chapter of the thesis where the evaluation of stability of block-

modeling on design errors is presented. Section 7.1 evaluate the blockmodeling results

if the number of choices is limited to the fixed number of actors instead of the free

choice design. The impact of the direction of a question on the established blockmod-

eling is presented in Section 7.2. Extensive studies of actor non-response are presented

in Section 7.3. Section 7.4 presents an overview of results of a tie non-response in

real networks presents. Random measurement errors and their impact on stability of

blockmodeling are presented in Section 7.5 where we also try to answer the question

of which type of equivalence produces the most stable results.

In Chapter 8 the impact of differences in network characteristics on the stability of

blockmodeling and the impact of characteristics of measured network on the block-

modeling results are examined.

In the last chapter, Chapter 9, the obtained results are evaluated. In addition, an

overview of the thesis is provided with the scientific contributions. At the end, the

extended summary in Slovene is provided.
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2 Networks and basic definitions

In this chapter networks and network characteristics are introduced. The analysis of

social networks examines the relationships of social actors, rather than only the char-

acteristics of individuals as general social research. The main network characteristics,

which are used for the estimation of blockmodeling stability in Chapter 8, are pre-

sented at the end of the chapter.

2.1 Networks

Social networks are fundamental to social life. In an intuitive way, a social network

can be defined as follows: ”Social network consist of a finite set or sets of actors and

the relation or relations defined on them” (Wasserman and Faust, 1998, 21).

Vertex is the smallest unit in a network (de Nooy et al., 2005). In case of social networks

the term vertex is replaced by the term actor (Wasserman and Faust, 1998; Knoke and

Yang, 2008), where it can represent individuals or collective social units, such as for-

mal or informal organizations. Our main focus in the dissertation are social networks

from their research design to the established blockmodels, therefore mainly the term

actor will be used. There are some exceptions, where synonyms are used, especially in

general definitions or in direct citations.

The number of distinct sets of units in a network determines the mode of a network. If

the actors in a network are from one set, then we have one-mode network. If the actors

in the network are classified into two sets, then we have two-mode network. Usually,

ties in the two-mode network lead from actors from the first set to actors in the other set
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(Wasserman and Faust, 1998). In this dissertation only one-mode networks are used.

”A relation is generally defined as a specific kind of contact, connection, or tie between

a pair of actors” (Knoke and Yang, 2008, 7). Knoke and Kuklinski (1982) distinguish

two parts of the relation; content and form. The content refers to the type of connec-

tion (e.g. be a friend, helping, gossip...). Two basic aspects of form are the intensity or

strength of the link between two actors and level or frequency of contacts.

In mathematical notation, the network can be written as N = {A, R1, R2, . . . , Rr},

where A = {a1, a2, ..., an} is a finite set of actors (or units). Connections among actors

are described using one or more binary relations Ri ⊆ A × A, i = 1, . . . , r. If a network

has only one relation (as all networks in this dissertation), it can be represented by a

graph, in which actors are presented by vertices (or nodes), directed relations by arcs,

and mutual relations by edges (de Nooy et al., 2005).

Another representation of a network is a sociomatrix R with n rows and n columns,

where entry rij indicates the strength and/or sign of a relation between actors i and j

(Wasserman and Faust, 1998, 80). The relation in the valued network can take value

from categorical or interval scale, with all possible values or just nonnegative ones. If

the relation between actors can be positive or negative, then we have signed network.

In the case of binary networks, which are used in this dissertation, only the presence

or absence of a tie is important. The values of rij are 0, if actor i is not in relation with

actor j (aiRaj), and 1 otherwise. The diagonal elements of sociomatrix R are so called

’self-choices’, which are usually (in social network analysis) undefined and set to 0.

As written above, networks can be classified into several types based on different cri-

teria; number of sets of actors, number of relations and possible values of relations (the

measurement scale of relations). In this dissertation, according to the above classifica-

tion, the one-mode binary networks with one relation will be used. Another distinction

can be made based on the number of actors; networks with some 10 actors are called

small, and networks with some 1000 actors are called large. Because the blockmodel-
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ing method used in the dissertation is computationally intensive, only small networks

(mainly up to 20 actors) are used.

2.1.1 Social network analysis

”The goal of the network analysis is to create, from raw relational data, a useful de-

scription of a system of relationships” (Stork and Richards, 1992, 194). Wasserman and

Faust (1998, 4) stated that ”social network analysis is based on an assumption of the

importance of relationships among interacting units”. Probably the most important re-

lational concepts are that actors and their actions should be viewed as interdependent

rather than independent units, and the relational ties between actors are channels to

transfer the (material or nonmaterial) resources.

Knoke and Yang (2008, pg. 4-6) state three underlying assumptions about pattern rela-

tions and their effects:

(i) Structural relations are more important for understanding observed behavior

than general attributes as age, gender, and ideology.

(ii) Social networks affect perceptions, beliefs, and actions through variety of struc-

tural mechanisms that are socially constructed by relations among actors.

(iii) Social relations should be viewed as a dynamic process and not as static structure.

Social network analysis can be also viewed as a collection of methods and models

(Wasserman and Faust, 1998; Scott, 2000). Scott (2000, 38) stated that ”social network

analysis emerged as a set of methods for the analysis of social structures, methods that

specifically allow an investigation of the relational aspects of these structures”.

One useful, increasingly and widely used technique for finding structural patterns in

networks is generalized blockmodeling, which is the main focus of this dissertation. It

is presented in the next chapter.
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2.2 Network characteristics

The numerical characteristics of a network can be a single number as in case of net-

work density, network reciprocity or number of different types of dyads (presented in

Section 2.2.1). Another set of measures is calculated for each vertex in a network, e.g.

measures of centrality and/or prestige. The most important measures, which are also

used for analysis of stability of blockmodeling in Chapter 8, are presented in Sections

2.2.2 and 2.2.3.

2.2.1 Characteristics of a network as a whole

We will denote the number of vertices (or actors) in a graph with n, and number of

directed lines or arcs with m. The density of the network describes general level of

linkage among the actors in a network (Scott, 2000, pg. 93). In the directed network it

is calculated as number of arcs in a network, divided by the number of all possible arcs

in a network (Wasserman and Faust, 1998):

∆ =
m

n(n − 1)
. (2.1)

The equation 2.1 presumes that loops are not allowed in a network, otherwise the de-

nominator in the above equation will be n2. The density is a real number between 0

and 1, and is equal to 1 if the network is complete (each vertex has an arc to all other

vertices).

Another concept is to look at pairs of actors to investigate the relationship between

them. A dyad is a subgraph, a subset of two nodes from the network and all arcs be-

tween them. There are (n
2) =

n(n−1)
2 dyads in a network with possible states (Holland

and Leinhardt, 1970; Wasserman and Faust, 1998). A mutual relationship between ac-

tor i and j exist when there is an arc from actor i to actor j (i → j) and an opposite arc

from actor j to actor i (j → i). We can also say that there is an edge from actors i and

j. There is an asymmetric relationship between actors if there is either an arc i → j or

j → i, but not both. The null dyad occurs, if neither actor from the pair has a tie to

the other actor. The dyad census is a triple (M, A, N), where M is a number of mutual
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dyads, A is a number of asymmetric dyads and N is a number of null dyads in a net-

work.

Reciprocity (Huisman, 2009) measures how symmetric is a network and it is defined,

for directed networks, as

reciprocity =
2 · M

2 · M + A
, (2.2)

where M indicates the number of mutual dyads and A the number of asymmetric

dyads.

Beside the dyad structure properties, also the triad structure of the network can be in-

vestigated. A triad is defined as a subgraph of three nodes with arcs between them

(Faust, 2007). In the extensive study she showed that the majority of variance in tri-

adic census can be explained by ”properties that are more local than triadic - network

density, the indegree and outdegree, and the distribution of mutual, asymmetric, and

null dyads” (Faust, 2007, 242-243). This is the main reason why triadic census was not

included in our study.

2.2.2 Measures of centrality and prestige

Variety of measures can be calculated from the structure of a network to determine

the most important or the most central actors in a network. Measures of centrality

and prestige can be defined in two different ways according to ’objects’ of interest. If

we investigate the position of individual actors within the network we talk about actor

centrality (where the result is the calculated number for each actor). On the other hand,

the term centralization is used when we want to characterize the whole network with

a single numeric value (de Nooy et al., 2005).

The most important distinction among the centrality measures is based on the type of

relations in a network (Batagelj, 1993). If the relations in a network are considered to

be directed, then measures of importance are calculated. Two subgroups of measures

of importance (or prestige) can be calculated; the measures of influence take into ac-

count the number of outgoing ties and the measures of support are calculated based
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on the number of incoming ties. The term centrality measures is used when we talk

about undirected networks. It is important to emphasize that the measures described

below only present the subset of the most known and widely accepted measures in the

literature.

Measures of centrality and prestige based on degree

The degree centrality is the simplest measure, where actor is the most central in a

network, if it has the most ties to other actors (Wasserman and Faust, 1998). Absolute

measure of degree centrality of actor ai is defined as the number of ties with other

actors in a network (2.3):

cD(ai) = deg(ai) =
n

∑
j=1

rij , (2.3)

where rij is in binary network equal to 1 if there is a tie between actors i and j, and 0

otherwise (in valued networks rij represents the weight of a tie). The degree of an actor

depends on the size of a network, which means that cD(ai) can not be used for com-

parison of networks with different sizes. The normalized or relative degree centrality

is defined as

CD(ai) =
cD(ai)

n − 1
, (2.4)

where the maximal absolute degree of a unit (in a network without loops) is n − 1.

CD(ai) can take the values from 0 to 1, where 1 indicates that unit i is connected to all

other units and 0 indicates that unit is isolated.

In directed networks the concept of degree centrality can be extended to indegree cen-

trality, where we take into account just incoming ties of an actor and we measure the

support. The influence of an actor can be measured by outdegree centrality, where just

outgoing ties are counted. The relative measures of indegree and outdegree central-

ity are calculated in the same way as relative all-degree centrality in Equation 2.4. All

three types of centrality are examples of local measures, where only immediate neigh-

bours of a unit are take into account. This seems to be the main deficiency of those

measures (Scott, 2000).
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Measures of closeness centrality and prestige

Global measures consider all units connected by paths with a given unit (Batagelj,

1993). The measure of global centrality is closeness centrality first suggested by Sabidussi

in 1966 (in Freeman 1978-1979). The Sabidussi’s index of absolute actor closeness (Free-

man, 1978-1979; Wasserman and Faust, 1998) is defined as

cC(ai) =
n

∑
j=1,i 6=j

1

d(ai, aj)
, (2.5)

where d(ai, aj) is the geodesic distance between actors ai and aj. The relative closeness

centrality (Equation 2.6) is obtained from Equation 2.5 with multiplication by (n − 1)1:

CC(ai) = (n − 1) · cC(ai) =
n

∑
j=1,i 6=j

n − 1

d(ai, aj)
, (2.6)

If network is not strongly connected, only reachable actors are taken into account and

the result is weighted with number of reachable actors. The relative closeness centrality

ranges between 0 an 1 (when actor is adjacent to all other actors) and can be interpreted

as ”the inverse average distance between actor i and all other actors” (Wasserman and

Faust, 1998, 185). ”The closer a vertex is to all other vertices, the easier information

may reach it, the higher its centrality” (de Nooy et al., 2005, 127).

In the directed networks the prestige can be computed according to outgoing arcs (out-

closeness or closeness based on outdegree), which can be interpreted in how many

steps we can reach all other actors from the selected one or according to incoming

arcs (in-closeness or closeness based on indegree), which can be interpreted as how

close is the selected actor to all others. The relative out-closeness and in-closeness can

be computed with formula in Equation 2.6, where just outgoing and incoming ties,

respectively, are taken into account.

Measure of betweenness centrality

The betweenness centrality similarly as closeness centrality takes into account the geodesic

1When the actor is adjacent to all other actors, the smallest possible distance of selected actor to all

other actors is obtained. In this case the maximum of absolute closeness centrality cC(ai) is obtained and

it is equal to 1
n−1 . In normalization of cC(ai), the index is divided by its maximal value, which is equal

to multiplication with n − 1.
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distance. It reveals how important an actor is due to his position in a network to control

the flow of information. The main idea of betweenness centrality is that ”an actor is

central if it lies between other actors on their geodesics” (Wasserman and Faust, 1998,

189). The betweenness centrality of an actor ai is defined as

cB(ai) =
n

∑
j<k

gjk(ai)

gjk
, (2.7)

where i 6= j 6= k and gjk is the number of all geodesics between two actors j and k and

gjk(ai) is the number of geodesics between actors j and k that contain actor i.

The relative betweenness centrality is defined separately for directed and undirected

networks (Wasserman and Faust, 1998, 189). In case of undirected networks, the max-

imal value of cB(ai) is (n−1
2 ) = (n−1)(n−2)

2 , which is the number of different pairs of

actors not including actor ai (the maximal index is obtained when actor ai falls on all

geodesics among pairs of other actors). The maximal value of absolute betweenness is,

in the case of directed network, equal to (n − 1)(n − 2), because the order of choosing

actors in pair is important. The relative betweenness can be calculated as:

CB(ai) =











cB(ai)
(n−1)(n−2)

2

; for undirected networks

cB(ai)
(n−1)(n−2)

; for directed networks
. (2.8)

The minimal value of relative betweenness (Equation 2.8) is 0, when actor is not located

on any geodesics among pairs of other actors and maximal value 1, when all geodesics

among pair of other actors include this actor.

2.2.3 Measures of prestige

Prestige measures are computed for directed networks only, since for this measures the

direction is an important property of the relation.

Proximity prestige

For calculation of proximity prestige, the idea of an influence domain is used. The in-

fluence domain (or input domain) of an actor in a directed network ”is the number or

proportion of all other vertices (actors) which are connected by a path to this vertex
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(actor)” (de Nooy et al., 2005, 193). If the network is strongly connected, there are all

other actors in influence domain of every actor, so the distinction between actors is

poor (de Nooy et al., 2005). The Ii is defined as the number of actors in the influence

domain of actor i and equals the number of actors which can reach the actor i.

Proximity prestige was suggested by Lin in 1976 (in Wasserman and Faust 1998, 203)

and is defined as

PP(ai) =
Ii/(n − 1)

∑
n
j=1 d(aj, ai)/Ii

, (2.9)

where the sum is taken over all actors j in the influence domain of actor i. The proxim-

ity prestige PP(ai) of actor ai is the proportion of all actors (except itself) in its influence

domain (Ii/(n − 1)) divided by the mean distance from all actors in its influence do-

main (∑n
j=1 d(aj, ai)/Ii) (Wasserman and Faust, 1998; de Nooy et al., 2005). The proxim-

ity prestige index PP(ai) has maximal value 1, when all actors in a network are adjacent

to actor ai, and minimal value 0, if actor ai is unreachable. The proximity prestige for

strongly connected networks is equal to input closeness centrality, therefore its com-

putation is reasonable only for weakly connected networks.

Hubs and authorities

Two measures of prestige, which are especially useful in case of directed networks

of web pages, are hubs end authorities. Kleinberg (1998, 8) stated, in context of web

pages, that ”Hubs and authorities exhibit what could be called a mutually reinforcing re-

lationship: a good hub is a page that points to many good authorities; a good authority

is a page that is pointed to by many good hubs.” In terminology of social network, we

can say that an actor is a good hub, if it points to many good authorities, and an actor

is a good authority, if it is pointed to by many good hubs.

For each actor a two weights are calculated; weights of good hubs xa, and weights

of good authorities ya. Weights are computed according to network A by solving the

eigenvector problem of matrices AAT, where the first eigenvector represent weights

for good hubs, and the first eigenvector of a matrix AT A represents weights of good

authorities.
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3 Blockmodeling

In this section the purpose of blockmodeling is presented (Section 3.1) together with

different types of equivalence (Section 3.2) and the main concepts of generalized block-

modeling (Section 3.4).

3.1 Description and purpose of blockmodeling

One goal of blockmodeling is to reduce a large incoherent network to a smaller com-

prehensible and simply interpretable structure (Batagelj et al., 2004). In more detail, the

purpose of blockmodeling procedures is to partition the network actors into clusters

(subgroups called positions), and, at the same time, partition the set of ties into blocks

which are determined by the ties between actors in positions (Wasserman and Faust,

1998; Doreian et al., 2005). Similarly, (Batagelj, 1997, 143) stated that blockmodeling

has two basic subproblems: (i) partitioning of units or determining the classes (clus-

ters) that form the vertices in a model, (ii) determining the links in a model (and their

values). In the second definition Batagelj emphasizes the importance of determining

the ties in a model, which essentially consist of the ties within and between clusters.

The actors within a cluster should have the same (or a very similar) pattern of ties

based on a selected equivalence. The resulting blockmodel is a compact representation

of a network, a model, which represents essential structure of a network, which is eas-

ier to interpret. The blockmodel can be presented by relational matrix called ’image’

matrix or by a ’reduced’ graph. The units in this image representation of a blockmodel

are positions made up of equivalent actors and the arcs (summarizing blocks) repre-

sent ties between positions (Doreian et al., 2005).
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Beside the notation used in Section 2.1, some additional notation will be needed. We

denoted the network of actors and relations between them as:

• N = {A, R1, R2, . . . , Rr}, where A = {a1, a2, ..., an} is a finite set of actors. Con-

nections among actors are described using one or more binary relations Ri ⊆
A × A, i = 1, . . . , r.

• Relation R can be presented with the sociomatrix R =
[

rij

]

∈ R
n×n, where rij

indicates the strength and/or sign of a relation between actors i and j.

In addition to this general social network notation, the special notation for blockmodel

procedure is:

• C = {C1, C2, . . . , Ck} is a partition of actors A into k clusters. Beside the clustering

of actors, the clustering C partitions also the relation R into blocks

R
(

Ci, Cj

)

= R ∩ Ci × Cj .

”Each block is defined in terms of units (actors) belonging to clusters Ci and Cj

and consist of all arcs from units (actors) in cluster Ci to units (actors) in cluster

Cj. If i = j the block R (Ci, Ci) is called diagonal block” (Doreian et al., 2005, 169).

Doreian et al. (2005, 169) emphasized that the term ’block’ has two meanings in the lit-

erature. In the first usage a block is a set of actors grouped together into a blockmodel

and the second usage, which is preferred by authors, is that ”a block is a relation be-

tween two clusters of units (actors)”.

3.2 Types of equivalence

Blockmodel partitioning is based on ”the idea that units (actors) in a network can be

grouped according to the extent to which they are equivalent in terms of some mean-

ingful definition of equivalence” (Doreian et al., 2005, 170). To summarize Faust’s

(1988) discussion, there are two basic approaches to the equivalence, regardless to the

definition used:
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(i) the equivalent actors have the same connection pattern to the same neighbors;

(ii) the equivalent actors have the same or similar connection pattern to (possibly)

different neighbors.

The first type of equivalence is the structural equivalence and the second one is gen-

eralized type of the structural equivalence called regular equivalence. Both formal

definitions are presented below.

3.2.1 Structural equivalence

The structural equivalence is probably the most commonly used type of equivalence.

Lorrain and White (1971) give the definition as: Actors are structurally equivalent if

they are connected to the rest of the network in identical ways. The definition can be

written in mathematical notation as follows (Batagelj et al., 1992b; Doreian et al., 2005):

Actors (or units) x and y are structurally equivalent (x ≡ y) if and only if

(i) xRy ⇔ yRx,

(ii) xRx ⇔ yRy,

(iii) ∀z ∈ A\ {x, y} : (xRz ⇔ yRz),

(iv) ∀z ∈ A\ {x, y} : (zRx ⇔ zRy), where A is set of actors2.

In the matrix notation, the above definition can be written as follows: Actors ai and aj
3

are structurally equivalent if and only if

(i) rij = rji,

(ii) rii = rjj,

(iii) ∀k 6= i, j : rik = rjk,

(iv) ∀k 6= i, j : rki = rkj.

2In the cited literature notation E and U is used for the set of units.
3xi and xj is used in the cited definition instead of ai and aj
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Batagelj et al. (1992b) prove that for structural equivalence there are only four possible

ideal blocks (Table 3.1): null, complete, null diagonal (zeros on the diagonal, one out of

diagonal) and diagonal complete (one on the diagonal and zeros otherwise). Null and

complete blocks are the only possibilities for nondiagonal blocks.

Table 3.1: Four possible ideal blocks for structural equivalence

Cj

0 0 0 0

Ci 0 0 0 0

0 0 0 0

0 0 0 0

null

Cj

1 0 0 0

Ci 0 1 0 0

0 0 1 0

0 0 0 1

diagonal complete

Cj

1 1 1 1

Ci 1 1 1 1

1 1 1 1

1 1 1 1

complete

Cj

0 1 1 1

Ci 1 0 1 1

1 1 0 1

1 1 1 0

null diagonal

Batagelj et al. (1992b, 67) emphasized that ”although the definition of structural equiv-

alence is ’local’ it has ’global’ implications - structurally equivalent units behave in the

same way also to all other units. A position is defined in terms of all other units in a

network”.

3.2.2 Regular equivalence

The formal definition of regular equivalence was written by White and Reitz (1983). It

is generalization of structural equivalence and the idea is that actors ”are equivalent

if they link in equivalent ways to other units that are also equivalent” (Doreian et al.,

2005, 173).

The equivalence relation ≈ on A is a regular equivalence on network N = {A, R} if

and only if for all x, y, z ∈ A, x ≈ y implies both

(i) xRz ⇒ ∃w ∈ A : (yRw ∧ w ≈ z)
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(ii) zRx ⇒ ∃w ∈ A : (wRy ∧ w ≈ z)

Batagelj et al. (1992a, 67) prove that for regular equivalence only null and regular blocks

are possible. The term regular block is used for one-covered blocks, which have at least

one 1 in each row and column. An example of regular block is presented in Table 3.2.

3.2.3 Generalized equivalence

The concept of generalized equivalence was first introduced by (Doreian et al., 1994).

Batagelj et al. (1992a,b) showed that the structural equivalence is consistent only with

complete and null blocks and in regular equivalence only null and regular blocks are

allowed. In generalized concept of equivalence these requirements about connection

patterns are relaxed to allow broader types of connections. Two generalizations are

proposed by (Doreian et al., 1994, pg. 2):

(i) blocks, obtained by clustering based on generalized equivalence, can conform to

different types of equivalence,

(ii) each block in the image matrix can have a particular pattern where specific types

of equivalence are special cases of more general patterns.

First, we will present the weakening of the regular equivalence property (Doreian et al.,

1994, 2005). The one-covered or regular block has at least one 1 in each block and in

each column. This property can be viewed separately for rows and columns. A block

is row-regular if all of it rows are one covered, and a block is column-regular if all of its

columns are 1 covered. Blocks are presented in Table 3.2. The regular block is both

row-regular and column-regular.

The weakening of structural equivalence leads to row-dominant and column-dominant

blocks. The row-dominant block has at least one row one-covered, which means that

there is at least one actor from the first cluster with ties to all actors from the second

cluster. The column-dominant block has at least one actor from the second cluster who

is receiving ties from all actors in the first cluster. That means that column-dominant

block has at least one column one-covered. It is obvious, that complete block is both
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row-regular and column-regular.

In a row-functional block each actor from the first cluster has a tie to exactly one actor

from the second cluster. A column-functional block is one where each actor from the

second cluster has exactly one actor from the first cluster linked to it. If the block is

squared, the row-functional and column-functional blocks are the sparest possible reg-

ular blocks.

Table 3.2: Examples of ideal blocks (ties between actors of cluster Ci and Cj) for gener-

alized type of equivalence

Cj

1 1 1 1 1

Ci 1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

complete

Cj

0 1 0 0 0

Ci 1 1 1 1 1

0 0 0 0 0

0 0 0 1 0

row-dominant

Cj

0 0 1 0 0

Ci 0 0 1 1 0

1 1 1 0 0

0 0 1 0 1

col-dominant

Cj

0 1 0 0 0

Ci 1 0 1 1 0

0 0 1 0 1

1 1 0 0 0

regular

Cj

0 1 0 0 0

X 0 1 1 0 0

1 0 1 0 0

0 1 0 0 1

row-regular

Cj

0 1 0 1 0

Ci 1 0 1 0 0

1 1 0 1 1

0 0 0 0 0

col-regular

Cj

0 0 0 0 0

Ci 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

null

Cj

0 0 0 1 0

Ci 0 0 1 0 0

1 0 0 0 0

0 0 0 1 0

row-functional

Cj

1 0 0 0

0 1 0 0

Ci 0 0 1 0

0 0 0 0

0 0 0 1

col-functional

3.3 Different approaches to blockmodeling

Batagelj et al. (1992b, 66) distinguish two main approaches to blockmodeling problems

(i) The indirect approach reduced the blockmodeling problem to standard data anal-
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ysis problem (cluster analysis, multidimensional scaling) where the dissimilarity

matrix between actors based on selected type of equivalence is computed.

(ii) In the direct approach criterion function based on selected type of equivalence is

constructed and the best partition that best fit the selected criterion function is

directly searched with optimization algorithm.

Both direct and indirect approaches have been implemented in Pajek (Batagelj and Mr-

var, 2010a,b), in an R-package called Blockmodeling (Žiberna, 2008) in UCINET (Bor-

gatti et al., 2002), and in some other programs.

The dissertation focuses on generalized blockmodeling which is an example of direct

approach and is in detailed presented in the next section.

3.4 Generalized blockmodeling

The concept of generalized blockmodeling was proposed by (Doreian et al., 2005). Dor-

eian et al. (2005, 25-26) stated three main characteristics of generalized blockmodeling

compared to conventional blockmodeling:

(i) In the direct approach only the network data are used (without transformation to

dissimilarity measures first).

(ii) A broader set of block types is introduced, which can enable the analysts a better

capture of the network structure.

(iii) The blockmodel is specified beyond just permitting block types and allow spec-

ification of location of block types and membership of the clusters. This means

that analyst’s knowledge can be incorporated in prespecifed blockmodels prior

to blockmodeling analysis.

In his dissertation (Žiberna, 2007) distinguished four types of generalized blockmodel-

ing: binary blockmodeling4, valued blockmodeling, homogeneity blockmodeling and

4The term is used for the generalized blockmodeling of binary networks as introduced in Doreian

et al. (2005).
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implicit blockmodeling. He stated that the most important difference between the

above types of generalized blockmodeling is ”an appropriate definition of the incon-

sistencies of the empirical blocks with the ideal ones” (Žiberna, 2007, 46). The last three

types of blockmodeling analyze the valued networks and are in detailed presented and

evaluated in his dissertation.

In this dissertation the main focus will be on generalized blockmodeling with binary

networks. The term ’generalized’ is mainly omitted in the dissertation and just the

term ’blockmodeling’ is used.

3.4.1 Criterion function

As mentioned before, the criterion function evaluates the partition and based on the

minimal value the best partition is selected. If the value of criterion function is zero,

that means that obtained partition perfectly matches the selected equivalence.

The criterion function was first presented in (Batagelj et al., 1992b,a) and is extendedly

presented also in (Doreian et al., 2005, 185-187, 223-226).

First, some additional notation will be presented:

• C = {C1, C2, . . . , Ck} is a partition of actors A into k clusters.

• R(Ci, Cj) denotes an empirical block and T(Ci, Cj) is an allowed block or ideal

block corresponding to block R(Ci, Cj). The set of all feasible block types is de-

noted by T .

The deviation δ
(

Ci, Cj; T
)

measures the deviation or inconsistency of an empirical block

R(Ci, Cj) from the nearest ideal block T ∈ T(Ci, Cj). The deviations measures for dif-

ferent block types are presented in Table 3.3.

Based on the deviation δ
(

Ci, Cj; T
)

the block-error or block inconsistency of block R(Ci, Cj)

for type T can be defined as

ε
(

Ci, Cj; T
)

= w(T)δ
(

Ci, Cj; T
)

(3.1)
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Table 3.3: Deviation measures for different types of blocks

Connection block type inconsistencies position of the block

or block type δ
(

Ci, Cj; T
)

Null st nondiagonal

st + min(0, nr − 2sd) diagonal

Complete nrnc − st nondiagonal

nrnc − st + min(2sd − nr, 0) diagonal

Row-dominant (nc − mr − 1)nr diagonal, sd = 0

(nc − mr)nr otherwise

Column-dominant (nr − mc − 1)nc diagonal, sd = 0

(nr − mc)nc otherwise

Row-regular (nr − pr)nc

Column-regular (nc − pc)nr

Regular (nr − pr)nc + (nc − pc)nr

Row-functional st − pr + (nr − pr)pc

Column-functional st − pc + (nc − pc)pr

Legend:

st - total block sum = number of 1s in a block

sd - diagonal block sum = number of 1s in a diagonal

nr - number of rows in a block

nc - number of columns in a block

st - total block sum = number of 1s in a block

pr - number of non-null rows in a block

pc - number of non-null columns in a block

mr - maximal row sum

mc - maximal column sum

where w(T) > 0 is a weight of type T. Usually, the weights are set to 1, although differ-

ent block types can contribute differently and departures from one type of blocks can

be seen more important than from the others.

The block inconsistency (Equation 3.1) can be extended to the set of feasible block types
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T as

ε
(

Ci, Cj; T
)

= min
T∈T

(

Ci, Cj; T
)

. (3.2)

Block inconsistencies are combined in total inconsistency or blockmodeling criterion func-

tion P(C) as a sum of inconsistencies within each block (Equation 3.2) across all blocks

as

P(C; T ) = ∑
Ci,Cj∈C

ε
(

Ci, Cj; T
)

. (3.3)

The criterion function (Equation 3.3) has two properties

(i) P(C) ≥ 0 and

(ii) P(C) = 0 if and only if we obtain the exact blockmodeling, that is if the partition

C perfectly matches the selected equivalence defined with allowed block types.

Doreian et al. (1994, 2005) emphasized that different definitions of equivalence lead to

distinct partition. Therefore each selection of block types from general set of blocks

presented in Table 3.2 will usually not lead lead to the same partition as that obtained

with structural or regular equivalence.

Another remark made by Doreian et al. (1994, 25) is, that generalized blockmodeling

with the full set of allowed block types will ”permit in most case, the establishment

of blockmodel that fit very well”. The blockmodels with zero inconsistencies can be

fitted to most empirical networks. This should not be seen as a problem, but as an

opportunity for close examination of the blocks and therefore richer characterization

of the fundamental empirical network.

3.4.2 A clustering algorithm

As mentioned before, generalized blockmodeling directly searches for the best fitting

partition according to the selected criterion function.

Batagelj et al. (1992b, 80) proposed the use of a local optimization relocation algorithm:

49



Determine the initial clustering C;

repeat:

If in the neighborhood of the current clustering C

there exists a clustering C′ such that P(C′) < P(C)

then move to clustering C′.

Usually, the neighborhood of the current clustering C is determined by two following

transformations:

(i) moving an actor from one cluster to another cluster,

(ii) interchanging of two actors from different clusters.

In order to obtain a good solution, the above procedure should be repeated with differ-

ent random initial partitions C. Because this is a local optimization algorithm, there is

no guarantee that the partition (or partitions) with minimal value of criterion function

P(C) will be found. In our simulations, presented later in the dissertation, we run each

individual blockmodeling algorithm with 100 randomly selected partitions. In general,

the risk of missing some optimal best fitting partitions increases with increasing size

of a network. Therefore for larger network the number of starting partitions should be

larger, which means that the optimization algorithm could be very time consuming.

According to presented definitions of different types of equivalences (Section 3.2),

where main advantage of generalized equivalence is its adaptability to the problem

of interest or to data, and remark made by Batagelj et al. (1992b) that definition of

structural equivalence is ’local’ and it has ’global’ implications, the following thesis is

set up:

Thesis 1. Structural equivalence gives more stable results than regular (or other generalized

types) equivalence.

The stability of blockmodeling in the above thesis will be measured with two indices

of network stability: the Adjusted Rand Index and the proportion of incorrect block

types presented in Chapter 5.
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Beside the Thesis 1 the research question about predictive power of different network

characteristics to the stability of blockmodeling was established as well. The more

detailed notation is as follows:

Research question 1. To what extent are the (relative) differences in network characteristics

(e.g. network density, reciprocity, number of different types of dyads) and correlation and/or

Euclidean distance between vectors of vertex properties (e.g. centrality measures) able to predict

the results of blockmodeling (stability of partition and type of blockmodel)?

The network characteristics and vertex properties from the research question are pre-

sented in Section 2.2, while the results of simulation studies established based on that

question are presented in Chapter 8.
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4 Design errors

In this chapter errors in research process introduced through questionnaire design,

selection of actors and/or misreporting or unreporting of actors are presented. At the

end of chapter brief comparison of errors in social network analysis and errors in usual

social science research is presented.

Surveys and questionnaires5 are the most used techniques (in the absence of archival

data also the most practical techniques) for gathering social network data (Marsden,

2005; Wasserman and Faust, 1998). ”Surveys allow investigators to decide on relation-

ships to measure and on actors/objects to be approached for data”(Marsden, 2005, 10).

All methods have the potential for introducing different types of errors, including mea-

surement errors, and it is necessary to consider the implications of these errors in two

ways. One is to consider how certain types of errors can be reduced (a very good thing

in its own right) and the other is to assess the impact of errors on the results obtained

from using network analytic tools. Of course, the two implications of errors are not

unrelated, even though in the dissertation we mainly focus on the second assessment.

Errors have a variety of sources including boundary specification problems, , actor

non-response, and censoring vertex degree through a fixed choice design in network

surveys (Kossinets, 2006). These errors are often caused by the study design. Another

source of errors can be actors themselves through non-response and/or respondent

inaccuracy. Marsden (2005, 10) emphasized that surveys introduce artificiality and

findings or collected data ”rest heavily on the presumed validity of self-reports”. All

5Wasserman and Faust (1998, 45) allege three main different questions formats: roster vs. free recall,

free vs. fixed choice and ratings vs. complete rankings.
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types of design errors found in literature are composed and presented in broader set

on Figure 4.1. The first cut is to distinguish boundary specification problems, question-

naire design, and errors due to respondents. In the next sections causes and researched

consequences of different error types are presented in detail.

Figure 4.1: Scheme of errors in research design

The main research question in the dissertation is to estimate the sensitivity of block-

modeling to the errors in the research design. More precisely, the following research

question was established:

Research question 2. How stable is blockmodeling procedure to different types and amounts

of errors?

4.1 Boundary specification problem

The boundary specification problem concerns rules of inclusion for actors in a studied

network (Laumann et al., 1989). The distinction between two approaches can be made,
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the realist and the nominalist approach. The first approach for defining network bound-

aries is realist in the sense that actors in the network determine the boundaries of their

network alone and identify their common membership in a network. In a nominal-

ist approach, network boundaries are defined by researchers, most often using some

membership criterion. The criterion for inclusion of actor can be defined based on ac-

tor (his/her status or influence), relations or activity and it can also be a combination

of all three factors. Neither approach is guaranteed to identify network boundaries

correctly and, while they can be combined, the resulting data are still likely to have

errors regarding boundaries.

Doreian and Woodard (1994, 268) observed that the risk of incorrectly specified bound-

aries ”is particularly acute for analyses resting on a positional conceptualization of so-

cial structure where a position is defined in terms of the pattern of ties to all other actors

of the network”. They proposed using k-cores6 for determining network boundaries.

However, this is predicated on the collection of some network data and may be best

accompanied by an expanding network selection based on the in-degree (of yet to be

included actors). The incorrect location of a boundary can take three forms:

(i) including actors who do not belong,

(ii) excluding actors who do belong, and

(iii) both incorrect inclusions of some actors and exclusions of others.

Exclusion of actors through an incorrect boundary location implies that all of their po-

tential data are lost regardless of the instrument used.

Kossinets (2006) showed that deletion of actors from a network, which illustrates incor-

rectly specified network boundaries, can significantly change network characteristics.

E.g., the results of simulations (on a collaboration network) revealed that mean vertex

degree decreases when the fraction of missing vertices increases.

6A k-core is a (cohesive) subset of network actors where subset actors are connected to at least k

actors from the same subset. This can be computed based on in-degree, out-degree or all-degree of

vertices.
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Laumann et al. (1989, 63) emphasized that specification of rules of inclusion ”pertain

both to the selection of actors or nodes for the network and to the choice of types of

relationships among those actors to be studied”. If the relations are used to indicate

network boundaries this strategy is termed as relational strategy. Marsden (2011)[371]

emphasized that ”positional, event-based, reputational, and relational criteria can be

used together to identify population for network studies, a study might begin with a

list of actors included on a positional basis, and supplement it using event-based or

reputational criteria before fieldwork begins”.

The boundary specification problem needs to be distinguished from the network sam-

pling. In the whole network studies when boundaries are set, all actors are included

in the research without additional sampling and it is assumed that all dyadic relation-

ships are observed or measured7. Marsden (2011, 371) emphasized that the boundary

specification problem ”often results in a complete listing of actors or rooster of the

study population”.

The assumption about completely observed presence or absence of ties between all

actors is clearly not true in practice when networks are collected through sample sur-

veys (Handcock and Gile, 2007). Compared to the social science surveys, network

surveys rarely draw samples (Marsden, 2011). The sampling procedure is needed in

the large-scale social systems where the complete enumeration of the members is not

possible (Granovetter, 1976; Scott, 2000). The sampling in social networks should lead

general principles from survey research: ”a representative sample of cases is drawn

from the sample population in question, their relations are investigated, and sampled

networks are constructed that will be homologous to the partial system that occur in

the population as a whole” (Scott, 2000, 59). The reality is not so promising and simple,

because in social network area there are no rules for ”judging the quality of relational

data derived from a sample” (Scott, 2000, 59) and ”we are left guessing about the rep-

resentativeness of the patterns in the social relations found” (Granovetter, 1976, 1288).

7Of course, other errors from research design (e.g. non-response, errors due to fix choice design....)

can be present.
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The simplest sampling method8 for social network requests a full membership list,

then the random samples with replacement are drawn and each sample member is

asked a sociometric question, e.g. whom he or she knows from the list (Granovetter,

1976; Erickson et al., 1981; Erickson and Nosanchuk, 1983). The described procedure9

was successfully used for estimation of network density and average outdegree of an

actor, which are the global properties of the network. On the other hand, ”it is almost

impossible to go beyond such basic parameters to measure the more qualitative aspects

of network structure”(Scott, 2000, 59). In the sampling procedure local properties are

more difficult to estimate and rare events are poorly represented (Granovetter, 1976,

1301).

4.2 Introduced by design

Network instruments are another source for introducing errors. Three different ques-

tion formats are often considered when designing instruments for collecting social net-

work data:

(i) free or fixed choice designs,

(ii) using recall or recognition of actors, and

(iii) giving or receiving social support with different direction of question.

8E.g. Lee et al. (2006) distinguished three kinds of sampling methods; node sampling, link sampling

and snowball sampling. In his definition of node sampling network consists of randomly chosen nodes

and ties among them. In link sampling procedure firstly ties are randomly selected and secondly all

nodes attached to those ties are kept in the network.
9It should be noted that the sampling procedure has also its own problems where ”the network

sample or samples may be based on a list imperfectly reflecting the target population, the samples may

be drawn non-randomly from the list, and response may be non-random”, e.g actors with smaller degree

may be less active and therefore less willing to participate in the study. (Erickson and Nosanchuk, 1983,

367).
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4.2.1 Free or fixed choice design

The questionnaire or name generator in social network collection process could have

instructions about predetermined number of actors (or choices) which each network

member has to select or not. The first question format is known as fixed choice design

and the second as free choice design.

The potential problems of fixed choice design were pointed out by (Holland and Lein-

hardt, 1973, 90). They distinguished three possibilities which may occur in a fixed-

choice design where l choices are allowed:

(i) true structure is exactly the same as the observed structure in a sociogram (e.g.

an actor has exactly l friends),

(ii) a subset of choices is presented in a sociogram (e.g. an actor has more than l

friends), and

(iii) the true structure is a subset of ties in a sociogram (e.g. an actor has less than l

friends and he has to choose more persons to satisfy the requirements of design).

Therefore, when a fixed number (l) of choices is specified in an instrument, actors with

more ties than the threshold l are forced to leave out alters (case (ii)) and actors with

fewer ties can add nonexistent ties to reach the threshold and to satisfy the require-

ments of design (case (iii)). While it is possible that the true structure is exactly the

same as the observed structure with a fixed choice design, it is likely that either the

true structure is contained within the observed structure or, even more likely, the ob-

served structure is contained within the real structure10. The second case implies the

presence of missing data for specific ties and in the third case the ties are misreported.

”Fixed choice nominations can easily lead to a non-random missing data pattern”

(Kossinets, 2006, 253). Popular individuals with many contacts are more likely to be

chosen by their friends and friends of your friends are very likely to be your friends too

- transitivity patterns in a network (Feld, 1991; Newman, 2003). Marsden (2011, 373)

10Of course, combination of both problems can be present in the collected network data.
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emphasized the practical advantages of fixed choice nominations in survey adminis-

tration where ”they simplify and specify a sociometric task for respondents, thereby

reducing burden”.

A free-choice design has the potential to allow the collection of richer network data, but it

does not automatically eliminate errors. These can also arise from respondents having

different interpretations of the terms in a question. For example, the term ’friend’ can

have different components ranging from ’acquaintance’ to best friend (Holland and

Leinhardt, 1973; Hlebec and Kogovšek, 2006). Additionally, the graphical appear-

ance of the name generator can affect responses more than the wording of questions

or specific instructions provided by researchers (Manfreda et al., 2004; Vehovar et al.,

2008). In a web survey for collecting ego-centered networks, it was found out that re-

spondents were more influenced by graphical design than by wording of question and

instructions. From among 30 provided spaces for alter naming, 15% of respondents in

shorter and 12% in longer version of name generator filled in all possible spaces.

4.2.2 Recall or recognition

Another instrument design choice concerns the elicitation of recalled or recognized

actors. The recognition method provides all actors a complete list, or rooster, of other

members in a network (Wasserman and Faust, 1998). On the other hand, if the respon-

dents have to nominate the actors without the help of rooster, the questionnaire format

is called (free recall).

Brewer and Webster (2000, 362) based on literature review argued that ”no prior re-

search has examined the effects of forgetting on the measurement of structural proper-

ties of personal and social network”. In their study of friendship ties collected among

students on the campus11, they found out that on average actors recalled 80% of their

friends. The forgotten (or recognized) friends seem to be more peripheral than re-

called ones. Beside expected differences in network density of recalled and recognized

11Considering an e-mail correspondence with Cynthia Webster in March 2010 the dataset is not avail-

able anymore, because the authorization period to use the data has expired.
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networks, there were also significant differences in number of cliques, degree central-

ization and closeness. Brewer (2000) found out that people forget a substantial pro-

portion of interactions with others and that the number of recalled ties correlates with

the number of forgotten ties. Unfortunately, there seems to be no good predictors of

actors’ level of forgetting.

The delineated structure of networks based on a recall or a recognition design op-

tion can differ and the notion of ’forgotten’ alters (if they do belong to the network)

can imply serious missing data errors. Brewer (2000, 29) emphasized that ”forgot-

ten network ties would make recalled network data incomplete and possibly distort

measurement of various characteristics and structural features of personal and social

networks”. Therefore, collection methods based on recognition or objective records

should be used to assure complete or at least more accurate network data (Stork and

Richards, 1992; Brewer, 2000). Use of rooster also simplifies the reporting task for actors

by reminding them of eligible network members (Marsden, 2011). He emphasized that

both methods require careful manipulation with members’ names. The recall method

has to ensure that actors named by different names (e.g. nicknames, spelling varia-

tions..) are correctly matched and names on a list in recognition method should be

known to (or recognized by) all network members.

The average number of recognized ties tends to be higher than the number of recalled

ties (Hlebec, 1992, 1993). Hlebec and Ferligoj (2001) also found out that free recall pro-

cedure produces strong ties and it is robust to the effects of measurement procedure

and respondents mood.

Although ego-centered networks are not subject of our research, the results of Bell

et al. (2007, 288) are interesting. They studied patterns of forgetting in ego-centered

networks with three different relations. The main finding was that more intimate re-

lations are less likely to be forgotten. For example, people forget 6% of 30-days sex

partners, 18% of drug use partners and more than quarter (26%) of close friends. His

findings that more specific name generators produce less errors was confirmed also by
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Wright and Pescosolido (2002) who established that forgetfulness is largely random,

because he did not find any systematic predictors (with regard to actor’s or network’s

characteristics.)

4.2.3 Direction of questions

Some social relations have an intrinsic direction. An obvious example is the provision

of social support. Support relationships can be gathered in ways that are attentive

to directional flow of support (Stork and Richards, 1992; Ferligoj and Hlebec, 1999).

The original question asks about alters from whom respondents request support and

a reversed question asking about alters asking them for support. The perceptions of

given and received social support (in small networks up to 30 actors) are equally stable

(Ferligoj and Hlebec, 1999; Hlebec and Ferligoj, 2002) but they also differ. Asking about

support flow in only one direction runs the risk of missing some or all social support

ties for an actor.

4.3 Caused by actors

Errors due to actors (beyond those introduced by the instrument design) can be di-

vided into three categories:

(i) actor non-response,

(ii) non-response regarding an item or a tie, and

(iii) measurement errors in recorded ties.

4.3.1 Actor non-response

Let n denote the number of vertices in a network and m the number of actors providing

no responses (for whatever reason). Each non-respondent implies (n − 1) missing ties.

The actor response rate is (1 − m/n). It is straightforward to show that the relational

response rate, which is defined as the proportion of potentially observed ties that are
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measured, is also (1 − m/n) (Knoke and Yang, 2008).

For the (n − m) respondents, there are (n − m)(n − m − 1) ties for which all data can

be collected, these ties are denoted as fully observed ties between respondents (Figure

4.2(a)). Assuming that data are obtained for all of them, the proportion of these fully

observed network ties is (n − m)(n − m − 1)/n(n − 1). There are (n − m)m partial de-

scriptions of ties between respondents and non-respondents. The proportion of these

partially observed ties is (n − m)m/n(n − 1). The number of missed or undescribed ties

is m(n − 1) and their proportion is m(n − 1)/n(n − 1) = m/n. They consist of:

(i) partially undescribed ties between non-respondents and respondents, the propor-

tion of these ties is m(n − m)/n(n − 1),

(ii) completely undescribed ties between non-respondents, whose proportion is m(m −
1)/n(n − 1).

(a) Scheme

0 1 2 3 4 5 6 7 8 9 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of non−respondents

P
ro

po
rt

io
n 

of
 ti

es

Relational response rate
Completely observed

Partially observed
Missing ties

(b) Proportions of types of ties

Figure 4.2: Types of ties in network with non-respondents

Figure 4.2(b) shows these proportions for a network with actors (n = 15) and number

of non-respondents between 0 and 10 (0 ≤ m ≤ 10). As shown in Figure 4.2(b), the

relational response rate declines linearly with the number of actors not responding,

consistent with Knoke and Yang (2008). The proportions of the fully observed part

of the network ties decline in a more extreme (curvilinear) way. The proportion of
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unobserved (or missed) ties increases in a linear fashion. The curve for the partially

observed part of the network first increases and then decreases as the level of non-

response increases. As a specific example, for network with 15 actors (n = 15) and

three non-respondents (m = 3), the actor response rate (and the relational response

rate) is 0.8, the proportion of fully described ties is 0.63, the proportion of partially de-

scribed ties is 0.17 and the proportion of missing ties is 0.20. Among the missing ties

the proportion of completely undescribed ties is equal to 0.03. Figure 4.3.1 suggests

that non-response can be a major problem, one that gets worse as it increases.

Stork and Richards (1992) reviewed the network literature and reported that response

rates varied from 65% to 90%. Costenbader and Valente (2003), based on sample of 59

networks, a wider range between 51% and 100%. They excluded four networks from

their analysis because their response rates were lower than 50%. The extreme kinds of

examples shown in the right side of Figure 4.2(b) are possible in empirical research.

The effects of actor non-response on network properties such as network density, aver-

age vertex degree, out-degree or in-degree, clustering coefficients, transitivity, assortiv-

ity, and geodesic distances have been examined (Stork and Richards, 1992; Costen-

bader and Valente, 2003; Kossinets, 2006; Huisman, 2009). The effects of four types

of random errors (edge deletion, node deletion, edge addition, and node addition) on

centrality measures were studied by Borgatti et al. (2006). ”Both the node-removal

and edge-removal cases can be thought of as forms of sampling from the network,

since what remains after removal is a random sample of the network” Borgatti et al.

(2006, 126). According to our definition (discussed in detail in Section 4.3.1.1 ), the

node removal is an example of actor non-response treatment known as complete-case

approach and the edge-removal case is in fact item non-response (Section 4.3.2). They

used random networks of different sizes and densities and established that the effects

of different kinds of errors are similar to each other. The accuracy of centrality mea-

sures (degree, closeness, betweenness, and eigenvector centrality) predictably declines

with higher amount of introduced errors.
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Robins et al. (2004, 258) point out that ”many network studies are based on the premise

that in order to understand some social phenomenon of interest, it is necessary to un-

derstand the arrangement of network ties into larger network structures and sub-structures”.

In any analysis where this premise is correct, a missing tie causes limited possibili-

ties to describe the context or position of actors with missing ties in a whole network.

Blockmodeling (Doreian et al., 2005), presented in detailed in Section 3, is one way of

delineating the wider structures and substructures of a network and the results ob-

tained may be vulnerable to the impact of non-response. The results of blockmodeling

stability to actor non-response is presented in Section 7.3.

4.3.1.1 Non-response (or missing) data treatments

Stork and Richards (1992) suggest that the presence of non-respondents for collected

network data can be treated in three different ways: (i) using a complete-case analysis,

(ii) using an available-case analysis, and (iii) imputing data values as replacements of

the missing data. We expand this list to consider five different missing data treatments.

The impacts of these procedures on delineated blockmodels are discussed in Section

7.3.

The complete-case approach

If we have non-respondents in a network, the outgoing ties for each non-respondent

are not reported. The results are rows of missing ties in the matrix representation of

the observed network. Consider the example shown in Figure 4.3 (left panel) having

three non-respondents (B2, B6, and G1). Note that some of the respondents (e.g. B1

and B5) report ties to the non-respondents (both B1 and B5 report ties to B2 and B6).

The complete-case approach, also known as ’listwise’ deletion of actors (Huisman

and Steglich, 2008), removes not only the rows for the non-respondents but also their

columns. Removing columns means that all partially described ties (as reported by one

actor) are removed from the analysis. These incoming ties to non-respondent actors,

while recorded, are deleted. The result is the smaller network as shown in Figure 4.3

(right panel).

63



Figure 4.3: Network where three non-respondents (B2, B6 and G1) provide no outgoing

ties (on the left) and the smaller network obtained with complete-case approach (on the

right)

Robins et al. (2004) argue that this approach amounts to respecifying the network

boundary nonrespondents are removed to create a smaller network. The complete

case analysis might be valid when non-respondents are missing completely at random.

They emphasized that especially for large proportion of non-respondents the simple

exclusion (the complete-case approach) of actors is not appropriate method, because

there is no evidence whether the non-respondents are missing completely at random,

which means that the connection patterns between respondents and non-respondents

are the same. However, if this does not hold then the results may be biased because

the sample of remaining actors may be unrepresentative (Schafer and Graham, 2002).

Stork and Richards (1992, 197) argue that the complete approach ”seriously weakens

any analysis at the system level”. On the other hand, Schafer and Graham (2002) em-

phasized that the main advantage of complete-case approach is simplicity and that

method can be effected if only a small part of the network is discarded, i. e. if the

proportion of non-respondents is small.

Reconstruction

An available case approach uses both the completely described ties between respondents

and the partially described ties between respondents and non-respondents. In doing
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so, some data transformations are used.

Reconstruction of the missing outgoing ties of non-respondents occurs when they are

replaced by the observed incoming ties to those actors (Stork and Richards, 1992; Huis-

man, 2009). Therefore the main advantage of this treatment, compared to the com-

plete case treatment, is the use of all partially described ties between respondents and

non-respondents. The row of missing ties or unmeasured ties is replaced with corre-

sponding column for each missing respondent. The result is that ties involving non-

respondents and respondents become symmetric. Stork and Richards (1992) empha-

sized that reconstruction is not the same as imputation, because in the reconstruction

procedure no new ties are added. The reconstruction simply allows that the relation-

ship between two persons, in essence, can be measured by using one report of the

tie. However, for two non-respondents the reconstruction of ties between them is not

possible. Some additional imputations are required to record data for them. In the

simplest case, those unavailable ties (marked as NA in Figure 4.4) have zeros imputed.

More satisfactory imputations are presented later in this section on page 54.

Figure 4.4 present network with 8 respondents and three non-respondents B2, B6 and

G1. Each row of a non-respondent is in reconstruction procedure replaced by corre-

sponding column, e.g a second row is replaced by a second column. Because we have

three non-respondents in the network, six ties (3 · (3 − 1) = 6) between them can not

be obtained without additional imputations. In the simplest solution, the zeros are im-

puted instead of the missing ties between two non-respondents (right panel on Figure

4.4).

Stork and Richards (1992, 198) argued that the two criteria should be met when recon-

struction is used:

(i) the non-respondents and the respondents should not differ systematically from

each other, and

(ii) the available data from the respondents are useful and reliable description of ties

between two actors.
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Figure 4.4: A network with three non-respondents (B2, B6 and G1) obtained by re-

construction with unavailable ties between non-respondents (left) and with imputed

zeroes for ties between non-respondents (right)

The second criterion can be more easily met in undirected networks (e.g. conversation)

than in directed ones (e.g. giving advice).

The respondents and non-respondents should be compared (if possible) in two ways:

”using individual-level data and ’using data that described their pattern of commu-

nication12” (Stork and Richards, 1992, 198). In the comparison on individual actor

level variables such as gender, age, education, professional training, level in the orga-

nization and other variables reasonable in the research study could be used. Patterns

between respondents and non-respondents could be investigated in terms of received

ties (incoming ties) by studying frequency and strength of ties and characteristics of

the nominators (from whom ties are received).

Imputations

Imputations of ties in social networks replace missing ties by estimates to create an

apparently full data set. There are four types of simple imputation procedures where

each missing value is imputed only once (Schafer and Graham, 2002; Huisman, 2009):

(i) imputation of unconditional means,

(ii) imputations from unconditional distributions,

12In more general networks, patterns of relation under investigation.
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(iii) imputations of conditional means, and

(iv) imputations from conditional distributions.

Here we focus on the first group of imputations. Huisman (2009) outlines three possi-

ble methods for imputing unconditional means in social networks. Only two of those

methods are relevant here, using the total mean and using means of incoming ties. The

third possibility of imputing unconditional means is the average number of outgoing rela-

tions of an actor or ‘person mean’. For complete actor non-response, where all outgoing

ties are missing, this method is inapplicable.

Using the total mean

The first method uses the average number of ties in the network. This is the ‘total mean’

of the observed ties which is also the density of a network. For binary networks this

means imputing zeros instead of missing ties in sparse networks and ones in dense

networks. Some threshold is required for this imputation. Huisman (2009) used 0.5 as

the threshold in his simulation study. We note that (Costenbader and Valente, 2003)

reported network densities between 0.01 and 0.49 for a sample of 59 networks.

Using means of incoming ties

The second option imputes the average value of incoming ties of an actor which is known

also as the item mean. For binary networks this implies imputing ones if actors are pop-

ular given their received ties. Operationally, this also requires a threshold. When this

is set at 0.5, a tie is imputed if the actor is chosen by at least half of respondent actors

(left panel of Figure 4.5). More precisely, for each missing outgoing tie xij (i 6= j) of the

non-respondent i, the mean value of all available incoming ties of actor j is imputed.

For binary networks, this implies the imputation of the modal value of the incoming

ties and this procedure is termed imputations based on the mode.

Left panel in Figure 4.5 shows imputed values based on mode value (of incoming ties).

There are three non-respondents, denoted with bold letters, B2, B6 and F1 (missing ties

presented on left panel in Figure 4.3). Actor B2 has four incoming ties out of eight pos-

sible ties from respondents which meet the criteria that is chosen by at least half of the
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respondent actors. Therefore 1 (a tie) is imputed for a tie between non-respondents B5

and B6 to actor B2. On the other hand, other actors have less than four incoming ties,

therefore no ties (zeros) are imputed.

Figure 4.5: Network with three non-respondents (B2, B6 and G1) obtained by imputa-

tions based on mode (left) and by null tie imputation (right)

Null tie imputations

Robins et al. (2004, 261) note that ”even when reconstruction is not appropriate, it may

still be useful to retain non-respondents in the data set, but only to analyze those net-

work constructs that can be defined in terms of incoming ties”. In such a case the

matrix has rows of 0s for each non-respondent and this treatment will be marked as

null tie imputations (Figure 4.5). Although, the use of null tie imputation is not consis-

tent with the spirit of their proposal, we include it for the sake of completeness. If the

network is sparse (the network density is below 0.50), the null imputation treatment is

equal to the total mean treatment.

Reconstruction plus mode-based imputations

In the reconstruction procedure, ties between non-respondents cannot be replaced

without additional imputations. It is possible to combine the reconstruction procedure

with imputations based on the mode for those ties (Figure 4.6). As presented on left

panel in Figure 4.4, we have six ties between non-respondents. Unobserved ties from

non-respondents B6 and G1 ti actor B2 are replaced by a tie with imputations based on
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mode (because half of the respondents (four actors of eight respondents) nominate the

non-respondent B2), for other unobserved ties zeros are imputed.

Figure 4.6: Network with three non-respondents obtained by reconstruction plus im-

putations based on the mode.

There are also other possibilities for imputing ties between non-respondents. For ex-

ample, Huisman (2009) suggested random imputations proportional to the observed

density where the probability of a tie is proportional to the observed network density.

We do not consider these other alternatives.

Other possible non-response data treatments include: a reconstruction procedure where

ties between non-respondents are imputed randomly with a probability proportional

to the network density (Huisman, 2009); imputation by preferential attachment where

the probability of a tie from actor i to actor j depends on the indegree of actor j (Huis-

man and Steglich, 2008) and ’hot deck’ imputations where actor attributes are used.

Huisman (2009) used both categorical data (about actors) and structural properties

(e.g. indegree) to locate a completely observed donor actor as a source to substitute

ties for a non-responding actor. We do not consider actor attributes here.

Robins et al. (2004, 261) argued that none of the strategies for missing data problem

is universally successful and that ”judgments about the appropriateness of any strat-

egy will almost certain depend both on the researchers’ beliefs about the underlying
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process by which the network data are generated and on the kind of network charac-

teristic that the researcher intends to measure”.

The actor non-response is an important source of errors in research design which is too

often overlooked by the researchers. Instead of clear notation of absent ties, they are

coded with zeros as non-existing ties. The problem of non-response can be solved (or

at least reduced) with selection of the appropriate treatment. Therefore we will try to

answer the following question:

Thesis 2. The stability of blockmodeling with non-respondents (compared to the whole network

without non-respondents) is higher when reconstruction is used than imputations of uncondi-

tional means (based on the number on incoming ties).

4.3.2 Non-response on item or tie

Item or tie non-response occurs, when an actor participates in the study, but data on

particular items or ties are missing, because a respondent does not indicate presence

or absence of particular tie or ties (Rumsey, 1993; Borgatti et al., 2006; Huisman and

Steglich, 2008; Huisman, 2009). ”While we may have an explicitly defined network

it is always possible that we are missing certain important edges” (Adar and Ré, 2007,

27).

The partial informations for the incompletely observed actors are available and should

be used to ”obtain (better) estimates of the structural properties of the actors and the

network, and may give information on the nature of the missing data mechanism”

(Huisman, 2009, 3).

The missing data on relations (or non-response on tie) were studied in personal net-

works by Burt in 1987. He found out that missing relations are the weak relations

and that complete network data are collected among close discussion partners. The

respondents with different characteristics tend to have different impact on incomplete

data. For example, discussion relations reported by women are less likely to be miss-

ing than those reported by men, relations are more likely to be incomplete if reported
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by blacks, and higher education have negative effect on completely reported relational

data. He emphasized that ”Missing data are doubly a course to a survey network anal-

ysis. First, network items are more complex than the usual opinion survey item and

so might seem more likely to generate missing data. Second, network analysis is espe-

cially sensitive to missing data” (Burt, 1987, 63).

Treatments of actor non-response (presented in 4.3.1.1) can be used also to treat miss-

ing data due to item non-response. Instead of a whole row of unavailable ties, in item-

nonresponse only a few ties are missing. In the complete-case approach the respondents

with incompletely reported ties will be removed from the analysis (deletion of rows

with missing data and the corresponding columns)13. The use of reconstruction pro-

cedure in item non-response case means that unreported tie rij is replaced with an

observed tie rji. In case when both ties rij and rji are unobserved, reconstruction pro-

cedure is not possible. In the simplest case a zero is imputed (treatment called recon-

struction) and in second case imputations based on mode are used (treatment called

reconstruction plus mode). In the null tie imputation procedure a zero is imputed in-

stead of the unobserved tie. If a tie rij is missing, the mode value of incoming ties of

actor j can be used in imputations based on mode.

4.3.3 Measurement errors

Measurement error occurs when there is a discrepancy between the true value of a

concept and the observed (measured) value of that concept. The common notation is

that observations or measurements of a concept are an additive combination of true

score plus error (or noise) and this error is known or referred to as measurement error

(Wasserman and Faust, 1998, 59). The first introduction of measurement error in social

network analysis (in accordance with standard definition of measurement error) was

made by Holland and Leinhardt (1973) in 1973. They assumed (87) that ”all groups

possess an underlying pattern of generalized affect that is not directly observable but

which generates the responses of group members in sociometric tests. We call this un-

13If there is a large proportion of actors with non-reported tie(s), the use of complete case approach is

meaningless or even impossible (each actor has at least one unreported tie)
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derlying pattern the true structure of the group, and distinguish it from the observed

structure or sociogram.” They emphasize that the true structure is a hypothetical con-

struct that is necessarily unobservable. This means that ”there is no single, best or

obvious mathematical representation for it” (Holland and Leinhardt, 1973, 87). They

suggested also one possible representation of networks, a sociogram, which is a di-

rected graph model where nodes represent actors and arcs represent relations between

pairs of actors.

Holland and Leinhardt (1973, 87) defined the measurement error as missing or extra

tie in a network as:

”In sociometry measurement error occurs when, regardless of the cause,

the response made by a subject in a sociometric test fails to agree with the

underlying true structure. Measurements error in sociograms occurs for

two reasons: (1) no choice is recorded in the sociogram for a sentiment re-

lation that exist in the true structure or (2) a choice is recorded in the so-

ciograms for which there is no corresponding sentiment relation in the true

structure.”

The effects and representations of measurement errors in binary networks can be ex-

tended to valued networks where measurement error occurs when a wrong value (of

strength tie) is recorded.

Measurement errors can be random or systematic (Ferligoj et al., 1995; Viswanathan,

2005). ”Random error is any type of error that is inconsistent or does not repeat in the

same magnitude or direction except by chance” (Viswanathan, 2005, 98). The extent of

random error is assessed with reliability indexes of measurement. Systematic error has

consistent effects. This means that the differences between measured and true scores

tend to be consistently positive or negative. The presence (or absence) of systematic

errors is examined through the validity of measurement.

In the case of social networks, the definition of random measurement errors can be

written as follows: ”If misreporting is random, then even as each individual may re-
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port some interactions that do not exist, and omit others that do, the likelihood of any

particular misrepresentation would be unrelated with any other misrepresentations

and also unrelated to any characteristics of the individuals involved” (Feld and Carter,

2002, 367).

Feld and Carter (2002) also presented two types of systematic error in the measurement

of network ties:

(i) individuals over/underreporting others, which is called an expansiveness bias,

(ii) and individuals being over/underreported by others, which is called an attrac-

tiveness bias.

These error types are likely to arise from self-reported ties regarding the presence or ab-

sence of social ties, the most common method for gathering social network data (Mars-

den, 1990). There has been an extensive discussions regarding the differences between

ties reported by respondents (cognitive ties) and social ties recorded by researchers ob-

serving interactions of the respondents (observed ties) (Bernard and Killworth, 1977;

Killworth and Bernard, 1979 - 1980; Bernard et al., 1982; Freeman et al., 1987; Hammer,

1985; Krackhardt, 1987). The findings about accuracy of social network data were

rather negative. Bernard and Killworth (1977, 17) argued that ”people do not know,

with any accuracy, those with whom they communicate”. In the summary of the re-

viewed literature Bernard et al. (1984, 503) emphasized that ”half of what informants

report is probably incorrect in some way.” The inaccuracy of reports refer to a list of

nominations of an actor (e.g. with whom they communicate or have a relation) and

frequency of relations (Bernard et al., 1982).

Knoke and Yang (2008) define the discrepancy between self-reported ties and actual

behavioral ties as informant bias. We do not enter this debate as to which form is

’accurate’ or ’inaccurate’, but note only that real ties may be omitted from collected

network data and ties may be recorded when they do not exist.

The impact of different measurement characteristics on the reliability and validity of

whole networks was extensively studied by Ferligoj and Hlebec (Ferligoj and Hlebec,
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1999; Hlebec, 1999, 2001; Hlebec and Ferligoj, 2002). They found out that different

dimensions of social support are not equally reliable. The informational and the emo-

tional support are the most reliable and the material support is the least reliable. The

perceptions of received support and given support (direction of a question) are equally

stable. Similarly, the data collection method (recall or recognition) does not have a

large effect on the quality of measures. The least reliable is the binary response scale

and the most reliable is five point category scale (regardless of whether the labels are

used or not). Zemljič and Hlebec (2001, 2005) investigated the stability of measures of

centrality and prominence in whole networks. They found out that global measures

(e.g. flow betweenness) are more sensitive to measurement errors than local measures

(e.g. in-degree), that in-measures are more stable than out-measures and the reliability

of mentioned measures is higher when network is denser.

Adar and Ré (2007, 23) argued that translating the research techniques of social net-

work analysis to large scale network leads to new set of measurement instruments

for data collection where researchers ”can no longer be completely confident that data

about individuals, or the connections between them, are accurate”. An example of

large scale data are internet communities (e.g. Facebook, MySpace), where biases (or

errors) can appear due to application design where friends are added by default or

connections are added trough spamming process in an automated way.

4.4 Comparison of errors in social network data collec-

tion process and in ordinary surveys

In previous sections the design errors in social network collection process were pre-

sented. In this section we will compare those errors to errors arising in (ordinary)

social science surveys.

Groves (2004) distinguished four main types of errors:

i) Coverage error arising from failure to give any chance of selection into the sample

to some people from the population.
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ii) Nonresponse error where data on all persons in the sample are not collected.

iii) Sampling error arising from non-observation, because not all members from the

population are measured.

iv) Measurement errors due to inaccuracies in recorded responses on the survey in-

struments. These can be divided into errors due to effects of an interviewer on

the respondent’s answers, errors due to respondents (e.g. ranging from inability

to answer the question, lack of an effort or information to obtain the correct an-

swer...), errors due to the weaknesses in wording of the survey questionnaires,

and errors due to mode of data collection.

Biemer and Lyberg (2003, 35-37) defined the total survey error as ”the difference be-

tween a population mean, total, or other population parameter and the estimate of the

parameter based on the sample survey”. The total survey error includes ”all poten-

tial sources of error that can arise between planing the survey and reporting the final

results” (Biemer, 2010, 27) and can be divided into sampling error due to selecting a

sample instead of the entire population, and nonsampling error due to mistakes or sys-

tem deficiencies. The nonsampling errors can be made on any stage of survey process

and can be viewed as mistakes or unintentional errors in contrast to sampling errors,

which are ”intentional” and can be controlled through adjustment of sample size. The

survey design should be optimized, which means ”finding a balance between sam-

pling errors and nonsampling errors so that the overall total survey error is as small as

possible for the budget available for the survey” (Biemer and Lyberg, 2003, 38) .

In comparison to Groves (2004) classification presented above, where three categories

of nonsampling errors are presented (coverage error, nonresponse error, and measure-

ment error). Biemer and Lyberg (2003, 39) decomposed the nonsampling errors to five

parts presented in Table 4.1. The specification error and processing error are added to

the coverage error, nonresponse error and measuremet error.

Specification errors occur when the concept which should be measured and the concept

implied in question differ and could be caused by poor communication between per-
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Table 4.1: Five major sources of nonsampling error and their potential causes (Biemer

and Lyberg, 2003; Biemer, 2010)

Sources of errors Types of errors

Specification error Concepts

Objectives

Data elements do not align with objectives

Questions lack relevance for the research purposes

Frame error Omissions

Erroneous inclusion

Duplications

Faulty information

Nonresponse error Whole unit

Within unit

Item

Incomplete information

Measurement error Information system

Setting

Mode of data collection

Respondent

Interview

Instrument

Processing error Editing

Data entry

Coding

Weighting

Tabulation

sons involved in the survey process (e.g. between the sponsor, the researcher, the ques-

tionnaire designer and the data analyst). Specification errors should be distinguished

from the measurement errors, because ”they pertain specifically to the problem of mea-

suring the wrong concept in a survey, rather than measuring the right concept poorly”

(Biemer, 2010, 31) .

The second source of nonsampling errors is construction of the sampling frame, which

is ”usually a list of the target population members that will be used to draw the sam-
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ple” (Biemer and Lyberg, 2003, 40) . The frame errors can arise ”in the process for

constructing, maintaining, and using the sampling frame(s) for selecting the survey

sample” (Biemer, 2010, 33). In the ’frame list’ (or more generally the data base) the

population members can be omitted (also noncoverage error), duplicated (especially if

the frame list is compiled from two or more different sources (Piazza, 2010)) or erro-

neously included. For example, Piazza (2010, 141) emphasized that if the noncoverage

error is small, up to 5%, the ”sampling from such a list could bias results only slightly”.

The nonresponse category includes unit nonresponse, where a sampling unit refuse

to respond to any part of the survey or the (mail, post) survey is never returned to

the researcher. The partially completed questionnaires caused the item nonresponse.

Biemer (2010, 10) distinguished also the incomplete response which occurs especially

in the open-ended questions where some information is provided, but the response is

very short and inadequate. The decision about nonresponding to an item seems to be

related to the item’s topic, therefore the item nonresponse bias seems to greater than the

unit nonresponse bias (Dixon and Tucker, 2010). The item nonresponse is also easier

to estimate compared to the unit nonresponse, because more information about actors

who refused to respond is available. Krosnick and Presser (2010, 263) emphasized that

the key factor in minimizing the response errors in social surveys are questionnaires

which should be ”crafted in accordance with best practices”. Recommendations about

best practices should arrise from both experience and methodological research.

According to Biemer and Lyberg (2003) the key sources of measurement errors are

respondents (providing incorrect informations), interviewer (influence to the respon-

dent or incorrectly recorded responses), the questionnaire which is poorly designed

(e.g. misunderstanding of terms used), and also the mode of the survey (e.g. tele-

phone survey, face-to-face interview..). Biemer (2010) emphasized that measurement

errors are often the most damaging source of errors in surveys.

The last, fifth source of nonsampling errors are errors due to data editing, data en-

try, data coding (especially the for open-ended questions) and assignment of survey

77



weights.

In our scheme of errors in the social network research design on page 39 in Section

4.1 we have three main categories of errors: boundary specification problem, design of

questionnaire and caused by actors. The boundary specification problem can be com-

pared with frame error from classification made by (Biemer and Lyberg, 2003; Biemer,

2010) , especially with omission of units or erroneous inclusion of actors when setting

network boundaries.

Our second category of errors caused by design of questionnaire is partially related

with specification errors and relevance of the questions to the research purposes. All

three subcategories of those errors arise in the phase of designing the questionnaire

(instruction about free or fixed number of nominations, list of actors or recall proce-

dure, and wording of questions) which is not specifically highlighted in the Biemer’s

classification of nonsampling errors. On the other hand all those question formats can

be affected with so called reporting error from the cognitive survey response process

which has four components: comprehension of the question, retrieval of the relevant

information, integration of this information via judgment or estimation process, and

the reporting of the resulting judgment or estimate (Tourangeau and Bradburn, 2010).

The errors in this process can occur due to misunderstanding of the question, having

trouble of remembering the information and formulation of the answer.

The third category of errors caused by actors covers the sources of errors from Biemer’s

classification; the nonresponse error with both unit or actor nonresponse and item or

tie nonresponse, and measurement errors.
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5 Stability of blockmodeling

In this chapter two indices of blockmodeling stability are presented: the Adjusted Rand

Index (Section 5.1.1) and the portion of incorrect block types 5.1.2.

5.1 Comparison of two blockmodels

As noted in Section 3.4, the result of using a blockmodeling procedure is a partition

(of actors) determining positions of actors and image matrix with selected block types.

The stability of a blockmodel to an error can be defined, or measured, with two in-

dices where the original blockmodel and the obtained blockmodel from network with

introduced errors are compared. The first index, the Adjusted Rand Index, measures

the differences between the two partitions in terms of their composition. The lower the

index is, the worse is the correspondence of the position membership. Equally impor-

tant - perhaps more important - is whether the identified blocks, given the positions

for the treated network, correspond (or not) to the block types in the true blockmodel.

Further, the correct block types need to be in their correct blockmodel locations. This is

measured by a second index calculated as the percent (or proportion) of the incorrectly

located blocks. The higher the rate is, the worse is the identification of block types in

the blockmodel.

5.1.1 The Adjusted Rand Index

When we identify two different blockmodels from the same network we would like

to answer the natural question: how strong is the agreement between two obtained

partitions? One of the most widely used and popular indices for comparing partitions

or, more precisely, measuring concordance between them is the Rand index (Hubert
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and Arabie, 1985; Saporta and Youness, 2002). It is computed based on how pairs of

actors are disposed in two partitions U and V of the same data set of size n. The total

number of possible combinations of pairs is (n
2) and they can be classified into four

groups:

(i) actors in a pair are in the same clusters in partition U and in the same clusters in

partition V,

(ii) actors in a pair are in the same cluster in partition U and in different clusters in

partition V,

(iii) actors in a pair are in different clusters in partition U and in the same cluster in

partition V,

(iv) actors in a pair are in the same clusters in partitions U and V.

The frequencies of those types of pairs are presented in Table 5.1.

Table 5.1: Contingency table for classification of pairs from two partitions

Partition V

Partition U Pair in same group Pair in different groups

Pair in same group a b

Pairs in different groups c d

The Rand Index is the fraction of agreement and can be computed as

RI =
a + d

a + b + c + d
=

a + d

(n
2)

. (5.1)

Formula (5.1) can be written more exactly with notation presented in Table 5.2. Let’s

say that given set of n actors is partitioned into two partitions U and V. Partition U has

R clusters and partition V has (in general) C clusters, nij denotes the number of actors

that belong to cluster Ui in partition U and to cluster Vj in partition V. The frequencies

from Table 5.1 can be computed as

a =
R

∑
i=1

C

∑
j=1

(

nij

2

)

=
∑

R
i=1 ∑

C
j=1 n2

ij − n

2
,
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b =
R

∑
i=1

(

n2
i·

2

)

− a =
∑

R
i=1 n2

i· − ∑
R
i=1 ∑

j
C=1 n2

ij

2
,

c =
C

∑
j=1

(

n2
·j

2

)

− a =
∑

C
j=1 n2

·j − ∑
R
i=1 ∑

j
C=1 n2

ij

2
,

d =

(

n

2

)

− a − b − c =
∑

R
i=1 ∑

C
c=1 n2

ij + n2 − ∑
R
i=1 n2

i· − ∑
C
j=1 n2

·j
2

. (5.2)

Table 5.2: Notation used to compute the Rand Index and the Adjusted Rand Index

Partition V

Cluster V1 V2 . . . VC Sums

U1 n11 n12 . . . n1C n1·

Partition U U2 n21 n22 . . . n2C n2·
...

...
...

...
...

...

UR nR2 nR2 . . . nRC nR·

Sums n·1 n·2 . . . n·C n·· = n

The Rand Index from Equation (5.1) can be in above notation (see Equations (5.2))

computed as

RI =
(n

2) + ∑
R
i=1 ∑

C
j=1 n2

ij − 1
2

(

∑
R
i=1 n2

i· + ∑
C
j=1 n2

·j
)

(n
2)

. (5.3)

The distribution of the Rand index is far from normal and depends on ”the number

of clusters, on their proportions and separability” (Saporta and Youness, 2002, 247).

The Rand index has some imperfections so that the expected value of the Rand index

of two random partitions does not take a constant value Santos and Embrechts (2009);

Vinh et al. (2009). The values of Rand Index also approache to its upper limit of unity

as the number of clusters increases (Rand in Santos and Embrechts, 2009, 387). There is

agreement in the literature that a correction (or normalization) for chance is necessary

and that Adjusted Rand index should be used (Yeung and Ruzzo, 2001; Steinley, 2004;

Warrens, 2008; Santos and Embrechts, 2009; Vinh et al., 2009). The Adjusted Rand

Index (ARI) is computed as

ARI =
Rand Index − Expected Index

Maximum Index − Expected Index
=
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=
(n

2) (a + d)− ((a + b) (a + c) + (c + d) (b + d))

(n
2)

2 − ((a + b) (a + c) + (c + d) (b + d))
. (5.4)

In notation from Table 5.2 the Adjusted Rand Index (Equation 5.4) can be calculated as

ARI =
(n

2)∑
R
i=1 ∑

C
j=1 (

nij

2
)− ∑

R
i=1 (

ni·
2 )∑

C
i=1 (

n·j
2
)

1
2(

n
2)

(

∑
R
i=1 (

ni·
2 ) + ∑

C
i=1 (

n·j
2
)
)

− ∑
R
i=1 (

ni·
2 )∑

C
i=1 (

n·j
2
)

. (5.5)

The Adjusted Rand Index has expected value zero and maximal value one. Besides,

”there is a wider range of values that the Adjusted Rand Index can take on, thus in-

creasing the sensitivity of the index” (Yeung and Ruzzo, 2001, 764). Steinley (2004)

showed that Adjusted Rand Index is invariant to changes in the number of clusters,

number of objects to be classified and relative cluster size. He presented (based on

168.000 simulations) some general guidelines for interpreting of values of the Adjusted

Rand Index. Proposed values for determining the cluster recovery or agreement be-

tween two partitions of the Adjusted Rand Index (ARI) are:

(i) ARI > 0.9 indicates excellent accordance,

(ii) ARI > 0.8 indicates good accordance,

(iii) ARI > 0.65 can be viewed as moderate accordance, and

(iv) ARI < 0.65 indicates poor accordance.

In our evaluation of stability of blockmodeling in Chapter 7 we would say that block-

model is stable in terms of agreement between partitions or that correspondence of the

position memberships is acceptable if the mean of Adjusted Rand index is above 0.8.

5.1.2 The proportion of incorrect block types

The second index for comparison of blockmodels is the proportion of incorrect block

types in one blockmodel compared to a reference blockmodel. Let I1 be the image of

original (true) blockmodel and I2 the image of a blockmodel obtained from a network

with introduced error, also named ’measured’ blockmodel (see (5.6)). Consider the

following two blockmodels, where I1 e.g. presents the original blockmodel structure.

I1 =





com null

null com



 I2 =





com null

null null



 (5.6)
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The proportion of incorrect blocks (ErrB) measures the blockmodels disagreement and

is defined as the number of block disagreement in blockmodels divided by the number

of blocks in a blockmodel.

ErrBlock =
number o f block disagreements

number o f blocks in a blockmodel
=

1

4
= 0.25 (5.7)

If the two blockmodels agree perfectly then ErrB = 0. However, when the two image

matrices disagree regarding the location of blocks then ErrB > 0. In our example one

block in I2 differs from an image matrix of original blockmodel I1 (see (5.6)). For two

presented image matrices the proportion of incorrect blocks is 0.25 (see Equation (5.7)).

The boundary of ARI index is established based on extended simulations of Steinley

(2004), while the boundary for ErrB values is drawn somewhat arbitrary. We took re-

sults where the mean of the proportion of incorrectly identified blocks (mErrB) exceeds

0.2 to be unacceptable.

These two indices provide a clear and straightforward way of measuring the corre-

spondence between two blockmodels. Their relevance is suggested by the importance

of two central ideas of social network analysis pointed out with Doreian (2008). ”The

first is that the structure of a social network, as a whole, is important to collective out-

comes at the level of the network. The second is that the location occupied in a network

is important for outcomes at the actor level”. In terms of the blockmodeling procedure,

the whole blockmodel (or image matrix) is important at the network level and position

of actor in model is important at individual level. Both have to be depicted accurately

to examine these two basic network ideas.
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6 The design of simulation studies for

evaluation of stability of

blockmodeling

This chapter represents the outline of the simulation studies for evaluation of stability

of blockmodeling to different types of design errors presented in Chapter 4.

The basic scheme of simulations is presented in Section 6.1 and presents the framework

of all simulation studies in the dissertation. The additional specific steps in simulations

(e.g. use of different non-response treatments in actor non-response) and more detailed

characteristics of simulations (e.g. number of simulated starting networks, percent of

introduced errors..) are presented in subsections of Chapter 7 before the results of sim-

ulations.

This is followed by the presentation of networks used in simulation studies (Section

6.2). Two main types of networks are used; real networks from the literature (Section

6.2.1) and simulated networks (Section 6.2.3 to Section 6.2.4) with known structure

based on some type of equivalence presented in Section 3.2.
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6.1 A basic scheme of simulations

The basic scheme of our simulation study is straightforward:

1. Select a network from the literature or

generate a whole network under a known starting model.

2. Establishing a blockmodel of the whole (real) network that has two parts:

(i) the known (real) partition of the actors of the whole network into positions;

and

(ii) the image matrix with the known distribution of block types by location.

3. Let nGen denote the number of simulations for a given combination of network

type, type of design error, amount of error, and (in some cases) treatment regime.

For i=1:nGen, do the following:

(a) Construct the network with introduced design errors (the measured net-

works)

(b) Establish a blockmodel of the measured network that also has two parts:

(i) the partition of the actors of the measured network into positions; and

(ii) the blockmodel image of the measured network.

(c) Compare the resulting blockmodels of the whole and the measured net-

works using:

(i) the Adjusted Rand Index to compare the two sets of positions (as de-

scribed in Section 5.1.1); and

(ii) the proportion of incorrect block types (as described in Section 5.1.2).

4. Investigate the impact of design errors in terms of the mean of the values of ARI

- denoted as mARI - and the mean of the proportion of incorrect blocks - denoted

by mErrB.

In the dissertation we use the following terms:

• a whole network that is known network (or starting network in the simulations),
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• a measured network which is obtained from the whole network by introducing

some kind of design error, and

• a measured and treated (or treated) network that is obtained by treating a measured

network to deal with the introduced errors14.

6.2 Networks used in evaluation of stability

In this section networks used in evaluation of stability of blockmodeling are presented.

First, networks are divided to real and simulated networks. Additional classification

of networks is made based on selected type of equivalence in the blockmodeling pro-

cedure.

6.2.1 Real whole networks partitioned based on structural equiva-

lence

6.2.1.1 A boy-girl liking ties network

The first real network presents a liking relationship between boys and girls in a class-

room (used by Doreian et al. (2005, 237) and is presented in Figure 6.1 (left). There are

clearly two subgroups, based on gender, each with many internal ties. The best fitting

model based on structural equivalence with two clusters is the one shown in Figure 6.1

(right). There are 12 inconsistencies and they are all null ties within the two diagonal

blocks. This served as a prototype for the symmetric blockmodel structure in Section

6.2.3.1.

6.2.1.2 The student note borrowing network

Data for a note borrowing network for 15 undergraduate students attending lectures

of a course were collected by Hlebec (1993) and used by Batagelj et al. (2004). The stu-

dents were asked: ”From whom would you borrow learning materials?” The number

of choices was not fixed. This network is presented in Figure 6.2 (left) together with

14Missing data treatments are used in case of actor non-response in Section 7.3
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Figure 6.1: A boy-girl network of liking ties (left), two partitions based on structural

equivalence (middle) and image matrix (right)

a fitted blockmodel using structural equivalence (shown in the middle panel of Fig-

ure 6.2). There are three clusters (positions) that are labeled C1, C2, and C3. Boys are

represented by squares and the girls by circles. Position memberships in the network

diagram on the left of Figure 6.2 are indicated by the colors of the vertices. Blue in-

dicates membership in cluster C1, red shows membership in C2 and green indicates

membership in C3. The fitted blockmodel with 28 inconsistencies is on the right in

Figure 6.2 (and is the prototype for the (second) non-symmetric blockmodel structure

(in Section 7.3.3.3)).

Figure 6.2: The note borrowing network (left), three partitions based on structural

equivalence (middle) and image matrix (right)
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6.2.1.3 The networks of emotional support

The networks of emotional support are part of a large study of quality of measure-

ment instrument for social network data (Ferligoj and Hlebec, 1998, 1999; Hlebec, 1999,

2001; Hlebec and Ferligoj, 2001; Zemljič and Hlebec, 2005). Networks measure differ-

ent types of social support (instrumental, informational, emotional support and social

companionship) with different scales (e.g. binary, five-point ordinal scale with or with-

out labels...). Both giving and receiving of social support were measured with two data

collection techniques, recognition and free recall of actors.

In our studies two networks measuring giving and receiving (original and reversed

question) of emotional support were used. Networks with major characteristics are

presented in Section 7.2.2.

6.2.2 Real whole networks partitioned based on generalized types of

equivalence

6.2.2.1 A Student Government data

Student Government data were collected by Hlebec in 1992 during an experiment on

different methods for collecting social network data. The networks originally con-

sist of twelve members and advisors of the Student Government of the University of

Ljubljana and their cognition about communication interactions, but one respondent

refused to cooperate in the experiment. Therefore, several authors in later papers (Hle-

bec, 1993, 1999; Doreian et al., 2005; de Nooy et al., 2005) take into account just eleven

actors without non-respondent. As described in Section 4.3.1 they use the complete

approach to treat the non-response. The incoming ties about non-respondent are avail-

able in degree of Hlebec (1992) and we used them to examine their impact on obtained

blockmodeling. First, the complete data sets with summary of main results on block-

modeling are presented and at the end the incoming ties for non-respondent are de-

scribed.

Two methods or designs of questions were used in experiment, recall and recognition,
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and there was no limitation on number of listed persons (Hlebec, 1992, 1993). The data

about (cognitive) communication flow, limited to matters of the Student Government

during the last six months, among actors were elicited through the following three

questions:

1. Who of the members and advisors of the Student government do you (most of-

ten) informally discuss with?

2. Which members and advisors of the Student Government do you (most often)

ask for an opinion?

3. Which of the members and advisors of the Student Government (most often) ask

you for an opinion?

Six networks (obtained with two methods (recall and recognition) and three questions)

are presented in Table 6.1. Networks consist of seven ministers (labeled from m1 to

m7), one prime minister (pm) and three advisors (a1, a2, and a3).

Hlebec (1993) reported that networks obtained with recognition have richer structure

than those obtained by the recall method. The average size of recognized egocentric

network (the average number of persons named by each actor) was higher than re-

called one. Similarly, the minimum and maximum number of persons named was on

average higher for recognized networks for all three relations. The hypotheses that the

size of recalled network and the recognized network is due to different types of mea-

surement (that means that we expect that the respondent with larger recalled network

would have larger recognized network) were confirmed for discussion and asked for

an opinion relations.

The recall discussion network was extensively explored in terms of generalized block-

modeling by Doreian et al. (2005). They started the investigation for the best or the

most suitable blockmodel by restricting the block types to null, complete, regular, row-

dominant and column-dominant. The blocmodeling procedure was applied for parti-

tions into two five clusters and the results (obtained partitions and minimum number
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Table 6.1: Student Government data

(a) Discussion ties - recall

M1 PM M2 M3 M4 M5 M6 M7 A1 A2 A3

M1 0 1 1 0 0 1 0 0 0 0 0

PM 0 0 0 0 0 0 0 1 0 0 0

M2 1 1 0 1 0 1 1 1 0 0 0

M3 0 0 0 0 0 0 1 1 0 0 0

M4 0 1 0 1 0 1 1 1 0 0 0

M5 0 1 0 1 1 0 1 1 0 0 0

M6 0 0 0 1 0 0 0 1 1 0 1

M7 0 1 0 1 0 0 1 0 0 0 1

A1 0 0 0 1 0 0 1 1 0 0 1

A2 1 0 1 1 1 0 0 0 0 0 0

A3 0 0 0 0 0 1 0 1 1 0 0

(b) Discussion ties - recognition

M1 PM M2 M3 M4 M5 M6 M7 A1 A2 A3

M1 0 1 1 0 0 1 0 0 0 1 0

PM 0 0 0 1 0 1 0 1 0 0 0

M2 1 1 0 1 1 1 1 1 0 1 0

M3 0 0 0 0 0 0 1 1 0 0 0

M4 0 1 0 1 0 1 1 1 0 1 0

M5 0 1 0 1 1 0 1 1 0 0 0

M6 0 0 0 1 0 0 0 1 1 0 1

M7 0 1 0 1 0 0 1 0 0 0 1

A1 0 1 1 0 0 0 1 1 0 0 1

A2 1 1 1 0 1 0 0 0 0 0 0

A3 0 0 0 1 0 1 0 1 0 0 0

(c) Asking for an opinion ties - recall

M1 PM M2 M3 M4 M5 M6 M7 A1 A2 A3

M1 0 1 0 0 0 1 0 0 0 0 0

PM 0 0 0 1 0 0 0 1 0 0 0

M2 1 1 0 1 0 1 0 1 0 0 0

M3 0 1 0 0 0 0 0 0 0 0 0

M4 0 1 0 0 0 1 0 0 0 0 0

M5 0 1 0 0 0 0 0 0 0 0 0

M6 0 0 0 1 0 0 0 1 1 0 0

M7 0 1 0 1 0 0 0 0 0 0 1

A1 0 0 0 0 0 0 1 1 0 0 1

A2 1 1 1 0 1 0 0 0 0 0 0

A3 0 0 1 0 0 1 0 1 0 0 0

(d) Asking for an opinion ties - recognition

M1 PM M2 M3 M4 M5 M6 M7 A1 A2 A3

M1 0 1 1 0 0 0 0 0 0 0 0

PM 0 0 0 1 0 0 0 1 0 0 0

M2 1 1 0 0 0 0 0 0 0 1 0

M3 0 0 0 0 0 0 1 1 0 0 0

M4 0 1 0 0 0 1 0 1 0 1 0

M5 1 1 1 1 1 0 1 1 0 0 0

M6 0 0 0 1 0 0 0 1 1 0 0

M7 0 1 0 1 0 0 0 0 0 0 1

A1 0 1 0 0 0 0 1 1 0 0 0

A2 1 1 1 0 1 0 0 0 0 0 0

A3 0 0 0 1 0 1 0 1 0 0 0

(e) Asked for an opinion ties ties - recall

M1 PM M2 M3 M4 M5 M6 M7 A1 A2 A3

M1 0 1 1 0 0 0 0 0 0 1 1

PM 1 0 1 1 1 1 1 1 0 1 0

M2 0 1 0 0 1 0 0 0 0 0 0

M3 0 1 1 0 0 1 1 1 0 0 1

M4 0 1 0 0 0 1 1 0 0 1 0

M5 0 1 0 0 0 0 0 0 0 0 1

M6 0 0 0 1 0 0 0 1 1 0 1

M7 0 1 1 1 0 1 1 0 1 0 1

A1 0 0 0 0 0 0 0 0 0 0 0

A2 0 1 0 0 1 0 0 0 0 0 0

A3 0 1 0 0 0 0 0 0 1 0 0

(f) Asked for an opinion ties - recognition

M1 PM M2 M3 M4 M5 M6 M7 A1 A2 A3

M1 0 1 1 1 0 0 0 1 0 1 1

PM 1 0 1 1 0 1 0 1 0 1 0

M2 1 0 0 0 0 0 0 0 0 0 0

M3 0 0 1 0 0 1 1 1 1 0 0

M4 1 1 0 0 0 1 0 0 0 0 0

M5 1 1 0 0 1 0 0 0 0 0 1

M6 1 0 0 1 0 1 0 1 1 0 0

M7 0 1 0 1 0 1 1 0 1 0 1

A1 0 0 0 0 0 0 1 0 0 0 0

A2 1 0 1 0 1 0 0 0 0 0 0

A3 0 0 0 0 0 0 1 0 1 0 0

of inconsistencies for those partitions) are presented in Table 6.215. Label Cs
r denotes

partitions into s clusters and r is a counting index. For example there are two partitions

into two clusters C2
1 and C2

2 with zero inconsistency (labeled Imin).

15A constraint was used to have at least two vertices in each cluster. Otherwise, even more equally

well fitting partitions exist
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Table 6.2: Optimal partitions for Student Government recall discussion network and

allowed block types {null, com, rdo, cdo, reg}
Partition Imin

C2
1 {m1, pm, m2, m3, m5, m6, m7, a1, a2} {m4, a2} 1

C2
2 {m1, a2} {pm, m2, m3, m4, m5, m6, m7, a1, a3} 1

C3
1 {m1, pm, m2, m3, m4, m5, m7} {m6, a3} {a1, a2} 0

C3
2 {m1, m2, a2} {pm, m3, m4, m5, m6, m7} (a1, a3} 0

C3
3 {m1, m2} {pm, a3} {m3, m4, m5, m6, m7, a1, a2} 0

C3
4 {m1, m4} {pm, a3 }{m2, m3, m5, m6, m7, a1, a2} 0

C4
1 {m1, m2} {pm, m4} {m3, m5, m6, m7, a2} {a1, a3} 0

C4
2 {m1, m2, a2} {pm, m4} {m3, m5, m6, m7} (a1, a3} 0

C4
3 {m1, m2, a2} {pm, m4, m6, m7} {m3, m5} {a1, a3} 0

C5
1 {m1, m2} {pm, m3} {m4, a3} {m5, a1, a2} {m6, m7} 1

C5
2 {m1, m2, a2} {pm, m4} {m3, m5} {m6, m7} (a1, a3} 1

C5
3 {m1, m2, a2} {pm, m4} {m3, m6} {m5, m7} {a1, a3} 1

C5
4 {m1, a2} {pm, m3} {m2, a3} {m4, m5} (m6, m7, a1} 1

C5
5 {m1, a3} {pm, m5} {m2, m7, a1} {m3, m4} {m6, a2} 1

Different allowed block types contribute to a new set of well-fitting partitions. Doreian

et al. (2005, 228-233) represented detailed results of generalized blockmodeling also

for the following combination of allowed block types: {null, rdo, cdo} (Table 6.3) and

{null, cdo}. Summarized results about value of criterion function for different num-

ber of clusters are presented also for structural and regular equivalence.

According to Hlebec (1992) the refusal actor (denoted by R) for the Student Govern-

ment recall discussion network has two incoming ties, from prime minister (pm) and

minister 2 (m2). The network is presented on Figure 7.46 in Section 7.3 (the last panel

titled ’Null tie imputations’), where the refusal actor is drawn with square and other 11

actors are drawn with circle.
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Table 6.3: Optimal partitions for Student Government recall discussion network and

allowed block types {null, rdo, cdo}
Partition Imin

C2
1 {m1, a2} {pm, m2, m3, m4, m5, m6, m7, a1, a3} 1

C3
1 {m1, m4} {pm, a3} {m2, m3, m5, m6, m7, a1, a2} 0

C3
2 {m1, m2} {pm, a3} (m3, m4, m5, m6, m7, a1, a2} 0

C4
1 {m1, m2} {pm, m4} {m3, m5, m6, m7, a2} {a1, a3} 0

6.2.3 Simulated whole networks based on structural equivalence

The real whole networks partitioned based on structural equivalence (presented in Sec-

tion 6.2.1) were used to construct the simulated networks. The starting whole networks

were constructed based on specified image matrix, starting partition and probability

of a tie in complete and in null block.

6.2.3.1 A completely symmetric blockmodel structure

The prototype for the completely symmetric blockmodel was the boy-girl liking ties

network presented in Section 6.2.1.1. A two-cluster partition for a network with 10

actors with five actors in both the first cluster and second cluster was used. The cluster

membership is denoted by (1, 1, 1, 1, 1, 2, 2, 2, 2, 2). The image matrix has two complete

blocks on the diagonal and null blocks out of diagonal and it is shown in Equation

(6.1).

IM =





com null

null com



 (6.1)

Ties were constructed to be consistent with this image matrix. Ties were added with

probability pTienull where the image matrix has null blocks and for the complete blocks

ties were added with probability pTiecom. The values used for pTienull and pTiecom are

shown in Table 6.4.

Ten networks were generated for each combination of parameters (pTiecom and pTienull)

shown in Table 6.4. This results in 140 created different whole networks. Every con-

structed network was checked to see if the structure obtained with blockmodeling pro-
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Table 6.4: Selected combinations of probabilities for a symmetric blockmodel structure

pTiecom pTienull

1 0.1, 0.2

0.95 0.0, 0.1, 0.2

0.9 0.0, 0.1, 0.2

0.8 0.0, 0.1, 0.2

0.7 0.0, 0.1, 0.2

cedure was consistent with the structure shown in Equation (6.1).

The basic network properties were examined. The histogram for density of simulated

networks is presented in Figure 6.3(a). The minimal density of simulated network is

0.278 and the maximal density is equal to 0.600 (Q1 = 0.400, Me = 0.456, Q3 = 0.503).

The mean density of simulated networks is 0.452 with standard deviation 0.075.

Reciprocity

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
5

10
15

(a) Density

Reciprocity

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
5

10
15

(b) Reciprocity

Figure 6.3: Histograms of density and reciprocity for the completely symmetric block-

model structure

The extent to which a network is symmetric was measured by reciprocity (Huisman,

2009) and was calculated for each whole network. It is defined for directed networks
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as

reciprocity =
2 · M

2 · M + A
, (6.2)

where M indicates the number of mutual dyads and A the number of asymmetric

dyads. The descriptive statistics for this measure over the 140 whole networks are

(Min = 0.50, Q1 = 0.70, Me = 0.79, Q3 = 0.88, Max = 1.00) and confirm that these

networks were highly symmetric (Figure 6.3(b)).

6.2.3.2 A first non-symmetric blockmodel structure

The second structure for a simulated whole network is based on the image matrix in

Equation (6.3) with a partition having three positions.

IM =











com null null

null com null

com null com











(6.3)

Note that the lower left block and all three diagonal blocks in Equation (6.3) are com-

plete. The membership of the three-cluster partition for a network with 15 vertices is

denoted by (1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3). The construction of the whole networks

was done in the same manner as for the completely symmetric structure with regard

to null and complete blocks. The probabilities used for these constructions are shown

in Table 6.5.

Table 6.5: Selected combinations of probabilities for whole networks with both non-

symmetric blockmodel structures

pTiecom pTienull

1 0.1, 0.2

0.9 0.0, 0.1, 0.2

0.8 0.0, 0.1, 0.2

Again, 10 networks were constructed for each combination of probabilities (pTiecom

and pTienull) in Table 6.5. The descriptive statistics for reciprocity (Figure 6.4(b)) across

the 80 whole networks ranges from Min = 0.46 to Max = 0.73 (Q1 = 0.55, Me =
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0.61, Q3 = 0.66). The mean density for whole starting networks is 0.61 with standard

deviation 0.07 (Min = 0.46, Q1 = 0.55, Me = 0.61, Q3 = 0.66, Max = 0.74).
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Figure 6.4: Histograms of density and reciprocity for the first non-symmetric block-

model structure

6.2.3.3 A second non-symmetric blockmodel structure

The prototype for the third structure for whole networks based on structural equiv-

alences was the note borrowing network (presented in Section 6.2.1.2). The starting

networks were constructed based on the image matrix shown in Equation (6.4).

IM =











com null null

null com null

com null null











(6.4)

Again, there are three clusters with the same cluster membership as the networks with

the first non-symmetric blockmodel structure. The only difference is the presence of a

null block on the diagonal.

Ten networks were generated for each combination of probabilities (pTiecom, pTienull)

that were presented in Table 6.5. The summary description of the reciprocity mea-

sures ranges from 0.26 to 0.57 with a median of 0.42 (Q1 = 0.37, Q3 = 0.46). Replac-

ing a diagonal complete block with a null block created networks with slightly lower
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reciprocity measures than for the networks from the first example of non-symmetric

blockmodel structure.
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Figure 6.5: Histograms of density and reciprocity for the second non-symmetric block-

model structure

6.2.4 Simulated whole networks based on regular equivalence

Two well known structures (Doreian et al., 2005, 235-236) were selected for the starting

structure for simulated networks based on regular equivalence: cohesive subgroups

model and core-periphery model.

6.2.4.1 The cohesive subgroup model

The cohesive subgroup model, with intraposition ties and with no ties between posi-

tions, is usually schematically presented as:

1 0 0

0 1 0

0 0 1

,

where 0s indicates the null blocks and 1s can indicates also additional blocks beside the

complete blocks (Doreian et al., 2005). When the regular blocks will be used in places
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with 1s, the term regular cohesive subgroups model will be used.

The more detailed procedures for generating networks with regular blocks is as follows

(Žiberna, 2007, 171):

(i) The starting partition is used to split empty matrix of 0s into blocks and to deter-

mine the size of a network.

(ii) With blocks where the blockmodel indicated null blocks, nothing is changed.

(iii) In regular block each cell had a probability to become 1 equal to pTiereg:

pTiereg =
1

min(nr, nc)− 1
, (6.5)

where nr and nc are the number of rows in a block and number of columns in a

block, respectively.

(iv) Each block is checked for regularity, that is, each row and column are checked if

they had at least one 1. If not, the regularity is enforced by adding 1 to a randomly

chosen cell from that row or column.

Two different network sizes were used in simulations; the smaller network with 10

actors and a network with 15 actors. Additional parameters in simulations were the

number of clusters and the number of actors in each cluster.

Two-clusters partitions

In the smaller network with 10 actors two-cluster partitions were used. The starting

image matrix IM1 is presented in Equation (6.6). The membership of the two-cluster

partition for a network with 10 actors is determined with the following starting parti-

tions:

• (5, 5) actors: C55 = (1, 1, 1, 1, 1, 2, 2, 2, 2, 2),

• (6, 4) actors: C64 = (1, 1, 1, 1, 1, 1, 2, 2, 2, 2).
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In the first example (C55) both clusters have 5 actors, and in the second example (C64)

the first cluster has 6 actors and the second one has 4 actors.

IM1 =





reg null

null reg



 IM2 =











reg null null

null reg null

null null reg











(6.6)

For each starting two-cluster partition, 10 networks were constructed for calculated

probability pTiereg in regular blocks. For the C55 partition in regular core-periphery

model, the probability of a tie in regular blocks according to Equation 6.5 is equal to 1
4 .

The probability of tie in the biggest regular block in partition is 1
5 and in the smallest

block with four actors that probability is equal to 1
3 .

The density (Figure 6.6(a)) across the 10 whole networks for C55 partition ranges from

Min = 0.14 to Max = 0.19 (Q1 = 0.16, Me = 0.17, Q3 = 0.18). The mean density for

whole starting networks is 0.166 with standard deviation 0.015. The density across the

10 whole networks with (6, 4) actors partition ranges from Min = 0.14 to Max = 0.20

(Q1 = 0.16, Me = 0.17, Q3 = 0.19, mean=0.169, sd=0.019).

(6,4) actors (5,5) actors

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

D
en

si
ty

 o
f r

eg
ul

ar
 b

lo
ck

s

*

*

(a) Network density

(6,4) actors (5,5) actors

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(b) Density of regular blocks

Figure 6.6: Boxplots of density and density of regular blocks for the regular cohesive

subgroup two-cluster models

The density of regular blocks is presented in Figure 6.6(b). The mean value of density

of regular blocks across 10 whole starting networks with (6, 4) actors partition is 0.375
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(sd=0.034). The minimal regular block density is 0.32, and the maximal value is equal

to 0.43 (Q1 = 0.35, Me = 0.38, Q3 = 0.40). The density of regular blocks across the

10 whole networks with (5, 5) actors partition ranges from Min = 0.22 to Max = 0.38

(Q1 = 0.28, Me = 0.30, Q3 = 0.30, mean=0.293, sd=0.041). The presented densities

are higher than pTiereg from Equation 6.5, because after generation of ties blocks are

checked for regularity and additional ties are enforced if necessary.

Three-clusters partitions

The membership of the three-cluster partition for a network with 15 actors and block-

model structure presented with IM2 in Equation 6.6 is determined with the following

starting partitions:

• (5, 5, 5) actors: C555 = (1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3),

• (4, 5, 6) actors: C456 = (1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3).

In the first example (C555) all three clusters have 5 actors, and in the second example

(C456) the first cluster has 4 actors, the second cluster has 5 actors, and the third cluster

has 6 actors.

Densities of whole starting networks are lower compared to two-cluster partition, be-

cause in two-cluster models we have half regular and half null blocks, and in three-

cluster models there are six null blocks out of nine. The mean density of 10 start-

ing whole networks for C555 patition is 0.102 with standard deviation 0.007 (Min =

0.09, Me = 0.10, Max = 0.11). The mean density for C456 partition is a little bit higher

and is equal to 0.112 (sd=0.009), and values are in range from 0.10 to 0.13 (Figure 6.7(a)).

On the other hand, densities of regular blocks are more similar to two-cluster starting

networks. The mean density of regular blocks for C555 partition is 0.362 with standard

deviation 0.026 (Min = 0.32, Me = 0.36, Max = 0.40). The densities of regular blocks

for (4,5,6) actors partition are in range from 0.36 to 0.47 (Q1 = 0.38, Me = 0.39, Q3 =

0.47) with mean value 0.401 and standard deviation 0.036 (Figure 6.7(b)).

99



(5,5,5) actors (4,5,6) actors

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

N
et

w
or

k 
de

ns
ity

(a) Network density

(5,5,5) actors (4,5,6) actors

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

D
en

si
ty

 o
f r

eg
ul

ar
 b

lo
ck

s

(b) Density of regular blocks

Figure 6.7: Boxplots of density and density of regular blocks for the regular cohesive

subgroup three-cluster models

6.2.4.2 The core-pheriphery model

Our core-pheriphery model has one central position or core position, which is inter-

nally cohesive and connected with all other positions. The other positions from the

periphery are connected to this core position and are not connected to other periphery

positions neither are internally cohesive. The model is schematically presented as:

1 1 1

1 0 0

1 0 0

,

where 0s and 1s have the same meaning as explained in Section 6.2.4. When instead of

1s regular blocks are used, the term regular core-periphery model will be used.

Two-clusters partitions

Two different network sizes (as in previous section) will be used. In the smaller net-

work with 10 actors two-cluster partitions will be used. The starting image matrix

IM3 is presented in Equation (6.7). The membership of the two-cluster partition for a

network with 10 actors is determined with the following starting partitions:

• (6, 4) actors: C64 = (1, 1, 1, 1, 1, 1, 2, 2, 2, 2),
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• (5, 5) actors: C55 = (1, 1, 1, 1, 1, 2, 2, 2, 2, 2),

• (4, 6) actors: C46 = (1, 1, 1, 1, 2, 2, 2, 2, 2, 2).

In the first example the core cluster has 6 actors and the periphery core is smaller with

4 actors. In the second example (C55) both core and periphery cluster have 5 actors, and

in the third example (C64) the core cluster is bigger and has 6 actors and the periphery

cluster has 4 actors.

IM3 =





reg reg

reg null



 IM4 =











reg reg reg

reg reg null

reg null null











(6.7)

For each starting two-cluster partition for the core-periphery model 10 networks were

constructed. The density (Figure 6.8(a)) across the 10 whole networks with (6, 4) actors

partition ranges from Min = 0.28 to Max = 0.37, the mean density is 0.321 with stan-

dard deviation 0.028. The values for density (see Figure 6.8(a)) across the 10 whole net-

works with (5, 5) actors partition are lower and ranges from Min = 0.28 to Max = 0.27

with mean 0.257 (sd=0.015). The mean density across the 10 whole networks with (4,

6) actors partition is 0.279 (sd=0.024, Min = 0.24, Max = 0.32).

Densities of regular blocks were examined and boxplots are presented on Figure 6.8(b).

The mean value of density of regular blocks across 10 whole networks with (6, 4) actors

partition is 0.372 (sd=0.036). The minimal regular block density is 0.31, and the maxi-

mal value is equal to 0.43. The density of regular blocks across the 10 whole networks

with (5, 5) actors partition ranges from Min = 0.30 to Max = 0.35 (Q1 = 0.31, Me =

0.31, Q3 = 0.33, mean=0.321, sd=0.016). The mean density of regular blocks with (4, 6)

actors partition is 0.417, with standard deviation 0.040 (Min = 0.36, Q1 = 0.39, Me =

0.42, Q3 = 0.44, Max = 0.49).

Three-clusters partitions

The blockmodel structure with three clusters is presented with IM4 in Equation (6.7).

There are two core clusters, which are internally cohesive and connected with other
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Figure 6.8: Boxplots of density and density of regular blocks for the regular core-

periphery two-cluster models

positions and one periphery cluster. The membership of the three-cluster partition is

determined with the three different starting partitions:

• (6, 5, 4) actors: C654 = (1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3),

• (5, 5, 5) actors: C555 = (1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3),

• (4, 5, 6) actors: C456 = (1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3).

In the first example (C654) the first core cluster has 6 actors, the second core cluster has

5 actors, and the periphery cluster has 4 actors. In the second example (C555) all three

clusters have 5 actors, and in the third example (C456) the first core cluster is the small-

est with 4 actors, the second core cluster has 5 actors, and the biggest is the periphery

cluster with 6 actors.

The densities of 10 starting networks for C654 partition are in range from 0.22 to 0.30

with mean value 0.251. Densities for C555 partition are a little bit lower with mean

value 0.228 (Min = 0.20, Q1 = 0.21, Me = 0.23, Q3 = 0.24, Max = 0.27). Mean density

for partition with the smallest core cluster (C456) is 0.229 with standard deviation 0.023

and values are in range from 0.19 to 0.27 (Figure 6.9(a)).
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The mean density of regular blocks is the highest with C456 partition and is equal to

0.393 (sd=0.041). The densities of regular blocks for C555 actors partition are in range

from 0.30 and 0.39 with mean value 0.333 (sd=0.027). The mean density of regular

blocks for C654 partition is 0.337 with standard deviation 0.034 and the densities are in

range from 0.30 and 0.42 (Figure 6.9(b)).
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Figure 6.9: Boxplots of density and density of regular blocks for the regular core-

periphery three-cluster models
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7 Evaluation of stability of

blockmodeling on design errors

In this chapter the results of simulation studies for estimation 92of the impact of differ-

ent types of design errors on the blockmodeling are presented. We try to answer our

second research question (presented on page 39) how sensitive is blockmodeling procedure

to different types and amounts of errors.

The stability of blockmodeling solution is evaluated with two indices: the Adjusted

Rand index (presented in Section 5.1.1) is used for determining the concordance be-

tween two partitions and the proportion of incorrect block types (presented in Section

5.1.2) compares type and position of blocks in two image matrices.

First, the evaluation of blockmodeling stability for errors due to fixed choice instead

of free choice design is presented in Section 7.1. The impact of direction of question

on the obtained blockmodel in case of two real networks is presented in Section 7.2.

The actor non-response and the stability of blockmodeling is extensively presented in

Section 7.3. In the last section (Section 7.5) random measurement errors where ties are

randomly added or deleted are presented. The amount of changed ties is controlled

and their impact on blockmodeling solution is investigated.

7.1 Errors introduced by fixed choice design

The stability of blockmodeling in case of fixed choice design compared to free choice

design is presented in this section. The design of simulation study is presented in
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Section 7.1.1, while the results are presented in Sections 7.1.2.1 and 7.1.2.2.

7.1.1 The design of simulation studies for fixed choice design

The basic scheme of simulation study is presented on page 70 in Section 6.1. Here

we described more detailed construction of errors or measured networks due to fixed

choice design from item 3(a) in the basic scheme.

The whole networks are collected with free choice designs. Construction of measured

network with fixed number of choices is made by selecting some numbers of limita-

tions of choices - nFixed. The ties were randomly added or deleted (or both) to meet

the limitation criteria.

For each network and selection of number of fixed choices (nFixed) the blockmodeling

procedure was performed 100 times (nGen=100). The established blockmodel from

measured network was compared to the blockmodel of real whole network as de-

scribed in the basic scheme of simulations. Results of simulation studies are presented

in next sections.

7.1.2 Results of simulation study of fixed choice design for real net-

works

The simulation study was performed with two real networks, the boy-girl liking ties

network and the note borrowing network.

7.1.2.1 A boy-girl liking ties network

In the collection process of the boy-girl liking ties network data (Section 6.2.1.1) the

free choice design was used without limitation of number of actors. The network is

presented in Figure 6.1 on page 72 where it can be seen that actors selected from two

to four friends.
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In the simulation study for each selected number of desired fixed choices hundred net-

works were generated. The ’measured’ network was generated with random addition

or deletion of ties, so that the condition concerning the limitation of ties was satisfied.

Blockmodels of measured networks were established based on structural equivalence

and compared with structure of real network shown in Figure 6.1 with both indices

of blockmodeling stability, the Adjusted Rand Index and the proportion of incorrect

blocks.

The average number of choices made (average outdegree) in the boy-girl liking ties

network is 3.45 (with standard deviation 0.82). Two actors (G3 and G5) made only two

choices, three nominations were made by actors B4 and G4, other seven actors selected

four other members of a network. Based on those results we may suspect that restric-

tion of number of choices to 3 or 4 actors will not radically change the blockmodel

structure of the measured network, because a small proportion of ties is changed.

The fixed choice design was simulated with a range of restriction for nominations from

one to seven actors. Stabilitiy of partitions of actors was measured with the Adjusted

Rand Index (ARI) and is presented in Figure 7.1(a). Mean values of ARI are presented

with black dots and standard deviation is presented with gray error bars. According

to simulations of Steinley (2004) we would say that agreement between partition of

real and measured network is acceptable if the mean value of ARI is above 0.8 (Section

5.1.1).

As expected, the blockmodeling is stable in terms of partition if the number of choices

is set to three or four nominations. In fact, the agreement between partitions is perfect,

because mean value of ARI is equal to one (each of hundred measured partitions is the

same as the real partition). The agreement between partitions is also almost perfect if

the number of fixed choices is equal to five. Acceptable agreement between partition

(mARI > 0.8) is obtained with random simulation of six choices, while the increase

of number of fixed choices to seven choices leads to no agreement between partitions

with mARI around zero. If the number of fixed choices is low (one or two nomina-
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(a) Mean of the Adjusted Rand Index, mARI

1 2 3 4 5 6 7

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of fixed choices

M
ea

n 
of

 P
ro

po
rt

io
n 

of
 in

co
rr

ec
t b

lo
ck

 ty
pe

s

(b) Mean of Incorrect block types, mErrB

Figure 7.1: Results of the simulation study with the boy-girl liking ties network for

simulated fixed choice design

tions), then the ties are deleted from the real boy-girl liking ties network in order to

satisfiy the restrictions. Therefore, the measured structure is poorer than the real struc-

ture of tie patterns and the agreement between partitions is unacceptable.

Figure 7.1(b) presents stability of blockmodeling in terms of correctly identified block

types. We say that agreement between two blockmodels (or image matrices) is accept-

able if the mean values of proportion of incorrectly identified block types (mErrB) do

not exceed 0.2 (Section 5.1.2). Similar as in comparison of partition, the perfect agree-

ment between image matrices is obtained if fixed choice nominations are restricted to

three, four or five choices (mErrB=0). Acceptable agreement between block types is

also obtained with six choices. On the other hand, small number (one or two) or high

number (seven nominations) of fixed choices leads to unacceptable agreement between

blockmodels with mErrB higher than 0.2. If the number of choices is restricted to one

or two nominations, the proportion of incorrectly identified block types is around 0.25,

which indicates that one block in a blockmodel is incorrectly classified.

As noted above, if number of choices is restricted to one or two nominations, then the
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ties are deleted from the real boy-girl liking ties network. Actors in the network nomi-

nate from two to four friends, therefore the restriction of choices to three nominations

will lead to both deletion and addition of ties. The ties are randomly added to the

network, if the restriction of choices is set to four or more nominations. In that case,

the observed real structure is the subset of measured networks and actors have to add

non-existing ties to meet the criteria. Therefore, we try to present the dependence be-

tween the percent of ties changed in different restriction rules compared to the whole

boy-girl liking ties network and both indices of network stability.

Figure 7.2(a) presents mean values of ARI plotted against the percent of changed ties.

Gray points indicate mean values of ARI in dependence to the percent of randomly

changed ties in the boy-girl liking ties network. The extensive results of randomly

introduced measurement errors are presented in Section 7.5.2.1. With presentation

of both error mechanisms in social network study designs on one figure we try to

compare both types of errors. If in the restriction of nominations ties were randomly

deleted the results are plotted in red, if ties were just randomly added the results are

marked with blue, and black color indicates those results where ties were both ran-

domly added and deleted to meet the specified criteria about the number of nomina-

tions.

The smallest percent of changed ties (6%) is obtained if the number of nominations is

restricted to four choices. As seen above, there is a perfect agreement between mea-

sured and real partition and ties were only added to the measured network. With

five required nominations 16% of ties were changed (more precisely, ties were added)

in the measured network and agreement between partitions is still perfect. The re-

sult is similar if 16% of ties are randomly changed (one, a tie, is replaced by zero and

and vice versa). More than quarter (26%) of ties were added to the network if the

number of fixed choices was equal to six, but the agreement between partitions was

still acceptable with mARI values around 0.9. Compared to the same percentage of

randomly changed ties, the results for fixed choice mechanism are better. Interesting

results are obtained if we compare restrictions to two and five nominations, where 14
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Figure 7.2: The ercent of changed ties in the simulation study with the boy-girl liking

ties network for simulated fixed choice design

and 16 percent of ties were changed, respectively. In the first case (2 fixed choices)

ties were deleted from the whole network and the result for mARI is overwhelm-

ing (mARI ≈ 0.3). In the second case (five fixed choices) higher percent of ties was

changed, but ties were added to the network. As noted above, the agreement between

both partitions in that case is acceptable. Therefore we may conclude that addition of

ties in a fixed choice design is less destroyable than deletion of ties. In other words, if

the study design requires fixed choice, the restriction of nominations should not be set

too low.

The results for the percent of incorrectly identified block types plotted against the per-

cent of changed ties are presented in Figure 7.2(b). Similar as for mARI, the deletion

of ties in case when the number of choices is limited to one or two nominations de-

stroys the blockmodel structure, and values of mErrB are higher compared to the same

percent of randomly changed ties.
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7.1.2.2 The student note borrowing network

The student note borrowing network has 15 actors. The blockmodel based on struc-

tural equivalence into three clusters is presented in Figure 6.2 in page 72.

The average outdegree (the average number of nominations) in the note borrowing

network is 3.73 (with standard deviation 0.88). One actor nominated one friend, five

actors nominated three other members, six actors made four nominations and three

actors nominated five other members of a network.

The limitation of number of choices was simulated with a range of restriction from

one to nine actors, where a whole note borrowing network has 15 actors. Figure 7.3(a)

presents the results for stability of blockmodeling based on structural equivalence in

terms of partitions. The mean values of ARI are acceptable for restriction set to four

and five nominations, because mARI values are above 0.8. For fixed choice equal six

or higher, the mARI decline to zero, which indicates unacceptable agreement between

partitions. Mean values of ARI are below 0.8 also for range of limitations from one to

three fixed choices.
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Figure 7.3: Results of the simulation study with the note borrowing network for simu-

lated fixed choice design
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Figure 7.3(b) presents the stability of blockmodeling for the note borrowing network

in terms of correctly identified block types (ErrB). Compared to results for stability

of partitions, the stability of blockmodel structure in terms of correctly identified and

placed block types is higher. Mean values of ErrB are below 0.2, which indicates less

then two incorrectly identified block types in a blockmodel, for whole range of fixed

choices from two to seven. The blockmodel or image matrix of measured network

compared to whole network is unacceptable if the restriction of number of nomina-

tions is set to one or higher than seven.

As noted above, actors made between two and five nominations. Therefore, if the

number of choices is restricted to one or two nominations, then ties are deleted from

the note borrowing network. If the number of choices is set to three or four, then ties

are both added and deleted to satisfy the condition. Ties are randomly added to the

network, if the restriction of choices is set to five or more nominated actors.

Figure 7.4(a) presents mean values of ARI plotted against the percent of changed ties.

The gray points indicate mean values of ARI when the random measurement errors

are introduced to the network (detailed results are presented in Section 7.5.2.2).

The smallest percent of changed ties (5%) is obtained if the number of nominations is

restricted to four choices and the agreement between partitions is acceptable. If the

choices are limited to three actors, majority of changed ties were deleted tie and only

one tie was added, because one actor has just two nominations. In that case 6% of ties

were changed and the mean value of ARI indicates unacceptable agreement between

both partitions. In case when number of choices was limited to five actors, ties were

only added to the network and the agreement between partitions according to mARI

is acceptable. In this case, we changed 9% to meet the limitation criteria and the mARI

values are higher than in case of three choices restriction. Similar as in boy-girl liking

ties network, we may conclude that addition of ties has less destroyable effect than

deletion of ties.

The less severe effect of adition than deletion of ties in a fixed choice design can also
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Figure 7.4: Percent of changed ties in the simulation study with the note borrowing

network for simulated fixed choice design

be seen in results for stabulity of blockmodel in terms of block types (Figure 7.1.2.2).

Mean values of ErrB are in range from three to seven, where ties were both added

and deleted or just added, fixed choices below 0.2 and have similar pattern as corre-

sponding percent of randomly introduced measurement errors. In case when ties were

only deleted to meet the limitation criteria, the mErrB values are noticeably higher

(around 0.2) than comparable fixed choice cases (according to the number of changed

ties) where ties were added.

7.1.3 Conclusions

According to presented results, we may conclude that limitation of number of choices

may destroy the blockmodel structure if the restriction is unrealistic or too far from

the true number of desired nominations. Newman (2010, 41) emphasized that ”limits

are often imposed purely for practical purposes, to reduce the work the experimenter

must do”. We would like to emphasize that this is not the right reason for selection of

fixed choice questionnaire format which has high ability to destroy the underlying true

structure and estimates of network statistics (Holland and Leinhardt, 1973; Kossinets,

2006), therefore, several authors warn against its use.
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Also from blockmodeling procedure point of view, the questionnaire format in social

network studies should not enforce the fixed number of choices. If there is a reasonable

argumentation for use of fixed choice design, the limitations should not be set too strict.

For example, for establishment of blockmodel it is better that questionnaire format

forces the respondents to nominate more friends (than is the real number) than make

them impossible to list all their friends.

7.2 Errors caused by direction of questions

The stability of blockmodeling to errors obtained due to direction of questions is pre-

sented with two examples of real networks. The first pair of networks is the Student

Government recognition networks and the second pair of networks is from extended

study of social support dimensions and quality of measurement instrument for social

network data (Ferligoj and Hlebec, 1998).

7.2.1 The Student Government recognition networks

Hlebec (1992) collected six networks with three different questions and two methods.

All networks are presented on page 73 in Section 6.2.2.1. We try to represent connect-

edness or agreement between two blockmodels obtained from networks with original

and reversed question. The wording of questions was (Hlebec, 1992, 1993):

1. Which members and advisors of the Student Government do you (most often)

ask for an opinion?

2. Which of the members and advisors of the Student Government (most often) ask

you for an opinion?

We used networks collected with recognition method (Table 6.1 on page 75). The sec-

ond network, ’ask you for an opinion’, was transposed before the analysis and there-

fore the notation ’being asked for an opinion’ will be used.
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The blockmodels of the selected networks have not been, according to our knowledge,

published. The other network from the collection, the recall discussion network, was

presented in (Doreian et al., 2005) in terms of generalized equivalence. Therefore the

natural decision would be to examine the selected networks in terms of generalized

equivalence, but we decided, due to high instability of blockmodeling according to

regular and generalized equivalence to random measurement errors (presented in Sec-

tion 7.5), to establish blockmodels based on structural equivalence and compare them.

If the ties of both networks are compared, it can be seen that there are 95 agreements

about existence of ties (there is a tie in both networks or there is no tie in both net-

works). 14 ties existing in the ’original’ network were not measured in the ’reversed’

network and vice versa, 20 ties were measured in the ’reversed’ network which do not

exist in the ’original’ one. The proportion of changed ties in both networks is quite

high and equals 0.31.

First, the network for original question (’asking for an opinion’) is presented in Fig-

ure 7.5. The colors show three clusters based on structural equivalence. In the middle

panel the sociomatrix is presented. The colors on the diagonal (red, blue and yellow)

represent cluster membership (and not ties). The image matrix shows non-symmetric

structure with three complete blocks. The presented partition, which is the best fitting

partition according to structural equivalence, has 21 inconsistencies.

In the next step, the network for the reversed question ’being asked for an opinion’ was

examined in terms of structural equivalence. There were two equally well fitting parti-

tions into three clusters with 27 inconsistenncies (Figure 7.6). The first partition is pre-

sented in Figure 7.6(a). The first cluster consist of actors {m1, pm, m2, m4, a2}, in the sec-

ond cluster there are {m3, m6, m7} and in the third cluster there are actors {m5, a1, a3}.

The colors on the diagonal represent clusters obtained with ’original’ question net-

work presented in Figure 7.5. The cluster membership is quite mixed. The first cluster

of ’reversed’ blockmodel consists of actors from all clusters from ’original’ question

blockmodel, and the third cluster preserves the membership but it is reduced. Parti-
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Figure 7.5: The Student Government recognition ’asking for an opinion’ network (left),

three partitions based on structural equivalence (middle) and image matrix (right)

tions of ’original’ question and ’reversed’ question blockmodel were compared with

the Adjusted Rand Index. The calculated value is 0.21, which indicated poor agree-

ment (Steinley, 2004). According to the image matrix I1 (Equation (7.1)), the proportion

of the differently identified block types in both blockmodels is 0.22 (2 different blocks).

(a) 1st equally well fitting partition (b) 2nd equally well fitting partition

Figure 7.6: Blockmodels for the Student Government recognition ’being asked for an

opinion’ network compared to blockmodel from ’asking for an opinion’ network
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(7.1)

The second equally well fitting partition is presented in Figure 7.6(b). The first cluster is

the same as in ’original’ question blockmodel, and other actors in the second and third

cluster are mixed compared to clusters presented in Figure 7.5. The Adjusted Rand

Index between partitions of interest is 0.29, which is higher as for the first equally well

fitting partition, but still indicates poor concordance. If the blockmodels are compared,

the ’reversed’ question blockmodel has an additional complete block on the diagonal

(I2 in Equation 7.1). Therefore, the proportion of incorrectly identified block types is

equal to 0.11.

7.2.2 Networks of emotional support

The selected networks of emotional support are part of a large study of quality of mea-

surement instrument for social network data (Ferligoj and Hlebec, 1998, 1999; Hlebec,

1999, 2001; Hlebec and Ferligoj, 2001; Zemljič and Hlebec, 2005). Data were collected

in eight third grade classes consisting of 30 students on average. They measured four

dimensions of social support: instrumental (exchange of study material), informational

(informations about important study assignments) and emotional support (discussing

important things) and social companionship (invitations to a birthday party). In re-

search design four scales were used: binary, five-point ordinal scale with or without

labels and line-production (or line-drawing) scale. Both giving and receiving of social

support were measured with so called ’original’ and ’reversed’ questions. There were

also two data collection techniques used, recognition and free recall of actors.

We selected two networks from the first class measuring giving and receiving (original

and reversed question) of emotional support with binary scale, without limitation of

actors and with recall method. The emotional support was selected, because it was the

most stable. It has the lowest proportion of changed ties in the network collected with

original question compared to the network collected with reversed question and it is
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equal to (0.22). To compare, the instrumental (or material) and informational support

(in the same first class) have 0.33 of changed ties and the highest proportion of changed

ties between measuring social support dimensions with original and reversed question

has companionship dimension (0.38). These results are consistent with findings of Hle-

bec and Ferligoj (2002, 299-300) that the exchange of study material is the least reliable

measure (instrumental support) and that informational and emotional support are the

most reliable. They conclude that measurements of social support provided by strong

ties are more reliable than social support provided by weak ties.

The exact wording of questions (Hlebec, 2001, 138-139):

1. With which of your classmates would you discuss important things?

2. Which of your classmates would discuss important personal matters with you?16

Figure 7.7(a) presents blockmodel into three clusters based on structural equivalence

for the ’original’ network of emotional support. The network consist of 281 arcs where

actors choose on average 8.5 classmates (with standard deviation 4.9). The obtained

blockmodel has 231 inconsistencies and three clusters consist of 7, 6 and 20 actors.

The ’reversed’ network has 278 arcs and the average outdegree (average number of

nominations) is 8.4 (with standard deviation 3.1). The blockmodel of ’reversed’ net-

work into three clusters has 210 inconsistencies (Figure 7.7).

Colors on the diagonal (red, blue, and yellow) of the ’reversed’ network present the

cluster membership of an actor in the ’original’ network. Actors from the second blue

cluster from the ’original’ network remain together (except actor 2) and are joined to-

gether with four other actors. The largest yellow group from the ’original’ network is

mixed with the red group in the ’reversed’ network. The Adjusted Rand Index of both

partitions is 0.29 which indicates poor agreement between both partitions.

The image matrix of the ’original’ network (I3 in Equation (7.2)) has three complete

blocks; within clusters C1 and C2, and between both mentioned clusters. The image

16The obtained network was transposed before the blockmodeling procedure.
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(a) ’Original’ network (b) ’Reversed’ network

Figure 7.7: Blockmodels into three clusters based on structural equivalence for the

emotional support ’reversed’ network compared to blockmodel from ’original’ net-

work

matrix of the ’reversed’ network (I4 in Equation (7.2)) has only two complete blocks on

the diagonal, therefore the proportion of incorrectly identified block types is equal to

0.11 which indicates acceptable agreement between image matrices.

I3 =











com com null

null com null

null null null











I4 =











com null null

null com null

null null null











(7.2)

Another approach of analyzing the ’original’ and ’reversed’ network would be a com-

bined network. A tie in the ’combined’ network exists if a corresponding tie is present

in both networks. The new network is in fact intersection of both networks and we

will denote it as the ’confirmed’ network. The ’confirmed’ network has 160 arcs which

means that 57% of ties in the ’original’ network are confirmed with a tie in the ’re-

versed’ network. The mean outdegree is 4.8 with standard deviation 2.7. The density

of the ’original’ network is 0.27 and for the ’reversed’ network 0.26, while the density

of the ’confirmed’ network is lower and is equal to 0.15.

The blockmodel of the ’confirmed’ network into three clusters based on structural
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equivalence was established. There were 122 inconsistencies and two equally well

fitting partitions (Figure 7.8). The first cluster is the same in both partitions (actors 1, 5,

6,12, 19, 24), the second cluster in the first partition (Figure 7.8(a)) has 5 actors (actors

8, 9, 23, 29, 30), while the second cluster of the second equally well fitting partition

(Figure 7.8(b)) has one actor more (actor 28). Therefore, the agreement between both

partitions is high and that was also confirmed with the value of the Adjusted Rand

Index which is equal to 0.90. The image matrix of both equally well fitting partitions

is the same and has two complete blocks in the diagonal which represent two cohesive

subgroups.

(a) 1st equally well fitting partition (b) 2nd equally well fitting partition

Figure 7.8: Blockmodels into three-clusters based on structural equivalence for the

’confirmed’ emotional support network

The obtained partitions of the ’confirmed’ blockmodel (Figure 7.8) were compared to

the partitions of ’original’ and ’reversed’ blockmodel (Figure 7.7). The agreement be-

tween partitions is poor. The Adjusted Rand Index between partition from ’original’

blockmodel and both equally well fitting partitions from ’confirmed’ blockmodel is

0.35 and 0.31, respectively. Comparison of both ’confirmed’ partitions with the parti-

tion from ’reversed’ blockmodel results in the ARI values equal to 0.47 and 0.41. On

the other hand, the image matrix of the ’confirmed’ blockmodel is equal to the image
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matix I4 of the ’reversed’ blockmodel.

The above example shows that although all three networks, ’original’, ’reversed’ and

’confirmed’, present the relation of giving an emotional support between the same

actors, the simplified blockmodel structure is not the same. We have to be aware that

this method of gathering the network data, including the direction of question, has

a great impact on position membership of actors. The ’confirmed’ network could be

used to find the most cohesive and stable subgroups of the network.

7.2.3 Conclusions

Although we only presented results on two real networks, we may conclude that di-

rection of question has a great impact on the established blockmodel structure. Both

results of the blockmodeling procedure, the position membership and the image ma-

trix, depend on the method used for gathering social network data. Therefore further

research should establish if there is a common pattern in the blockmodels obtained

with different question in data collection process. The confirmation of ties from the

’original’ network from the ties from the ’reversed’ one, could probably be used to find

the most dense, stable and cohesive subgroups of a network.

7.3 Errors caused by actor non-response

In this section the stability of blockmodeling to actor non-response is presented. The

design of a research study with more detailed scheme of simulations is presented in

Section 7.3.1, while the results are presented in Sections 7.3.2 and 7.3.3. Based on

the obtained results recommendations about the best actor non-response treatment are

presented together with an answer to the second thesis presented on page 55.

7.3.1 The design of simulation studies for actor non-response

In order to investigate the vulnerability of blockmodels to different numbers of non-

responding actors, along with various ways of treating such missing data, we per-

formed a simulation study of actor non-response where all outgoing ties of at least one
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actor are missing. We use the following notation: a whole network that is known17; a

measured network which is obtained from the whole network by removing all outgoing

ties for some actors; and a treated network that is obtained by treating a measured net-

work to deal with the introduced non-responses.

Section 7.3.1.1 describes the overall design of the simulations; Section 7.3.1.2 outlines

three types of introduced non-response missing data and Section 7.3.1.3 presents five

ways of treating the introduced missing data due to actor non-response. Two types

of whole networks were included n simulation studies; real networks described in

Section 6.2.1 and simulated networks based on structural equivalence in Section 6.2.3.

7.3.1.1 A scheme for simulations for actor non-response

The basic scheme of simulation study from Section 6.1 is supplemented with three

different mechanisms for selection of non-respondents (Section 7.3.1.2) and five treat-

ments of missing data presented in (Section 7.3.1.3).

The scheme of simulation study for actor non-response:

1. Select a network from the literature or

generate a whole network under a known starting model.

2. Establishing a blockmodel of the whole (real) network that has two parts:

(i) the known (real) partition of the actors of the whole network into positions;

and

(ii) the image matrix with the known distribution of block types by location.

3. Let nGen denote the number of simulations for a given combination of network

type, introduced non-response mechanism, number of non-respondents, and miss-

ing data treatment regime.

For i=1:nGen, do the following:

(a) Construct the network with non-responses (the measured networks) by se-

lecting some proportion of actors to become non-respondents and deleting

17It is a starting network in simulations.
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their outgoing ties based on selected missing mechanism (MCAR, based on

outdegree or based on indegree) described in Section 7.3.1.2.

(b) Treat the measured network to substitute for the missing data according to

a selected missing data treatment (discussed in Section 4.3.1.1);

(c) Establish a blockmodel of the measured and treated network that also has

two parts:

(i) the partition of the actors of the measured and treated network into posi-

tions; and

(ii) the blockmodel image of the measured and treated network.

(d) Compare the resulting blockmodels of the whole and the treated networks

using:

(i) the Adjusted Rand Index to compare the two sets of positions; and

(ii) the proportion of incorrect blocks (as described in Section 5.1.1).

4. Investigate the impact of actor non-response in terms of the mean of the values

of ARI - denoted as mARI - and the mean of the proportion of incorrect blocks -

denoted by mErrB.

7.3.1.2 Generating non-response missing data

Three different actor non-response mechanisms (or regimes for generating non-response

missing data) were used. Each regime defines the probabilities that actors become a

non-respondent. One is that these actors are selected at random, the second is that

the probability of their selection depends on their outdegree, and the third is that it

depends on their indegree. More precisely, the three options are:

(i) Actors are selected at random to become non-respondents.

(ii) The probability of actors becoming non-respondents is proportional to

1/(outdegree + 1)2.

(iii) The probability of actors becoming non-respondents is proportional to

1/(indegree + 1)2.
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Rubin (1976) defined and labeled three types of missing mechanisms: (i) MCAR (miss-

ing completely at random), (ii) MAR (missing at random) and (iii) MNAR (missing not

at random). Our first non-response mechanism is MCAR, because non-response is un-

related to the network or actor characteristics. Huisman and Steglich (2008, 302) argue

that this model for missing data ”may be realistic when there is no reason to assume

that actors differ in their propensity to fill in network questionnaire”.

Our second and third non-response mechanisms depend on the network and the im-

plied network based actor characteristics. Having the non-response probability related

to an unknown number of unreported ties implies that data are missing in NMAR way.

Mechanisms based on actor degrees where having lower outdegree and lower indegree

values implies having higher probabilities of being non-respondents were used. Huis-

man and Steglich (2008) established that both mechanisms reflect the characteristics

of real world networks where popular actors (those with higher indegree) are more

willing to participate and are easier to reach than inactive actors with low outdegree.

Similarly, Costenbader and Valente (2003) ascertained that actors refusing to partici-

pate in surveys, or are missed, are actors more likely to come from the periphery of

their network. In critical analysis of their study Borgatti et al. (2006) emphasized that

one of the limitations was only randomly introduced errors (e.g. node deletion, edge

deletion...) and that in practical studies data collection methods make systematic er-

rors where low degree nodes are more readily lost.

Network data are missing at random (MAR) if the missingness or non-response de-

pends on the observed data (usually some kind of actor’s characteristics), but not on

missing ties; e.g. Huisman and Steglich (2008) used data about alcohol consumption

as additional covariate. This type of non-response is not included in our simulations.

The number of non-respondents for the boy-girl liking ties network and simulated

whole networks based on completely symmetric blockmodel structure described in

Section 6.2.3.1 ranges from 1 to 5 (with the proportion of non-response taking the val-

ues 0.1, 0.2, 0.3, 0.4 and 0.5). For the note borrowing network and the simulated net-
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works with three positions (two examples of non-symmetric blockmodel structures

described in sections 6.2.3.2 and 6.2.3.3), the number of non-respondents ranges from 1

to 6 (with proportion of non-response taking the values 0.07, 0.13, 0.20, 0.27, 0.33, 0.40).

7.3.1.3 Treatments of missing non-response data

We treated the missing non-response data in five ways, which are described in detail

in Section 4.3.1.1. The first is the complete-case approach where, in addition to excluding

the non-respondents, all incoming ties to them are also removed. The second is the null

tie imputation approach that keeps the non-respondents, but assigns the value 0 to each

of their outgoing ties. Using reconstruction is the third approach where the missing rij

tie is replaced by the observed rji tie, and for ties between two non-respondents a 0

is imputed. In the fourth approach, the imputations based on the mode, the set of the in-

coming ties to actor j is summarized and the modal value is then used to assign values

for the rij tie. Finally, we use the reconstruction plus imputations based on a mode (for ties

between two nonrespondents), which is a combination of the third and fourth approaches.

The efficiency of different missing data treatments is examined with real and simulated

networks, and obtained results are presented in the following sections.

7.3.2 Results of simulation study of actor non-response for real net-

works

7.3.2.1 A boy-girl liking ties network

In the boy-girl liking ties network (presented in Section 6.2.1.1), non-respondents were

selected based on the three missing data mechanisms described in Section 7.3.1.2. Five

different treatments of non-response data (described in Sections 4.3.1.1 and 7.3.1.3)

were used, and for every new measured and treated network a blockmodel was estab-

lished and compared with the structure shown in Figure 6.1 on page 72. The resulting

factorial design has 75 cells (for the combinations of three missing mechanisms, five

treatments of non-response, and five numbers of actors with non-response). Within

each cell, the generation of incomplete data was repeated 10 times for networks with
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one missing actor, 50 times for combinations of two missing actors and 100 times18 for

combinations of three or more non-respondents. Obviously, the number of generated

missing data increases with higher proportions of non-respondents.

Data missing completely at random

Figure 7.9 presents the results when non-responding actors were selected at random.

The mean values of ARI are plotted in Figure 7.9(a) and the mErrB values are in Figure

7.9(b). The results are unequivocal when there is only one non-responding actor. For

all treatments of non-response missing data, there is perfect agreement with the whole

network blockmodel: mARI = 1 for all treatments indicating perfect agreement, and

mErrB = 0 so that all block types are correctly identified and placed. Differences

between the ways of treating missing data start to appear when there are at least two

non-respondents.
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Figure 7.9: Results of the simulation study based on the boy-girl liking ties network

for data missing completely at random (solid lines) and predictions according to linear

regression model (dash lines)

18The number of all possible combinations of actors with nonresponse increases. For example, for

a network where n = 11 there are: (11
1 ) = 11 possibilities for selecting one non-respondent, (11

2 ) = 55

possibilities for selecting two non-respondents; (11
3 ) = 165 and so on.
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The results following the use of null tie imputations and imputations based on mode

are the worst. With three non-respondents, mARI for null tie imputations drops be-

low 0.65 indicating poor agreement between the cluster memberships for the whole

network and those of the measured and treated network. This performance gets much

worse for four and five non-respondents. According to the guidelines of (Steinley,

2004), all of the other missing data treatments perform quite well. Of these four meth-

ods, the treatment using modes affected the partitions the most, although ARI > 0.8

and the blockmodel is stable for two or more non-respondents (mErrB ≤ 0.2). The

blockmodels for networks treated with the complete-case, reconstruction, and recon-

struction coupled to using a mode for ties between non-respondents all lead to excel-

lent agreements with the blockmodel for the whole network. If anything, the complete-

case approach fares the best. This ordering also holds true for the identification and

location of block types as shown on the right in Figure 7.9(b).

Dash lines in Figures 7.9 present predictions of both indices of blockmodeling stability

(ARI and ErrB) according to simple linear regression models for each combination of

missing data mechanism and non-response data treatment. In case of Adjusted Rand

index (Figure 7.9(a)) regression lines are forced through point (0, 1), because with zero

non-respondents the agreement between partitions is perfect and therefore value of

ARI is equal to 1. Therefore linear regression model for ARI is equal to

YARI = β · n.actor + 1 . (7.3)

All dash lines, except for the null tie imputation treatment fit well to the observed

data for ARI. The lowest change in values of ARI (Table A.1), when number of non-

respondents increases, is obtained with the complete-case approach (β = −0.008) and

with the combination of reconstruction plus imputations based on mode (β = −0.009).

The change in number of non-respondents for one decreases the Adjusted Rand Index

for 0.014 when the reconstruction treatment is used, and for 0.030 in the case of impu-

tations based on mode.

The slope coefficients are tested with t-test if they are equal to β0, instead of usually

adopted testing value 0. β0 is calculated based on the selected criterion for stable block-
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modeling according to partition membership (ARI) and number of non-respondents

introduced in simulations. As a reminder, according to the simulations of Steinley

(2004) we say that blockmodeling is stable in terms of partitions if the mean values

of ARI are above 0.8 (presented on page 64 in Section 5.1.1). The boy-girl liking

ties network (presented in Figure 6.1) has 11 actors and the maximal number of non-

respondents in the simulations was set up to 5 actors (which is equal to 45% of actors

in the network). Combining both presented facts we decided to compare the obtained

predictions from linear regression models (presented above) with the slope of the line

through points (0, 1), and (5, 0.8). Point (0, 1) indicates perfect agreement between

two partitions in network without non-respondents and point (5, 0.8) indicates ac-

ceptable agreement in terms of ARI with five introduced non-respondents. The line is

presented in Figure 7.10(a) and its slope coefficient is equal to βARI
0 = 0.2

−5 = −0.04.
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Figure 7.10: Schematic representation of lines which were used for comparison of lin-

ear regression models in smaller networks for both indices of blockmodeling stability

Therefore the slopes of linear regression models (presented with dash lines in Figure

7.9(a)) are tested with one-sided t-test where null and alternative hypotheses are as

follows:

H0 : βARI
0 ≥ −0.04

H1 : βARI
0 < −0.04
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t-statistic was calculated as

t =
β̂ − β0

seβ̂

(7.4)

and it follows the t-distribution with n − 2 degrees of freedom where n is the number

of observations, β̂ is an estimate of slope coefficient from Equation (7.3), seβ̂ is a stan-

dard error of the estimated coefficient and β0 = βARI
0 = −0.04.

Results are presented in Table A.1 in Appendix A. The prediction for the null tie im-

putation treatment has statistically significant lower slope than -0.04 (t=-27.009), which

confirms that this treatment is the worst and unacceptable for higher numbers of non-

respondents. Other four treatments have mARI above 0.8 for whole range of intro-

duced non-respondents (solid lines in Figure 7.9(a)) and also the slope coefficients of

predictions (dash lines) are statistically significantly higher than 0.8.

The proportion of incorrectly identified block types (ErrB) is equal to zero if we do

not have any non-respondents, therefore regression lines in Figure (7.9(b)) are forced

through point (0, 0). Linear regression model for ErrB according to above restriction

is equal to

YErrB = β · n.actor + 0 . (7.5)

Similar as in the case for ARI we decided to compare slopes of linear predictions

with the slope of the line through points (0, 0) and (5, 0.2). Point (0, 0) indicates

perfect agreement between positions of blocks in two image matrices without non-

respondents and, point (5, 0.2) indicates acceptable agreement in terms of ErrB with

five introduced non-respondents. The line is presented in Figure 7.10(b) and its slope

coefficient is equal to βErrB
0 = 0.2

5 = 0.04. Therefore the slopes of linear regression mod-

els (presented with dash lines in Figure 7.9(b)) are tested with one-sided t-test where

the null and alternative hypotheses are as follows:

H0 : βErrB
0 ≤ 0.04

H1 : βErrB
0 > 0.04

Table A.2 (in Appendix A) presents linear regression models for proportion of incorrect

block types. Similar as in models for ARI, changes in values of ErrB are the smallest
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if the number of non-respondents is increased for one when the complete-case ap-

proach (β = 0.006), combination of reconstruction and imputations based on mode

(β = 0.012) or simple reconstruction procedure (β = 0.008) are used. Although the

slope coefficients from linear regression models for the null tie imputation and the im-

putations based on mode are significant (p − value = 0.000)), there is not a completely

clear linear relationship according to Figure (7.9(b)). Similar as in the case of ARI, the

slope of the null tie imputation treatment is statistically significantly higher than 0.04,

which confirms that the null tie imputation is unacceptable also in terms of correctly

identified blocks in a blockmodel (ErrB).

Data missing based on outdegree and indegree

Solid lines in Figures 7.11 and 7.12 display the results when the other two missing (not

at random) data regimes (based on outdegree and indegree) are used. The results are

similar to those for random missing data for the complete-case, reconstruction and the

combination of reconstruction and mean imputation treatments.
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Figure 7.11: Results of the simulation study based on the boy-girl liking ties network

for missing mechanism based on outdegree (solid lines) and predictions according to

linear regression model (dash lines)

The null tie imputation method performs as badly with these two forms of missing
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data. The imputation using the mode fares as badly or worse than the null imputation

method. The imputation based on mode is a little bit worse, when missing mechanism

based on indegree is used compared to missing mechanism based on outdegree. In

agreement between partitions (ARI) is the slope coefficient equal to -0.129 when non-

respondents are selected based on their outdegree and it case of non-response missing

mechanism based on indegree is equal to -0.131 (Table A.1). The highest change in val-

ues of ErrB (Table A.2) when number of non-respondents increases for one is obtained

with the imputations based on mode (β = 0.087) when the non-respondents are se-

lected based on outdegree. The slope coefficient is even higher when non-respondents

are selected based on their indegree (β = 0.091). Figures 7.11 and 7.12 Dash lines in

Figures 7.11 and 7.12 together with t-test of slope coefficients (Table A.1 and A.2) also

indicate that linear models are not appropriate in the case of the null tie imputations

and the imputations based on mode.
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Figure 7.12: Results of the simulation study based on the boy-girl liking ties network

for missing mechanism based on indegree (solid lines) and predictions according to

linear regression model (dash lines)

This network has a very strong structural signal because the near-complete and null

blocks are very clear (Figure 6.1 on page 72). The whole network has high reciprocity

(with a reciprocity measure of 0.79). There is little surprise that small amounts of miss-
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ing data (one or two non-respondents) do not prevent blockmodeling from identifying

the intrinsic network structure in terms of the composition of positions and the identi-

fication of blocks. The strong signal also accounts for the poor performance of the null

tie imputation treatment because it destroys reciprocity, particularly when there are

three or more non-respondents. The very poor performance of the imputation using

a mode when non-response is related to indegree and outdegree does have some sur-

prise value at first glance. If we look closer to the image matrix and imagine that two

actors are missing from the same cluster, then the imputations based on mode impute

exactly the opposite value of a tie from a whole network (e.g. a tie instead of a zero).

However, because this whole empirical network has such a clear structure, the results

using it are not likely to generalize to other networks. Even so, it also illustrates the

general point that the regime generating missing data and the treatments of those data

do have the potential to render unstable blockmodeling results.

Tables 7.1 and 7.1 are present the mean values of both indices for comparison of block-

models together with the standard deviations. The complete-case approach, recon-

struction and combination of reconstruction and mode imputation are the best treat-

ments also according to the smallest standard errors.

Establishment of multiple regression models

As we mentioned before, the factorial design has 75 cells (3 missing mechanisms times

5 non-response data treatments times 5 different numbers of non-respondents). First,

we try to perform the analysis of variance, but the Levene test for equality of vari-

ances revealed significant differences between cells. For the ARI there are 27 cells

with variance equal to 0 (cells with zero variance can be found in Table 7.1), and high-

est variance is 0.073 in cell for missing mechanism based on outdegree with imputa-

tions based on mode with 5 non-respondents (Q1 = 0.000, Me = 0.002, Q3 = 0.031).

For the ErrB the variances in 75 cells of factorial design vary from 0.000 to 0.024

(Q1 = 0.000, Me = 0.002, Q3 = 0.009).

Instead of using the Kruskal-Wallis test as a non-parametric alternative to anova, we

131



Table 7.1: Mean values and standard deviations for ARI for simulations with boy-girl

liking ties network
Number of non-respondents 1 2 3 4 5

Missing

mechanism Treatment Mean Sd Mean Sd Mean Sd Mean Sd Mean Sd

Null tie imputations 1 0 0.939 0.122 0.628 0.202 0.514 0.208 0.408 0.209

Random Reconstuction 1 0 1 0 1 0 0.965 0.119 0.882 0.182

missing Mode 1 0 0.879 0.196 0.882 0.182 0.882 0.182 0.882 0.182

mechanism Reconstruction plus mode 1 0 1 0 1 0 0.969 0.114 0.928 0.149

1 0 1 0 0.992 0.043 0.985 0.078 0.936 0.175

Missing Null tie imputations 1 0 0.975 0.089 0.680 0.190 0.514 0.200 0.420 0.148

mechanism Reconstuction 1 0 1 0 0.998 0.018 0.994 0.041 0.966 0.095

based Mode 1 0 0.971 0.067 0.701 0.239 0.566 0.248 0.183 0.271

on Reconstruction plus mode 1 0 1 0 0.998 0.018 0.996 0.030 0.987 0.049

outdegree Complete Case 1 0 1 0 0.992 0.043 0.980 0.085 0.934 0.177

Missing Null tie imputations 1 0 0.975 0.089 0.680 0.190 0.514 0.200 0.420 0.148

mechanism Reconstuction 1 0 1 0 0.998 0.018 0.994 0.041 0.966 0.095

based Mode 1 0 0.931 0.089 0.644 0.212 0.550 0.176 0.226 0.236

on Reconstruction plus mode 1 0 1 0 0.998 0.018 0.996 0.030 0.987 0.049

indegree Complete Case 1 0 1 0 1 0 0.994 0.040 0.971 0.100

Table 7.2: Mean values and standard deviations for ErrB for simulations with boy-girl

liking ties network
Number of non-respondents 1 2 3 4 5

Missing

mechanism Treatment Mean Sd Mean Sd Mean Sd Mean Sd Mean Sd

Null tie imputations 0 0 0.063 0.098 0.245 0.022 0.250 0 0.250 0

Random Reconstuction 0 0 0 0 0.002 0.025 0.042 0.093 0.116 0.119

missing Mode 0 0 0.103 0.120 0.116 0.119 0.116 0.119 0.116 0.119

mechanism Reconstruction plus mode 0 0 0 0 0.002 0.025 0.040 0.090 0.091 0.116

Complete Case 0 0 0 0 0.004 0.021 0.013 0.051 0.050 0.110

Missing Null tie imputations 0 0 0.046 0.095 0.228 0.046 0.250 0 0.250 0

mechanism Reconstuction 0 0 0 0 0.009 0.044 0.026 0.076 0.065 0.106

based Mode 0 0 0.030 0.082 0.209 0.155 0.362 0.152 0.486 0.056

on Reconstruction plus mode 0 0 0 0 0.009 0.044 0.025 0.074 0.054 0.101

outdegree Complete Case 0 0 0 0 0.004 0.021 0.026 0.072 0.054 0.116

Missing Null tie imputations 0 0 0.046 0.095 0.228 0.046 0.250 0 0.250 0

mechanism Reconstuction 0 0 0 0 0.009 0.044 0.026 0.076 0.065 0.106

based Mode 0 0 0.068 0.092 0.276 0.099 0.383 0.109 0.461 0.088

on Reconstruction plus mode 0 0 0 0 0.009 0.044 0.025 0.074 0.054 0.101

indegree Complete Case 0 0 0 0 0 0 0.010 0.046 0.036 0.083
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decided to perform the multiple regression analysis. We run two separate regression

analyses, one with values of ARI as dependent variable and the other with ErrB as

outcome.

Two factors in our factorial design are categorical variables, so the first stage was to

construct dummy variables. The missing mechanism variable has three categories;

missing at random, missing based on outdegree and missing based on indegree. The

random missing category (MM random) was selected for the reference or baseline

group and two dummy variables were constructed:

- MM out (ones are assigned for missing mechanism based on outdegree), and

- MM in (ones are assigned to group with missing mechanism based on indegree).

The second variable ’non-response treatment’ has five categories and the null tie impu-

tation group (T NTI) has been chosen for baseline group. Four dummy variables were

constructed:

- T RE (the value 1 was assigned to the reconstruction group),

- T MO (the value 1 was assigned to the imputation based on mode group),

- T REMO (the value 1 was assigned to the combination of reconstruction and mode

imputations group), and

- T CC (the value 1 was assigned to the complete case group).

The third predictor in regression analysis is the number of non-respondents which is a

ratio variable, therefore no additional recoding was necessary.

The regression model for ARI was set as:

YARI = β0 + β1 · n.actor + β2 · T RE + β3 · T MO +

+ β4 · T REMO + β5 · T CC + β6 · MM out + β7 · MM in + ε . (7.6)

The model summary in Table 7.3 shows that our regression model predicts values of

ARI significantly well (F=866.3; p-value=0.000) and it explains 53% of variation in
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ARI. The regression model for ARI form Equation (7.6) can be with estimated (un-

standardized) coefficients (Table 7.3) for ARI written as follows:

ŶARI = 0.900 − 0.0726 · n.actor + 0.3743 · T RE + 0.0635 · T MO +

+ 0.3829 · T REMO + 0.3762 · T CC − 0.0488 · MM out +

− 0.0483 · MM in . (7.7)

Table 7.3: Model summary and coefficients of regression analysis for ARI with data

from the boy-girl liking ties network

95% confidence

Estimate Std. Error t value Pr(>|t|) interval for b

(Intercept) 0.9003 0.0103 87.49 0.0000 0.8801 0.9205

n.actor -0.0726 0.0022 -32.96 0.0000 -0.0769 -0.0682

T RE 0.3743 0.0077 48.47 0.0000 0.3592 0.3894

T MO 0.0635 0.0077 8.22 0.0000 0.0483 0.0786

T REMO 0.3829 0.0077 49.59 0.0000 0.3678 0.3981

T CC 0.3762 0.0077 48.72 0.0000 0.3610 0.3913

MM out -0.0488 0.0060 -8.16 0.0000 -0.0606 -0.0371

MM in -0.0483 0.0060 -8.08 0.0000 -0.0601 -0.0366

Residual standard error: 0.179 on 5392 degrees of freedom

Multiple R2: 0.529 Adjusted R2: 0.529

F-statistic: 866.253 (on 7 and 5392 df) p-value: 0.000

All variables in a model for ARI are significant, because p-values are 0.000 (Table 7.3).

The b values (also presented in Figure 7.13) explain to what degree each predictor af-

fects the outcome variable, in our case the values of ARI, if the effects of all other

predictors are held constant.

- n.actor: (b = −0.0726) If the number of non-respondents increases for one non-

respondent, the values of ARI decrease for 0.0726. This interpretation is true only

if the effects of treatments and missing mechanisms are held constant.
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- T RE vs. T NTI: (b = 0.3743) The b value represent the shift in the change of

ARI values if the reconstruction treatment is used, compared to null tie imputa-

tion. The values of ARI increase for 0.3743 if the reconstruction treatment is used

instead of the null tie imputation.

- T MO vs. T NTI: (b = 0.0635) The b coefficient is positive but small if it is com-

pared to other variables for treatments. The values of ARI increase for 0.0635

when imputations based on mode are used instead of the null tie imputation.

- T REMO vs. T NTI: (b = 0.3829) The changes in values of ARI are the highest if

the combination of the reconstruction treatment and imputations based on mode

is used. In comparison with the null tie imputations, the values of ARI are in

that case higher for 0.3829. This means that the combination of reconstruction

procedure and imputations based on mode is the best in terms of stability of

blockmodel, because the values of ARI are the highest.

- T MO vs. T CC: (b = 0.3762) The use of the complete-case approach instead of

the null tie imputations increases values of ARI for 0.3762.

- MM out vs. MM random: (b = −0.0488) The use of the missing mechanism

based on outdegree instead of the random missing mechanism has negative effect

on values of ARI. In that case values of ARI decrease for 0.0488.

- MM in vs. MM random: (b = −0.0483) The effects of missing mechanism based

on indegree are similar to those when missing mechanism based on outdegree is

used. The use of the missing mechanism based on indegree instead of the random

missing mechanism decreases the value of ARI for 0.0483.

Similarly as for the values of ARI (Equation 7.6) the regression model for ErrB can be

written as:

YErrB = β0 + β1 · n.actor + β2 · T RE + β3 · T MO +

+ β4 · T REMO + β5 · T CC + β6 · MM out + β7 · MM in + ε . (7.8)

The model summary in Table 7.4 shows that our regression model explains 55% of vari-

ation in ErrB and predicts values of ErrB significantly well (F=952.2; p-value=0.000).
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Figure 7.13: Regression models for ARI and ErrB with data from the boy-girl liking

ties network

The regression model for ErrB form Equation 7.8 can be with estimated (unstandard-

ized) coefficients (Table 7.4) for ARI written as follows:

ŶErrB = 0.0373 + 0.0418 · n.actor − 0.1775 · TT RE + 0.0321 · TT MO

− 0.1927 · TT REMO − 0.1927 · TT CC + 0.0311 · MM out +

+ 0.0335 · MM in . (7.9)

All variables in a model for ErrB (Equation 7.8) are significant, because p-values are

0.000 (Table 7.4). The model is also presented in Figure 7.13 and the coefficients can be

interpreted as follows:

- n.actor: (b = 0.0418) If the number of non-respondents increases for one non-

respondent, the values of ErrB increase for 0.0418.

- T RE vs. T NTI: (b = −0.1775) The shift in the change in ErrB values is negative

if the reconstruction treatment is used, compared to the null tie imputation. The

value of ErrB decreases for 0.1775 if the reconstruction treatment is used instead

of the null tie imputations.

- T MO vs. T NTI: (b = 0.0321) The value of ErrB increases for 0.0321 when

imputations based on mode are used instead of the null tie imputations. The

absolute value of coefficient b is small compared to other variables for treatments,

which means that values of ErrB are the most similar when null tie imputation

and imputation based on mode are used. This means that the mode imputation
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Table 7.4: Model summary and coefficients of regression analysis for ErrB with data

from the boy-girl liking ties network

95% confidence

Estimate Std. Error t value Pr(>|t|) interval for b

(Intercept) 0.0373 0.0057 6.55 0.0000 0.0261 0.0484

n.actor 0.0418 0.0012 34.39 0.0000 0.0394 0.0442

T RE vs. T NTI -0.1775 0.0043 -41.61 0.0000 -0.1859 -0.1692

T MO vs. T NTI 0.0321 0.0043 7.52 0.0000 0.0237 0.0404

T REMO vs. T NTI -0.1823 0.0043 -42.73 0.0000 -0.1907 -0.1739

T CC vs. T NTI -0.1927 0.0043 -45.17 0.0000 -0.2011 -0.1843

MM out vs. MM random 0.0311 0.0033 9.41 0.0000 0.0246 0.0376

MM in vs. MM random 0.0335 0.0033 10.13 0.0000 0.0270 0.0399

Residual standard error: 0.099 on 5392 degrees of freedom

Multiple R2: 0.553 Adjusted R2: 0.552

F-statistic: 952.240 (on 7 and 5392 df) p-value: 0.000

treatment is the worst in terms of stability of blockmodel (because the values of

ErrB are the highest).

- T REMO vs. T NTI: (b = −0.1823) In comparison with the null tie imputations,

the values of ErrB are lower for 0.1823 when combination of reconstruction and

the imputations based on mode is used.

- T MO vs. T CC: (b = −0.1927) The changes in values of ErrB are the highest if

the complete-case approach is used, more precisely the values of ErrB decrease

for 0.1927 when complete case approach is used instead of the null tie imputa-

tions. The values of ErrB are the lowest, which indicates that the complete case

approach is the best treatment in terms of stability of blockmodels.

- MM out vs. MM random: (b = 0.0311) The use of the missing mechanism based

on outdegree instead of the random missing mechanism has positive effect on

values of ErrB. In that case values of ErrB increase for 0.0311.
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- MM in vs. MM random: (b = 0.0335) The use of the missing mechanism based

on indegree instead of the random missing mechanism increases the value for

ARI for 0.033. Both non-random missing mechanisms have similar effects. The

results of blockmodel stability are a little bit lower when non-random missing

mechanisms are used compared to random missing mechanism (because values

of ErrB are higher).

When the regression model is established, two important questions arise (Field, 2009):

(i) does the model fit the observed data well or is it influenced by the small number of

cases, (ii) can the model be generalized to other samples. If the model is perfectly good

for the data (no outliers, influential cases, etc.), then that model can be used to draw

conclusions about the sample, even when the assumptions19 are violated (Field, 2009).

If the model is adequate the residuals should be normally distributed with mean zero

and standard deviation σ, εi ∼ N(0, σ), and if we look at the histograms of standard-

ized residuals it should be normally distributed with mean 0 and standard deviation

one (εi ∼ N(0, 1)). Figure 7.14 shows histograms of standardized residuals for both

models (Equation (7.7) and (7.9)) and we can conclude that residuals are not normally

distributed.

Figure 7.15 shows residuals plotted versus fitted values. The figures show that vari-

ances are not constant and esspecially for ErrB the pattern of residuals (Figure 7.15(b))

indicates that probably more adequate model will be obtained with additional variable

in linear summand of regression model (Košmelj and Kastelec, 2003).

Although our findings based on regression analysis can not be generalized because

assumptions are violated, the models can still be used to draw conclusions about the

data sample (Field, 2009). The presented regression models for both indices of network

stability (ARI and ErrB) as outcome confirm that the reconstruction in combination

with mode imputations, the complete-case approach and the reconstruction are the

19Normality of errors, homoscedasticity, independence of errors, linearity of relations between vari-

ables.
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(b) Model for ErrB

Figure 7.14: Histogram of standardized residuals of regression models with data from

the boy-girl liking ties network
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(b) Model for ErrB

Figure 7.15: Fitted values versus standardized residuals of regression models with data

from the boy-girl liking ties network

best treatments. The effects of non-random missing mechanisms (based on indegree

and outdegree) compared to random missing mechanism are small, because of similar

patterns in outgoing and incoming ties of all actors.
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7.3.2.2 The student note borrowing network

The student note borrowing network has 15 actors and its blockmodel into three clus-

ters based on structural equivalence is presented in Figure 6.2 on page 72. The resulting

factorial design has 90 cells (for the combinations of three non-response mechanisms,

five treatments of non-response, and six numbers of actors with non-response). Within

each cell, the generation of incomplete data was repeated 10 times for networks with

one missing actor, 50 times for combinations of two missing actors and 100 times20 for

combinations of three or more non-respondents.

Data missing completely at random

Figure 7.16 (and Table 7.5) presents the results of simulation study for the student

note borrowing network when actors are selected randomly as non-respondents. The

existence of only one non-respondent has an impact on the established blockmodels

and values of mARI are lower than in case of the boy-girl liking ties network for all

treatments. For measuring the concordance between positions, the null tie imputation

method performs the worst which means that this procedure leads to the most unsta-

ble blockmodels.

Overall, using reconstruction comes next with regard to poor performance when there

are three or more non-respondents. Use of the mode for imputations and the combina-

tion of reconstruction and mode imputation come next. The best performance or the

highest stability of blockmodeling in terms of partitions comes with the complete-case

approach where high stability of blockmodel with mARI values above 0.8 is obtained

also with four non-respondents. If five or six actors refuse to response the actor re-

sponse rate is equal to 0.67 or 0.6, respectively. The presence of more than five non-

respondents shoves off the mean values of ARI below 0.8 indicating that the corre-

spondence of the position memberships is unacceptable.

20The number of all possible combinations of actors with non-response increases. For example, for

a network where n = 11 there are: (15
1 ) = 15 possibilities for selecting one non-respondent, (15

2 ) = 105

possibilities for selecting two non-respondents; (15
3 ) = 455 and so on.
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(b) Incorrect block types, mErrB

Figure 7.16: Results of the simulation study based on the borrowing network for data

missing completely at random (solid lines) and predictions according to linear regres-

sion model (dash lines)

Similar as in the case of the boy-girl liking ties network, all five non-response data

treatments are indistinguishable when there is one non-respondent (Figure 7.16(b) and

Table 7.6). But even here, the agreement between block types and their positions is

not perfect, because the average proportion of incorrectly identified blocks (mErrB) is

0.11. The starting blockmodel of the note borrowing network has nine blocks and it

is presented in the middle panel in Figure 6.2. If one actor refused to respond, the

mErrB = 0.11 indicates that one block is misrepresented in the treated blockmodel.

As the number of non-respondents increases, the performance of blockmodeling un-

der all missing data treatments worsens. For three non-respondents or less the mean

of ErrB for all missing data treatment is below 0.2 which indicates acceptable results

in regard to blockmodel structure. Consistent with the results for stability of parti-

tions (ARI), both the null imputation and reconstruction treatments lead to the most

unstable blockmodels. On average 20% of block types (or two blocks) are identified in-

correctly. For six non-respondents values of ARI are the lowest for imputations based

on mode with mErrB equal to 0.156, but the standard deviation is the highest among

all treatments (Table 7.6).
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Table 7.5: Mean values and standard deviations for ARI for simulations with the note

borrowing network
Number of non-respondents 1 2 3 4 5 6

Missing

mechanism Mean Sd Mean Sd Mean Sd Mean Sd Mean Sd Mean Sd

Null tie imputations 0.857 0.092 0.616 0.177 0.491 0.162 0.419 0.153 0.372 0.155 0.314 0.126

Random Reconstruction 0.870 0.122 0.802 0.159 0.657 0.200 0.549 0.194 0.450 0.169 0.367 0.153

missing Mode 0.857 0.126 0.731 0.116 0.684 0.126 0.663 0.158 0.580 0.166 0.539 0.177

mechanism Reconstr. + mode 0.870 0.122 0.812 0.153 0.759 0.172 0.682 0.178 0.625 0.179 0.542 0.213

Complete Case 0.940 0.063 0.867 0.203 0.871 0.176 0.812 0.218 0.778 0.225 0.666 0.279

missing Null tie imputations 0.957 0.075 0.628 0.147 0.510 0.135 0.397 0.130 0.340 0.116 0.301 0.113

mechanism Reconstruction 0.947 0.091 0.801 0.172 0.708 0.213 0.566 0.199 0.430 0.149 0.382 0.151

based Mode 0.839 0.170 0.787 0.151 0.711 0.153 0.708 0.160 0.657 0.177 0.603 0.191

on Reconstr. + mode 0.947 0.091 0.813 0.174 0.762 0.195 0.730 0.201 0.704 0.224 0.658 0.228

outdegree Complete Case 0.979 0.045 0.923 0.154 0.886 0.161 0.843 0.196 0.809 0.223 0.720 0.270

missing Null tie imputations 0.957 0.075 0.628 0.147 0.510 0.135 0.397 0.130 0.340 0.116 0.301 0.113

mechanism Reconstruction 0.857 0.126 0.603 0.151 0.526 0.116 0.574 0.113 0.590 0.114 0.512 0.200

based Mode 0.839 0.170 0.787 0.151 0.711 0.153 0.708 0.160 0.657 0.177 0.603 0.191

on Reconstr. + mode 0.857 0.126 0.603 0.151 0.533 0.121 0.589 0.113 0.704 0.224 0.658 0.228

indegree Complete Case 0.936 0.110 0.928 0.112 0.767 0.119 0.640 0.160 0.578 0.201 0.509 0.201

Table 7.6: Mean values and standard deviations for ErrB for simulations with the bor-

rowing network
Number of non-respondents 1 2 3 4 5 6

Missing

mechanism Treatment Mean Sd Mean Sd Mean Sd Mean Sd Mean Sd Mean Sd

Null tie imputations 0.110 0.116 0.173 0.119 0.193 0.108 0.201 0.103 0.215 0.094 0.221 0.084

Random Reconstuction 0.110 0.116 0.121 0.099 0.146 0.096 0.165 0.092 0.180 0.092 0.204 0.098

missing Mode 0.110 0.116 0.112 0.114 0.118 0.116 0.127 0.115 0.137 0.119 0.156 0.127

mechanism Reconstr. + mode 0.110 0.116 0.119 0.099 0.125 0.102 0.132 0.096 0.137 0.098 0.161 0.105

Complete Case 0.110 0.116 0.123 0.117 0.125 0.117 0.128 0.109 0.140 0.113 0.166 0.123

missing Null tie imputations 0.110 0.116 0.183 0.122 0.196 0.110 0.210 0.104 0.214 0.090 0.211 0.083

mechanism Reconstuction 0.110 0.116 0.133 0.111 0.148 0.103 0.168 0.097 0.184 0.089 0.192 0.091

based Mode 0.110 0.116 0.116 0.108 0.121 0.114 0.123 0.111 0.133 0.117 0.137 0.116

on Reconstr. + mode 0.110 0.116 0.132 0.111 0.136 0.105 0.124 0.101 0.130 0.100 0.133 0.101

outdegree Complete Case 0.110 0.116 0.121 0.109 0.121 0.110 0.123 0.112 0.130 0.112 0.146 0.113

missing Null tie imputations 0.110 0.116 0.183 0.122 0.196 0.110 0.210 0.104 0.214 0.090 0.211 0.083

mechanism Reconstuction 0.110 0.116 0.159 0.116 0.162 0.086 0.137 0.064 0.126 0.052 0.137 0.067

based Mode 0.110 0.116 0.116 0.108 0.121 0.114 0.123 0.111 0.133 0.117 0.137 0.116

on Reconstr. + mode 0.110 0.116 0.159 0.116 0.162 0.085 0.137 0.067 0.130 0.100 0.133 0.101

indegree Complete Case 0.110 0.116 0.110 0.111 0.115 0.111 0.123 0.116 0.130 0.109 0.157 0.106

Dash lines in Figure 7.16 present predictions according to established linear regression

models. Similar as for the boy-girl liking ties network the slope coefficients were tested

with one sided t-test where testing slope coefficient β0 are presented in Figure 7.17.
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Because the borrowing network has 15 actors and in simulation study maximal 6 non-

respondents were selected (40% of actors in a network), we decided to compare the

slope coefficients from linear models with the line through points (0, 1) and (6, 0.8)

for ARI and with the line through points (0, 0) (Figure 7.17(a)) and (6, 0.2) for ErrB

(7.17(b)).
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(b) Incorrect block types - mErrB

Figure 7.17: Schematic representation of lines which were used for comparison of lin-

ear regression models in larger networks for both indices of blockmodeling stability

In the linear regression models for ARI the highest slope coefficient has the complete-

case approach (β = −0.050) and it is statistically significantly lower than βARI
0 =

−0.2
6 = −0.03̄ (Table A.1). Other treatments perform worse and they have even lower

slope coefficients in linear regression models. In the case of ErrB the slopes are sta-

tistically significantly lower than βErrB
0 = 0.2

6 = 0.03̄ when the imputations based on

mode (β = 0.030), reconstruction plus imputations based on mode (β = 0.030) or the

complete-case approach (β = 0.031) are used (Table A.2).

The blockmodel structure on Figure 6.2 has a less clear structure than the one for the

boy-girl liking ties network (Figure 6.1) and is less symmetric with reciprocity value

equal to 0.46. The two methods that fared the worst (the null tie imputation and the

reconstruction) introduce further non-symmetry into the treated network which pre-
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vents the revealing of the true blockmodel structure.

.

Data missing based on outdegree

Figure 7.18 presents the simulation results when the chance of being a non-respondent

is conditioned by the outdegree of an actor. In practice that means that more active

actors (with higher outdegree) have lower probability of being non-respondents. The

results with non-random missing mechanism based on outdegree are, in essence, the

same as when there is a random selection of non-respondents (Figure 7.18). The main

difference is that also the complete-case treatment with five non-respondents leads to

acceptable partition agreement, because values of mARI are above 0.8.
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Figure 7.18: Results of the simulation study based on the borrowing network for data

missing based on outdegree (solid lines) and predictions according to linear regression

model (dash lines)

Linear regression models show similar patterns as in the case of randomly selected

non-respondents. In the case of comparison of two partitions (ARI) the highest slope

coefficient has again the complete-case approach (β = −0.042), but the treatment is

unacceptable with six non-respondents. The blockmodeling is more stable in terms of

agreement between two image matrices because the slope coefficients for the imputa-

tions based on mode (β = 0.028), the reconstruction plus imputations based on mode
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(β = 0.028), and the complete-case approach (β = 0.029) are statistically significant

lower than βErrB
0 = 0.03̄ (Table A.2).

Data missing based on indegree

When the chance of being a non-respondent is conditioned by indegree, there are some

surprising differences in the values of mARI. Thus far in the discussion of results, if

there is a degrading of the blockmodeling results, this degradation gets worse as the

amount of non-response increases. Some of the mARI plots in Figure 7.18(a) depart

from this pattern. As the number of non-respondents increases from 3 to 4 and 5, the

mARI values for both reconstruction and combining reconstructing data with use of

the mode increase. It seems that if the chance of being a non-respondent is lower as the

actor indegree increases, these two treatments of missing data provide some protection

as far as blockmodeling results are concerned. Whether it offers enough protection is

open to interpretation because the resulting values for mARI measure may be too low

to trust in the depiction of position memberships. Thereafter, with further increases

in the number of non-respondents to 6 non-respondents the mARI plots resume their

downward pattern.

Dash lines in Figure 7.19(a) indicate that the linear models are (conditionally) appro-

priate for the imputations based on mode and the complete-case approach, while both

reconstruction treatments show nonlinear patterns.

The results regarding the proportion of incorrectly identified block types (mErrB) are

the same as for the other two regimes for generating missing data (Figure 7.19(b)).

Similar as in the stability of blockmodeling in terms of partitions where mARI values

increased with four and five non-respondents for both reconstruction treatments, val-

ues of mErrB are lower for four non-respondents or more compared to two or three

non-respondents which indicates higher stability of blockmodeling in terms of block

types positions.
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Figure 7.19: Results of the simulation study based on the borrowing network for data

missing based on indegree (solid lines) and predictions according to linear regression

model (dash lines)

Establishment of multiple regression models

The factorial design has 90 cells (3 non-response or missing mechanisms times 5 non-

response data treatments times 6 different numbers of non-respondents). The Levene

tests for equality of variances revealed significant differences between cells. The vari-

ances for the ARI are in range from 0.002 to 0.078 (Q1 = 0.016, Me = 0.024, Q3 =

0.035). The highest variance (standard deviations are reported in Table 7.5) is in the

cell with random missing mechanism for six non-respondents with complete case treat-

ment. The lowest variance for ARI is obtained in cell with missing mechanism based

on outdegree with one non-respondent and complete-case approach. The variances for

ErrB are in range from 0.003 to 0.016 (Q1 = 0.010, Me = 0.012, Q3 = 0.013). The high-

est variance is in cell of randomly missing data with imputations based on mode for

six non-respondents and the lowest variance is in cell with missing mechanism based

on indegree with five non-respondents and reconstruction treatment (the standard de-

viations are reported in Table 7.6).

The multiple regression model was established with dummy variables as described in
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Section 7.3.2.1 on page 116. The model summary in Table 7.7 shows that our regres-

sion model predicts values of ARI significantly well (F=609.6; p-value=0.000) and it

explains 38% of variation in ARI. The regression model for ARI as depednent variable

can be with estimated (unstandardized) coefficients (Table 7.7 and Figure 7.20) written

as follows:

ŶARI = 0.6773 − 0.0606 · n.actor + 0.1288 · T RE + 0.2409 · T MO +

+ 0.2480 · T REMO + 0.3348 · T CC + 0.0303 · MM out +

− 0.0237 · MM in . (7.10)

All variables in a model for ARI are significant, because p-values are 0.000 (Table 7.3).

The regression coefficients b can be interpreted as follows:

- n.actor: (b = −0.0606) If the number of non-respondents increases for one non-

respondent, the values of ARI decrease for 0.0606 when other effects of non-

response treatments and missing mechanisms are held constant.

- T RE vs. T NTI: (b = 0.1288) If the reconstruction treatment is used, compared

to the null tie imputation the value of ARI increases for 0.1288. In comparison

to the regression model for the boy-girl liking ties network (Figure 7.13), the re-

construction treatment in this case has lower effect on values of ARI. The reason

for this is not so clear symmetric structure of the starting blockmodel as for the

boy-girl liking ties network.

- T MO vs. T NTI: (b = 0.2409) The value of ARI increases for 0.2409 when im-

putations based on mode are used instead of the null tie imputation.

- T REMO vs. T NTI: (b = 0.2480) In comparison with the null tie imputations,

the values of ARI in that case are higher for 0.2480. The reconstruction combined

with mode imputation seems to be the second best treatment in terms of ARI

values and position agreement between actors in a blockmodel.

- T MO vs. T CC: (b = 0.3348) The complete-case approach is the best in terms of

stability of blockmodel according to position membership, because the values of

ARI are the highest. The use of the complete-case approach instead of the null

tie imputations increases values of ARI for 0.3348.
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- MM out vs. MM random: (b = 0.0303) The use of the missing mechanism based

on outdegree instead of the random missing mechanism has a little positive effect

on values of ARI. In that case values of ARI increase for 0.0303. If the actors with

low outdegree (inactive actors) have higher probabilities to be non-respondents,

the partitions of actors in blockmodel are recovered more accurately.

- MM in vs. MM random: (b = −0.0237) The use of the missing mechanism

based on indegree instead of the random missing mechanism decreases the value

of ARI for 0.0237. When the actors with low indegree (less popular actors)

have higher probabilities of being non-respondents, the stability of blockmodel

in terms of partitions of actors is a little bit lower compared to random non-

respondents.

Table 7.7: Model summary and coefficients of regression analysis for ARI with data

from the note borrowing network

95% confidence

Estimate Std. Error t value Pr(>|t|) interval for b

(Intercept) 0.6773 0.0088 76.53 0.0000 0.6599 0.6946

n actor -0.0606 0.0016 -37.89 0.0000 -0.0637 -0.0575

T RE 0.1288 0.0070 18.42 0.0000 0.1151 0.1425

T MO 0.2409 0.0070 34.45 0.0000 0.2272 0.2546

T REMO 0.2480 0.0070 35.47 0.0000 0.2343 0.2617

T CC 0.3348 0.0070 47.88 0.0000 0.3211 0.3485

MM out 0.0303 0.0054 5.59 0.0000 0.0197 0.0409

MM in -0.0237 0.0054 -4.38 0.0000 -0.0344 -0.0131

Residual standard error: 0.1837 on 6892 degrees of freedom

Multiple R2: 0.382 Adjusted R2: 0.382

F-statistic: 609.584 (on 7 and 6892 df) p-value: 0.000

In our model there is 3.86% of residuals higher than 2 or lower than −2, 1.16% of

residuals are higher than 2.5 or lower than -2, and 0.51% of standardized residuals have
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Figure 7.20: Regression models for ARI with data from the note borrowing network

absolute value greater than 3. Histogram of standardized residual looks approximately

normal (Figure 7.21(a)). Figure 7.21(b) shows residuals plotted versus fitted values

where the pattern of residuals indicates that probably more adequate model will be

obtained with inclusion of additional variable in the linear summand of the model

(Košmelj and Kastelec, 2003). Although the assumptions of regression analysis for the

ARI are not completely satisfied, the above conclusions about our sample are valid

(Field, 2009).
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Figure 7.21: Reisduals from model for ARI with data from the note borrowing network

We also try to set up the regression model for ErrB. It turns out that it explains just 7.5%
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of variance (it is not reported here). One reason why the model is bad is that there is no

linear relationship between number of non-respondents and values of ErrB index. In

Figure 7.22 the radius of the circles is proportional to the number of cases with the same

value of ErrB. For one non-respondent there are just two possible values of ErrB, 0 and

0.22, which indicates that blockmodels obtained with treated data are exactly the same

as the whole blockmodel or that treated blockmodels have two different block types.

The distribution of ErrB for three to six non-respondents shows similar pattern where

the majority of ErrB occupy four values. Therefore, the number of non-respondents is

obviously inadequate to predict the proportion of incorrect block types (ErrB) in the

linear regression model.
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Figure 7.22: The relationship between the number of non-respondents and values of

ErrB index for the note borrowing network

7.3.3 Results of simulation study of actor non-response for simulated

networks

Study of empirical networks is one way of considering the potential consequences of

the presence of non-repondents in the network data. While the two real networks that

were examined in Section 7.3.2 provide some clues about these consequences, they do

not provide an adequate foundation for assessing the general impact of the presence
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of non-respondents and, more importantly, the impact that treatments of missing data

may have on the results produced by blockmodeling. For that we turn to simulating

whole networks with known properties such as number of actors, number of clusters

and type together with position of blocks in a blockmodel (described in Section 6.2.3).

7.3.3.1 Results for the completely symmetric blockmodel structure

The prototype for simulated networks for the completely symmetric blockmodel struc-

ture is the boy-girl liking ties network. We generated 140 whole starting networks with

different combinations of probabilities of ties within null and complete blocks. The

construction of networks is described in detail in Section 6.2.3.1 together with proper-

ties of simulated networks.

The factorial design for this blockmodel has 75 cells which arise from the combination

of 3 non-response data mechanisms, 5 non-response (or missing) data treatments, and

5 numbers of actors with non-response. Within each cell, the generation of incomplete

data was repeated 10 times for one missing actor, 30 times for combination of two miss-

ing actors and 100 times for combinations of three or more missing actors.

Data missing completely at random

Solid lines in Figure 7.23(a) show the mean values for the ARI. In general, as the

number of non-respondents increases, the mARI values decline for all missing data

treatments. There is one exception in that the mARI means for the imputation based

on mode increase from four to five non-respondents. However, these values are all

in the unacceptable region because values of mARI are below 0.8. When there is one

non-respondent in the network the results from all treatment methods are acceptable

(and are in the excellent range with mARI above 0.9). However, for more than one

non-respondent differences in the results emerge for all treatments.

If we have two non-respondents in the network, the mARI drops below 0.8 for impu-

tations based on the mode and its agreement is unacceptable for all higher numbers

on non-responses. The results following the other four treatments are acceptable. For
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(b) Incorrect block types, mErrB

Figure 7.23: Results of the simulation study based on the completely symmetric block-

model structure for data missing completely at random (solid lines) and predictions

according to linear regression model (dash lines)

three non-respondents, the results from the null tie imputation treatment drops into the

unacceptable range and remains there for higher numbers of non-respondents. There

is a modest decline in the mARI for the remaining three treatments as number of non-

respondents increases from 1 to 4, but all mARI values are acceptable. When five

non-respondents are present in the network, the actor response rate is equal to 50%

and the agreement for the complete-case treatment also becomes unacceptable. Over

the full range non-respondents, there are two treatments that permit acceptable iden-

tification of position memberships. They are reconstruction and the combined use of

reconstruction and imputation based on mode for ties between non-respondents. Of

the two, the former performs slightly better.

Dash lines present predictions from linear regression models. The slope coefficient for

the reconstruction procedure is indeed the highest (β = −0.024) and it is statistically

significant higher than βARI
0 = −0.04 (Table A.1).

Figure 7.23(b) shows results for incorrectly identified block types. The results from

152



using the complete-case approach are insensitive to the number of non-respondents

where the mErrB is equal to 0.25. This indicates that in every simulation of non-

response one block type in a blockmodel was misspecified. However, mErrB > 0.2

makes the results following this treatment unacceptable. For the remaining four treat-

ments, having one non-respondent in the network implies acceptable results with near-

zero mean values for the proportion of incorrectly identified blocks. As for mARI, the

results from treating missing data with either reconstruction or the combination of re-

construction with using the mode are acceptable over the full range of non-respondents

considered here. However, the mean values of mErrB do increase slightly as the num-

ber of non-respondents increases. The mean value for this index for both the null tie

imputation and the imputation based on mode becomes unacceptable for three and

four non-respondents, respectively.

Similar as in the case of ARI the linear models are appropriate for both reconstruction

procedures (dash lines in Figure 7.23(b)). The slope coefficents are in both cases sta-

tistically significant lower than βErrB
0 = 0.04 (Table A.2). On the other hand, the slope

coefficient for the imputations based on mode treatment is the highest (β = 0.091) and

is obviously statistically significant higher than βErrB
0 = 0.04.

Considering values of mARI and mErrB, when data are missing at random, only

two treatments for non-response pass muster over the range of the number of non-

respondents considered here: reconstruction and the combination of reconstruction

with using the mode permit the return of accurate blockmodels. While the resulting

blockmodels are acceptable (except when we have 5 non-respondents) for the complete-

case approach as far as mARI is concerned, its performance in terms of mErrB is never

acceptable regardless of the number of non-respondents. It appears that null tie impu-

tation and reconstruction based on the mode are acceptable only when the number of

non-respondents is very small (one or two actors at most).

We kept track of reciprocity values calculated for each simulated whole network in

Section 6.2.3.1 and presented in Figure 6.3(b). The data underlying Figure 7.23 can
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be presented also in terms of the reciprocity of the starting whole networks. Figure

7.24 presents values of mARI and mErrB plotted against reciprocity values of start-

ing whole networks. The reciprocity values of networks generated based on the com-

pletely symmetric blockmodel structure are in range from 0.5 to 1.00. The curves for

all treatments in all panels are fitted to the data based on the smallest mean squared

errors between real data values and the fitted values for a selected function. The set

of curves is only used to provide a visual pattern of the performance of the two cri-

teria for evaluating the extent to which treated blockmodels are close to (or far from)

the known blockmodels of the whole networks. The functions that were fitted were

selected from the following: a linear function f (x) = a · x + b, a quadratic function

f (x) = a · x2 + b · x + c, an exponential function f (x) = ea·x+b, a logarithmic function

f (x) = log(a · x + b), and a logistic function f (x) = c
1+b·e−a·x .

The above findings are reinforced by reciprocity values. We can add that higher values

of reciprocity lead to more stable blockmodels in terms of mARI. The mean of the Ad-

justed Rand Index tends to increase with higher values of network reciprocity for all

five missing data treatments. This general improvement in stability of blockmodeling

is also true for mErrB where proportion of incorrectly identified block types decreases

with higher reciprocity values.

The summary of means and standard deviations of ARI and ErrB values for the com-

pletely symmetric blockmodel structure are presented in Tables 7.8 and 7.9. Not only

the reconstruction and the reconstruction together with imputation based on mode are

the best treatments according to the mARI and mErrB, they also have the smallest

standard deviations for ARI and ErrB, which can be another indicator of lower block-

model instability. For example, the standard deviation for ARI for the reconstruction

treatment is 0.062 when there is one non-respondent, and for the imputation based on

mode it is more than two times larger (0.145). The relative differences between stan-

dard deviations for ARI become smaller with higher number of non-respondents.
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Figure 7.24: The mean of the Adjusted Rand Index, mARI (left), and the mean of Pro-

portion of Incorrect block types, mErrB (right), for completely symmetric blockmodel

structure and random missing mechanism

Randomly missing data based on outdegree

In the first non-random missing mechanism actors were selected to be non-respondents

based on its outdegree. That means that actors with lower outdegree have higher prob-

ability to be selected as non-respondents. The results which are practically the same

as for randomly selected non-respondents are presented in Figure 7.25. The recon-
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Table 7.8: Mean values and standard deviations for ARI for simulations for the com-

pletely symmetric blockmodel structure
Number of non-respondents 1 2 3 4 5

Missing

mechanism Treatment Mean Sd Mean Sd Mean Sd Mean Sd Mean Sd

Null tie imputations 0.961 0.148 0.893 0.239 0.760 0.322 0.507 0.336 0.356 0.280

Random Reconstuction 0.988 0.062 0.970 0.114 0.944 0.167 0.914 0.211 0.860 0.262

missing Mode 0.924 0.145 0.770 0.295 0.563 0.352 0.301 0.372 0.409 0.375

mechanism Reconstruction plus mode 0.988 0.062 0.968 0.121 0.940 0.170 0.895 0.234 0.786 0.328

Complete Case 0.942 0.126 0.936 0.185 0.877 0.225 0.859 0.304 0.737 0.360

Missing Null tie imputations 0.972 0.132 0.914 0.219 0.768 0.326 0.510 0.355 0.342 0.291

mechanism Reconstuction 0.991 0.053 0.976 0.112 0.957 0.153 0.929 0.204 0.872 0.275

based Mode 0.909 0.162 0.771 0.291 0.573 0.352 0.314 0.382 0.412 0.379

on Reconstruction plus mode 0.991 0.053 0.978 0.102 0.952 0.160 0.900 0.242 0.771 0.356

outdegree Complete Case 0.937 0.130 0.926 0.196 0.877 0.223 0.861 0.297 0.741 0.354

Missing Null tie imputations 0.959 0.138 0.896 0.230 0.759 0.311 0.528 0.324 0.366 0.262

mechanism Reconstuction 0.984 0.081 0.964 0.128 0.940 0.167 0.907 0.212 0.852 0.258

based Mode 0.908 0.160 0.766 0.291 0.589 0.346 0.346 0.378 0.419 0.374

on Reconstruction plus mode 0.984 0.081 0.965 0.123 0.937 0.171 0.894 0.226 0.794 0.312

indegree Complete Case 0.935 0.133 0.927 0.199 0.847 0.261 0.792 0.372 0.270 0.416

Table 7.9: Mean values and standard deviations for ErrrB for the simulations of the

completely symmetric blockmodel structure
Number of non-respondents 1 2 3 4 5

Missing

mechanism Treatment Mean Sd Mean Sd Mean Sd Mean Sd Mean Sd

Null tie imputations 0.022 0.083 0.071 0.140 0.168 0.172 0.292 0.167 0.339 0.164

Random Reconstuction 0.003 0.023 0.010 0.060 0.024 0.094 0.051 0.132 0.115 0.171

missing Mode 0.014 0.059 0.077 0.144 0.220 0.218 0.387 0.187 0.478 0.092

mechanism Reconstruction plus mode 0.003 0.023 0.009 0.056 0.023 0.090 0.047 0.130 0.128 0.190

Complete Case 0.249 0.249 0.251 0.247 0.253 0.239 0.256 0.231 0.257 0.208

Missing Null tie imputations 0.016 0.073 0.061 0.131 0.164 0.175 0.301 0.173 0.354 0.168

mechanism Reconstuction 0.002 0.023 0.007 0.060 0.014 0.085 0.040 0.132 0.114 0.197

based Mode 0.013 0.067 0.072 0.142 0.212 0.213 0.382 0.183 0.471 0.089

on Reconstruction plus mode 0.002 0.023 0.005 0.045 0.015 0.084 0.044 0.143 0.134 0.210

outdegree Complete Case 0.250 0.249 0.251 0.247 0.253 0.238 0.252 0.227 0.260 0.204

Missing Null tie imputations 0.027 0.083 0.075 0.133 0.164 0.158 0.276 0.145 0.321 0.143

mechanism Reconstuction 0.009 0.050 0.019 0.079 0.031 0.098 0.062 0.129 0.123 0.162

based Mode 0.020 0.075 0.091 0.153 0.222 0.216 0.391 0.181 0.483 0.083

on Reconstruction plus mode 0.009 0.050 0.018 0.075 0.032 0.099 0.059 0.137 0.133 0.184

indegree Complete Case 0.250 0.246 0.249 0.241 0.251 0.220 0.257 0.220 0.333 0.162

struction and the combination of reconstruction and imputations based on mode are

the only two missing data treatments that permit the establishment of accurate block-

models (according to position membership and positions of blocks in the blockmodel)
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across all range of introduced non-respondents. However, for one non-respondent

there are slightly larger differences in the mean values of the Adjusted Rand Index for

the five missing data treatments.
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Figure 7.25: Results of the simulation study based on the completely symmetric block-

model structure for data missing based on outdegree (solid lines) and predictions ac-

cording to linear regression model (dash lines)

The extended figures with reciprocity values are presented in Figure 7.26. According to

the above findings, the figures on all panels are similar to those for randomly selected

missing actors presented in Figure 7.24. The high symmetry according to reciprocity

values leads to stable blockmodels for all missing data treatments except for imputa-

tions based on mode. Where there is only one non-respondent in the network and the

reciprocity of the whole network is 1, the values of mARI are approximately 0.8 for the

imputations based on mode, while the mARI values for all other treatments are equal

to one.

Randomly missing data based on indegree

The results for simulations when the probability of an actor being a non-respondent

depends on its indegree are shown in Figure 7.3.3.1. For one non-respondent there are,

again, slightly more differences between the five treatments compared to randomly
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Figure 7.26: The mean of the Adjusted Rand Index, mARI (left) and the mean of the

Proortion of Incorrect block types, mErrB (right) for completely symmetric blockmodel

structure and missing mechanism based on outdegree

missing data. Taken as a whole the patterns in the results are similar as for the MCAR

case. The biggest differences are in the case of complete-case approach where its per-

formance is the worst for five non-respondents. The complete-case approach is the

worst treatment also in terms of correctly identified block types (Figure 7.27(b)).
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Figure 7.27: Results of the simulation study based on the completely symmetric block-

model structure for data missing based on indegree (solid lines) and predictions ac-

cording to linear regression model (dash lines)

Figure 7.28 presents both indices of blockmodel stability plotted versus the reciprocity

values. In general, lower reciprocity values of real whole networks lead to less stable

blockmodels with lower values of mARI. The complete-case approach for five non-

respondents is the worst treatment for symmetrical whole starting networks (with reci-

procity values higher than 0.8). For less symmetrical whole starting networks with five

non-respondents the worst treatment in terms of mARI is imputation based on mode,

which is the worst treatment also for lower number of non-respondents. The impact of

reciprocity values for correctly identified block types is the smallest for complete-case

approach where mErrB values are around 0.33 for all range of reciprocity values for all

treatments.

It seems that having a very clear structural signal of the completely symmetric block-

model structure (with regard to reciprocity values and also starting blockmodel struc-

ture presented in Equation 6.1 on page 77) is the main reason for the similarity of the

results for the three ways of generating non-response missing data. The impact of non-

response mechanisms and also different treatments to the indices of network stability
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Figure 7.28: The mean of the Adjusted Rand Index, mARI (left), and the mean of the

Proportion of Incorrect block types, mErrB (right), for completely symmetric block-

model structure and missing mechanism based on indegree

was investigated also with established multiple regression models which are presented

below.

Establishment of multiple regression models

The factorial design has 75 cells, similarly as for the boy-girl liking ties network (Sec-
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tion 7.3.2.1). The multiple regression models for ARI and ErrB were established due to

unequal variances in cells instead of anova. The model summary in Table 7.10 shows

that our regression model explains 30% of variation in ARI. The regression model

for ARI can be with estimated (unstandardized) coefficients (Figure 7.29) written as

follows:

ŶARI = 0.9775 − 0.1022 · n.actor + 0.3282 · T RE − 0.1083 · T MO +

+ 0.2980 · T REMO + 0.1944 · T CC + 0.0047 · MM out +

− 0.0281 · MM in . (7.11)

All variables in a model for ARI are significant, because p-values are 0.000 (Table 7.10).

The established model for completely symmetric blockmodel structure is similar to

the regression model of the boy-girl liking ties network (Figure 7.13). This is not a

surprise, because the boy-girl liking ties network was in fact the base for simulated

whole networks of completely symmetric blockmodel structure.

Table 7.10: Model summary and coefficients of regression analysis for ARI with data

for the completely symmetric blockmodel structure

95% confidence

Estimate Std. Error t value Pr(>|t|) interval for b

(Intercept) 0.9775 0.0016 622.80 0.0000 0.9744 0.9806

n actor -0.1022 0.0003 -304.75 0.0000 -0.1029 -0.1015

T RE 0.3282 0.0011 290.34 0.0000 0.3259 0.3304

T MO -0.1083 0.0011 -95.85 0.0000 -0.1105 -0.1061

T REMO 0.2980 0.0011 263.63 0.0000 0.2958 0.3002

T CC 0.1944 0.0011 172.00 0.0000 0.1922 0.1966

MM out 0.0047 0.0009 5.41 0.0000 0.0030 0.0065

MM in -0.0281 0.0009 -32.08 0.0000 -0.0298 -0.0264

Residual standard error: 0.302 on 713992 degrees of freedom

Multiple R2: 0.310 Adjusted R2: 0.310

F-statistic: 45833.3 (on 7 and 71399 df) p-value: 0.000
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The regression coefficients b (Table 7.10) can be interpreted as follows:

- n.actor: (b = −0.1022) If the number of non-respondents increases for one non-

respondent, the values of ARI decrease for 0.1022 if other effects are held con-

stant. This result is expected; the higher number of non-respondents leads to less

stable blockmodel in terms of restored partitions of actors.

- T RE vs. T NTI: (b = 0.3282) If the reconstruction treatment is used, compared

to the null tie imputation the value of ARI increases for 0.3282. In comparison

to the combination of reconstruction and mode imputation treatment, which are

practically undistinguishable on previous figures, the reconstruction treatment

has a little higher effect on values of ARI according to established regression

model.

- T MO vs. T NTI: (b = −0.1083) The mode treatment turns out to be the worst

treatment. The values of ARI decrease for 0.1083 when imputations based on

mode are used instead of the null tie imputation.

- T REMO vs. T NTI: (b = 0.2980) In comparison with the null tie imputations,

the values of ARI in that case are higher for 0.2980. The reconstruction combined

with mode imputation seems to be the second best treatment in terms of ARI

values and position agreement between actors in a blockmodel.

- T MO vs. T CC: (b = 0.1944) The major difference compared to the regression

model for the data for the the boy-girl liking ties network (Figure 7.13) is that the

complete-case approach is not the best treatment. The use of the complete-case

approach instead of the null tie imputations increases values of ARI for 0.1944.

- MM out vs. MM random: (b = 0.0047) The use of the missing mechanism based

on outdegree has practically no effect. The values of ARI increase for just 0.0047,

if the missing mechanism based on outdegree is used instead of randomly se-

lected non-respondents. If the actors with low outdegree (inactive actors) have

higher probabilities to be non-respondents, the partitions of actors in blockmodel

are recovered a little more accurately.
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- MM in vs. MM random: (b = −0.0281) The use of the missing mechanism based

on indegree instead of the random missing mechanism decreases the value for

ARI for 0.0281.

Figure 7.29: Regression models for ARI and ErrB with data for the completely sym-

metric blockmodel structure

The regression model for ErrB can be with estimated (unstandardized) coefficients

(Figure 7.29) written as follows:

ŶErrB = 0.0112 + 0.0609 · n.actor − 0.1825 · T RE + 0.0859 · T MO +

− 0.1786 · T REMO + 0.0220 · T CC − 0.0022 · MM out +

+ 0.0066 · MM in . (7.12)

All variables in a model for ErrB are significant, because p-values are 0.000 (Table 7.11).

The regression coefficients b can be interpreted as follows:

- n.actor: (b = 0.0609) If the number of non-respondents increase for one non-

respondent, the values of ErrB increase for 0.0609. Higher number of non-respondents

leads to less stable blockmodel structure according to types and positions of

blocks.

- T RE vs. T NTI: (b = −0.1825) The value of ErrB decreases for 0.1825 if the

reconstruction treatment is used instead of the null tie imputation. The negative

effect among all treatments is the lowest, which indicates that the reconstruction

treatment is the best one also in terms of correctly identified block types in the

blockmodel.
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- T MO vs. T NTI: (b = 0.0859) Compared to the null tie imputations the shift in

the change in ErrB values is positive if the imputations based on mode is used.

The mode imputations are the worst treatment according to mErrB.

- T REMO vs. T NTI: (b = −0.1786) In comparison with the null tie imputations,

the values of ErrB are lower for 0.1786 when combination of reconstruction and

imputations based on mode are used. This indicates that the combination of re-

construction and mode imputation is the second best treatment.

- T MO vs. T CC: (b = 0.0220) The absolute value of b coefficient is small com-

pared to other variables for treatments, which means that values of ErrB are the

most similar when the null tie imputation and complete-case approach are used.

- MM out vs. MM random: (b = −0.0022) The use of the missing mechanism

based on outdegree instead of the random missing mechanism has a small nega-

tive effect on values of ErrB. In that case values of ErrB decrease for 0.0022.

- MM in vs. MM random: (b = 0.0066) The use of the missing mechanism based

on indegree instead of the random missing mechanism increases the value of

ErrB for 0.0066. Both non-random missing mechanisms have similar effects.

The histograms in Figure 7.30 show that the assumption of normally distributed resid-

uals is violated. Therefore, the results can not be generalized beyond our sample.

7.3.3.2 Results for the first non-symmetric blockmodel structure

The first non-symmetric blockmodel has 9 blocks with three complete blocks on the

diagonal and one complete block in the lower left corner. According to selected combi-

nation of probabilities of ties in (near) complete and null blocks we generated 80 whole

starting networks with 15 actors. The simulation of networks together with their main

characteristics (density and reciprocity) is presented in Section 6.2.3.2.

Similarly, as for the note borrowing network the factorial design has 90 cells (3 differ-

ent non-response mechanisms times 5 non-response data treatments times 6 different
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Table 7.11: Model summary and coefficients of regression analysis for ErrB with data

for the completely symmetric blockmodel structure

95% confidence

Estimate Std. Error t value Pr(>|t|) interval for b

(Intercept) 0.0112 0.0009 12.36 0.0000 0.0094 0.0129

n actor 0.0609 0.0002 315.49 0.0000 0.0605 0.0612

T RE -0.1825 0.0007 -280.73 0.0000 -0.1838 -0.1812

T MO 0.0859 0.0007 132.10 0.0000 0.0846 0.0872

T REMO -0.1786 0.0007 -274.73 0.0000 -0.1799 -0.1773

T CC 0.0220 0.0007 33.85 0.0000 0.0207 0.0233

MM out -0.0022 0.0005 -4.33 0.0000 -0.0032 -0.0012

MM in 0.0066 0.0005 13.08 0.0000 0.0056 0.0076

Residual standard error: 0.174 on 713992 degrees of freedom

Multiple R2: 0.350 Adjusted R2: 0.350

F-statistic: 54992.4 (on 7 and 71399 df) p-value: 0.000

numbers of non-respondents). The results are presented below.

Data missing completely at random

Figure 7.31 (solid lines) present results of mARI and mErrB for the first non-symmetric

blockmodel structure where non-respondents were simulated at random. The complete-

case approach is the best treatment and it is acceptable with regard to both position

membership identification and block type identification for whole range of introduced

non-respondents. Agreement between partitions of real whole blockmodel and treated

blockmodel is acceptable (mARI ≥ 0.2) for all treatments except the null tie imputa-

tions if the number of non-respondents is two or less. In contrast, all treatments are

acceptable in terms of mErrB for one to five non-respondents. If there are six non-

respondents in the network, the actor response rate is 60%. In that case both reconstruc-

tion and the imputation based on mode have mErrB values above 0.2 which means that

almost 2 blocks out of 9 are incorrectly identified. The null tie imputation and imputa-
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(b) Model for ErrB

Figure 7.30: Histogram of standardized residuals of regression models with data for

the completely symmetric blockmodel structure

tion based on the mode have the worst performance regarding mARI for whole range

of introduced non-response. For one to four non-respondents they are also the worst

regarding to proportion of incorrectly identified block types.

Dash lines (Figure 7.31) present predictions from linear regression models. The pre-

diction of the Adjusted Rand Index for the complete-case approach fits well to the

observed data. The slope coefficient is highest for the complete-case approach (β =

−0.015) and it is statistically significant higher than βARI
0 = −0.03̄ (Table A.1). As

written above other four treatments perform worse and the slope coefficients from

linear regression model are statistically significant lower than βARI
0 = −0.03̄. The

lowest slope coefficient among all linear regresion models for ErrB (A.2) also has the

complete-case approach (β = 0.015).

Figure 7.32 where both indices of blockmodeling stability are plotted versus the reci-

procity values shows that the complete-case approach is the best treatment irrespec-

tive of the level of symmetry of the whole network or number of actors. The dif-

ferences between complete-case approach and other treatments are higher at position
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Figure 7.31: Results of the simulation study based on the first non-symmetric block-

model structure for data missing completely at random (solid lines) and predictions

according to linear regression model (dash lines)

membership agreement (mARI) than at proportion of incorrectly identified block types

(mErrB).

Randomly missing data based on outdegree

The results of the simulation for selection of non-respondents based on their outdegree

are presented in Figure 7.33(a). Regarding the identification of position memberships

(mARI), all five treatment methods are acceptable for one non-respondent and all are

unacceptable for six non-respondents. The complete-case approach is the best treat-

ment according to the position membership with acceptable values of mARI for five

non-respondents or less. Perhaps somewhat surprisingly, the null tie imputation is

acceptable for four non-respondents or less and is the second best treatment in the sta-

bility of blockmodeling according to partitions. Having the complete-case dominate

is consistent with its performance thus far, and the improved performance of the null

tie imputation seems due to the increased presence of reciprocal null ties. For more

than three non-respondents all of the other three treatment regimes lead to unaccept-

able results. Both treatments with reconstruction procedure show similar patterns and
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Figure 7.32: The mean of the Adjusted Rand Index, mARI (left), and the mean of the

Proportion of Incorrect block types, mErrB (right), for the first non-symmetric block-

model structure and random missing mechanism

the imputation based on mode is the worst treatment according to mARI values. Dash

lines in Figure 7.33(a) indicate that linear regression models for ARI fit well to the
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observed data in the case of null tie imputation and both reconstruction procedures.

The best treatment according to the highest slope coefficient is again the complete-case

approach (β = −0.037), although the slope coefficient is statistically significant lower

than βARI
0 = −0.03̄ (Table A.1).
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Figure 7.33: Results of the simulation study based on the first non-symmetric block-

model structure for data missing based on outdegree (solid lines) and predictions ac-

cording to linear regression model (dash lines)

The worst performance according to incorrectly identified blocks (Figure 7.33(b)) is the

imputation based on mode. For four non-respondents mErrB exceeds 0.2 and reaches

0.3 for six non-respondents for which 3 out of 9 blocks are identified incorrectly. All

treatment methods lead to unacceptable results when six non-respondents are intro-

duced in the network (Table 7.13). The complete-case approach becomes unacceptable

with five non-respondents. The best performances regarding mErrB follow the use of

the reconstruction and the combined use of reconstruction and imputations based on

mode. It is of interest that these two methods are among the worse treatments when

looking at mARI.

Dash lines in Figure 7.33(b) represent predictions from the linear regression models for
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ErrB. The complete-case approach and both reconstruction procedures indicate that

linear model is not the best one, because mean values of Incorrect block types have

nonlinear pattern. The complete-case approach is not the best treatment as in the case

of ARI, because the slope coefficient from the linear model is equal to β = 0.045 and it

is statistically significant higher that testing value βErrB
0 = 0.03̄ (Table A.2).

Table 7.12: Mean values and standard deviations for ARI for the first non-symmetric

blockmodel structure
Number of non-respondents 1 2 3 4 5 6

Missing

mechanism Mean Sd Mean Sd Mean Sd Mean Sd Mean Sd Mean Sd

Null tie imputations 0.879 0.120 0.786 0.154 0.655 0.175 0.571 0.177 0.489 0.171 0.420 0.158

Random Reconstuction 0.883 0.121 0.828 0.161 0.799 0.207 0.678 0.262 0.518 0.267 0.396 0.204

missing Mode 0.905 0.125 0.803 0.173 0.695 0.206 0.578 0.244 0.454 0.218 0.417 0.223

mechanism Reconstr. plus mode 0.883 0.121 0.823 0.163 0.776 0.196 0.685 0.251 0.558 0.253 0.425 0.241

Complete Case 0.992 0.035 0.989 0.060 0.977 0.091 0.961 0.127 0.932 0.171 0.897 0.213

missing Null tie imputations 0.970 0.077 0.920 0.130 0.858 0.172 0.795 0.192 0.720 0.208 0.644 0.215

mechanism Reconstuction 0.915 0.120 0.842 0.150 0.747 0.183 0.671 0.202 0.586 0.208 0.505 0.199

based Mode 0.930 0.111 0.794 0.204 0.685 0.264 0.463 0.229 0.361 0.174 0.362 0.148

on Reconstr. plus mode 0.914 0.122 0.838 0.155 0.726 0.186 0.631 0.211 0.527 0.204 0.462 0.203

outdegree Complete Case 0.998 0.016 0.990 0.061 0.969 0.106 0.921 0.164 0.847 0.218 0.745 0.262

missing Null tie imputations 0.909 0.116 0.833 0.139 0.724 0.158 0.637 0.161 0.550 0.149 0.464 0.135

mechanism Reconstuction 0.971 0.079 0.930 0.127 0.882 0.169 0.804 0.223 0.683 0.257 0.553 0.241

based Mode 0.910 0.114 0.838 0.169 0.740 0.211 0.618 0.234 0.471 0.181 0.438 0.175

on Reconstr. plus mode 0.971 0.079 0.929 0.128 0.879 0.165 0.809 0.207 0.716 0.233 0.587 0.242

indegree Complete Case 0.995 0.030 0.988 0.059 0.965 0.104 0.924 0.145 0.873 0.177 0.815 0.205

The performances of missing data treatments according to number of non-respondents

and reciprocity of the whole network are presented in Figure 7.34. Compared to the

random missing mechanism the difference between complete-case approach and other

treatments is smaller.
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Figure 7.34: The mean of the Adjusted Rand Index, mARI (left), and the mean of

the Proportion of the Incorrect block types, mErrB (right), for the first non-symmetric

blockmodel structure and missing mechanism based on outdegree
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Table 7.13: Mean values and standard deviations for ErrB for the first non-symmetric

blockmodel structure
Number of non-respondents 1 2 3 4 5 6

Missing

mechanism Treatment Mean Sd Mean Sd Mean Sd Mean Sd Mean Sd Mean Sd

Null tie imputations 0.021 0.043 0.068 0.064 0.117 0.047 0.134 0.047 0.149 0.055 0.167 0.059

Random Reconstuction 0.004 0.021 0.011 0.042 0.032 0.073 0.092 0.110 0.163 0.113 0.221 0.091

missing Mode 0.003 0.016 0.015 0.052 0.056 0.101 0.129 0.135 0.157 0.129 0.218 0.129

mechanism Reconstr. plus mode 0.004 0.021 0.011 0.044 0.023 0.065 0.061 0.103 0.103 0.124 0.169 0.120

Complete Case 0.001 0.007 0.004 0.026 0.018 0.056 0.041 0.081 0.070 0.113 0.101 0.131

missing Null tie imputations 0.010 0.032 0.053 0.057 0.095 0.054 0.128 0.043 0.166 0.059 0.200 0.048

mechanism Reconstuction 0.002 0.022 0.009 0.038 0.029 0.070 0.071 0.098 0.132 0.104 0.202 0.092

based Mode 0.011 0.044 0.072 0.118 0.146 0.137 0.255 0.120 0.277 0.109 0.324 0.093

on Reconstr. plus mode 0.003 0.025 0.010 0.041 0.029 0.075 0.070 0.110 0.126 0.129 0.209 0.125

outdegree Complete Case 0.001 0.012 0.029 0.057 0.073 0.107 0.139 0.139 0.214 0.159 0.286 0.157

missing Null tie imputations 0.020 0.042 0.094 0.052 0.123 0.043 0.137 0.049 0.157 0.056 0.181 0.056

mechanism Reconstuction 0.004 0.021 0.016 0.044 0.036 0.066 0.075 0.090 0.132 0.104 0.187 0.105

based Mode 0.013 0.040 0.081 0.119 0.141 0.129 0.234 0.126 0.252 0.105 0.303 0.103

on Reconstr. plus mode 0.004 0.021 0.016 0.045 0.034 0.064 0.065 0.087 0.103 0.101 0.160 0.107

indegree Complete Case 0.002 0.016 0.031 0.058 0.072 0.108 0.136 0.142 0.198 0.158 0.252 0.157

Randomly missing data based on indegree

The results of simulations for probabilities of non-response being conditioned by inde-

gree and outdegree show considerable similarities (Figure 7.35). Again, the complete-

case approach leads to the best performances regarding position membership identi-

fication (mARI) for whole range of non-respondents. Both the reconstruction and the

combination of reconstruction and the imputations based on mode lead to acceptable

results for four non-respondents or less. If the number of non-respondents is higher

than two, both the null tie imputation and the imputation based on the mode lead to

unacceptable agreement between partitions.

Similarly as in the case of randomly selected non-respondents, the complete-case ap-

proach is the only acceptable treatment according to the slope coefficient from the lin-

ear models (β = −0.028). As written above, the worst treatments are the null tie impu-

tations (β = −0.090) and the imputations based on mode with slope coefficient from

linear model equal to β = −0.097 (Table A.1).

Results of correctly identified block types (mErrB) are also very similar to those when

the probabilities for non-response were conditioned by outdegree (Figure 7.35(b)). The
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Figure 7.35: Results of the simulation study based on the first non-symmetric block-

model structure for data missing based on indegree (solid lines) and predictions ac-

cording to linear regression model (dash lines)

combination of reconstruction and imputations based on mode for ties between non-

respondents performs the best for whole range of non-respondents. Even though the

null tie imputation is among the worst performers when mARI is considered, it is

the worst only for one and two non-respondents when correctly identified block types

and positions are studied. The imputations based on mode are the worst treatment (for

more than two non-respondents) also when MErrB is considered.

If we compare mean values of ErrB (solid lines) with the predictions (dash lines) we

could say that the linear regression model is suitable only for the null tie imputations.

The imputations based on mode has the highest slope coefficient (β = 0.051) and is

therefore the worst treatment (Table A.2). The lowest mErrB values and also the lowest

slope coefficients of predictions have reconstruction and reconstruction plus imputa-

tions based on mode (β = 0.028 and β = 0.024, respectively) and are therefore the best

treatments according to the correctly identified block in the blockmodels.

The redrawn figures with reciprocity values for missing mechanism based on indegree
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are presented in Figure 7.36. Again, the complete-case approach is the best treatment

according to values of mARI regardless to the level of the symmetry in the network.

The proportion of incorrectly identified block types in the blockmodel for one non-

respondent shows that treated blockmodels with the null tie imputation or the imputa-

tions based on mode established from less symmetric networks (with lower reciprocity

values) are less stable.

Establishment of multiple regression models

The factorial design has 90 cells, similarly as for the note borrowing network (Section

7.3.2.2). Due to unequal variances in cells for mARI and mErrB (Tables 7.12 and 7.13),

multiple regression models were established instead of anova. The model summary

for ARI in Table 7.14 shows that our regression model explains 35% of variation in

ARI. The regression model for ARI can be with estimated (unstandardized) coeffi-

cients (Figure 7.44) written as follows:

ŶARI = 0.9845 − 0.0849 · n.actor + 0.0028 · T RE − 0.1096 · T MO +

+ 0.0047 · T REMO + 0.2843 · T CC + 0.0240 · MM out +

+ 0.0624 · MM in . (7.13)

All variables in a model for ARI are significant (p-values are 0.000 in Table 7.14). The

established model for the first non-symmetric blockmodel structure is similar to the

regression model of borrowing network (Figure 7.20). The regression coefficients b can

be interpreted as follows:

- n.actor: (b = −0.0849) If the number of non-respondents increases for one non-

respondent, the values of ARI decrease for 0.0849 if all other variables are held

constant.

- T RE vs. T NTI: (b = 0.0028) If the reconstruction treatment is used, compared to

the null tie imputation the values of ARI increase for 0.0028. The reconstruction

procedure is better than the null tie imputations, but it is not the best treatment.

- T MO vs. T NTI: (b = −0.1096) The imputation based on mode is the worst

treatment. The values of ARI decrease for 0.1096 when the imputations based on

mode are used instead of the null tie imputations.
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Figure 7.36: The mean of the Adjusted Rand Index, mARI (left), and the mean of the

Proportion of Incorrect block types, mErrB (right), for the first non-symmetric block-

model structure and missing mechanism based on indegree
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- T REMO vs. T NTI: (b = 0.0047) The combination of the reconstruction pro-

cedure and the imputations based on mode performs slightly better than recon-

struction itself. In comparison with the null tie imputations, the values of ARI in

that case are higher for 0.0047.

- T MO vs. T CC: (b = 0.2843) The complete-case approach is the best treatment in

terms of partition agreement in a blockmodeling. If the complete-case approach

is used instead of the null tie imputations, the values of ARI increase for 0.2843.

- MM out vs. MM random: (b = 0.0240) Use of the missing mechanism based

on outdegree has little positive effect on stability of blockmodeling in terms of

partitions. The values of ARI increase for just 0.0240, if the missing mechanism

based on outdegree is used instead of random selection of non-respondents.

- MM in vs. MM random: (b = 0.0624) Use of the missing mechanism based on

indegree instead of the random missing mechanism increases the values of ARI

for 0.0624. Both non-random missing mechanisms lead to a little bit more stable

blockmodeling according to identification of position membership.

Figure 7.37: Regression models for ARI with data for the first non-symmetric block-

model stucture
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Table 7.14: Model summary and coefficients of regression analysis for ARI with data

for the first non-symmetric blockmodel structure

95% confidence

Estimate Std. Error t value Pr(>|t|) interval for b

(Intercept) 0.9845 0.0009 1074.93 0.0000 0.9827 0.9863

n actor -0.0849 0.0002 -553.81 0.0000 -0.0852 -0.0846

T RE 0.0028 0.0006 4.71 0.0000 0.0016 0.0040

T MO -0.1096 0.0006 -183.58 0.0000 -0.1108 -0.1085

T REMO 0.0047 0.0006 7.79 0.0000 0.0035 0.0058

T CC 0.2843 0.0006 476.02 0.0000 0.2831 0.2854

MM out 0.0240 0.0005 51.84 0.0000 0.0231 0.0249

MM in 0.0624 0.0005 134.86 0.0000 0.0615 0.0633

Residual standard error: 0.213 on 1271992 degrees of freedom

Multiple R2: 0.3887 Adjusted R2: 0.3887

F-statistic: 115542.1 (on 7 and 1271992 df) p-value: 0.000

In the next step, the regression model for the proportion of incorrectly identified block

types and positions was examined. Model summary in Table 7.15 shows that all vari-

ables in the model are significant (p-values are 0.000) and that our regression model

explains 29% of variation in ErrB.

The regression model for the first non-symmetric blockmodel structure can be with

estimated unstandardized coefficients (Figure 7.37) written as follows:

ŶErrB = −0.1025 + 0.0456 · n.actor − 0.0101 · T RE + 0.0731 · T MO +

− 0.0319 · T REMO + 0.0047 · T CC + 0.0549 · MM out +

+ 0.0388 · MM in . (7.14)

All variables in a model for ErrB are significant (p-values are 0.000 in Table 7.10). The

established model for the first non-symmetric blockmodel structure is similar to the

regression model of borrowing network (Figure 7.20). The regression coefficients b can

be interpreted as follows:
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- n.actor: (b = 0.0456) If the number of non-respondents is increased for one non-

respondent, the values of ErrB increase for 0.0456 if all other variables are held

constant.

- T RE vs. T NTI: (b = −0.0101) If the reconstruction treatment is used instead of

the null tie imputation, the values of ErrB increase for 0.0101. The reconstruction

procedure is the second best treatment according to block structure recovery.

- T MO vs. T NTI: (b = 0.0731) The imputation based on mode is the worst treat-

ment. The values of ErrB increase for 0.0731 when imputations based on mode

are used instead of the null tie imputations.

- T REMO vs. T NTI: (b = −0.0319) The combination of reconstruction procedure

and imputations based on mode performs the best. In comparison with the null

tie imputations the values of ErrB in that case are higher for 0.0319.

- T MO vs. T CC: (b = 0.0047) The effects of the complete-case approach are the

most similar to the null tie imputations. If the complete-case approach is used

instead of null tie imputations, the values of ErrB increase for 0.0047.

- MM out vs. MM random: (b = 0.0549) The use of the missing mechanism based

on outdegree has little positive effect on stability of block types and positions in

the blockmodel. The values of ErrB increase for 0.0549, if the missing mechanism

based on outdegree is used instead of randomly selected non-respondents.

- MM in vs. MM random: (b = 0.0388) The use of the missing mechanism based

on indegree instead of the random missing mechanism increases the values for

ErrB for 0.0388. Both non-random missing mechanisms leads to a little bit more

stable blockmodeling according to correctly identified blocks in the image matrix.

7.3.3.3 Results for the second non-symmetric blockmodel structure

The 80 whole networks with 15 actors were generated based on blockmodel structure

presented in Equation 6.4 on page 80. The prototype for the generation of whole start-

ing networks was the note borrowing network. The impact of non-response with data

from that network is presented in Section 7.3.2.2. Similarly, as for the note borrowing
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Table 7.15: Model summary and coefficients of regression analysis for ErrB with data

for the first non-symmetric blockmodel structure

95% confidence

Estimate Std. Error t value Pr(>|t|) interval for b

(Intercept) -0.1025 0.0005 -215.10 0.0000 -0.1034 -0.1016

n actor 0.0456 0.0001 572.51 0.0000 0.0455 0.0458

T RE -0.0101 0.0003 -32.47 0.0000 -0.0107 -0.0095

T MO 0.0731 0.0003 235.31 0.0000 0.0725 0.0737

T REMO -0.0319 0.0003 -102.62 0.0000 -0.0325 -0.0313

T CC 0.0047 0.0003 14.97 0.0000 0.0040 0.0053

MM out 0.0549 0.0002 228.32 0.0000 0.0545 0.0554

MM in 0.0388 0.0002 161.02 0.0000 0.0383 0.0392

Residual standard error: 0.111 on 1271992 degrees of freedom

Multiple R2: 0.2869 Adjusted R2: 0.2869

F-statistic: 73125.9 (on 7 and 1271992 df) p-value: 0.000

network and the first non-symmetric blockmodel structure, the factorial design has 90

cells (3 different non-response mechanisms times 5 non-response data treatments times

6 different numbers of non-respondents).

Data missing completely at random

For the random missing mechanism the graphical display of results for stability of par-

titions is provided in Figure 7.38(a). All of the trajectories for the mean values of the

Adjusted Rand Index decline as the number of non-respondents increases. Among

all five non-response treatments only the complete-case approach provides acceptable

position membership identification for whole range of non-respondents. For one non-

respondent, all missing data treatments permit acceptable identification of the com-

position of positions. However, the five treatments form two groups. The first has

the complete-case approach and the imputations based on the mode, and the second

group has the null tie imputation, reconstruction and the combination of reconstruc-

tions with imputations based on mode. The first group of treatments performs better
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than the second group and the differences are more obvious when the number of non-

respondents increases.
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Figure 7.38: Results of the simulation study based on the secon non-symmetric block-

model structure for data missing completely at random (solid lines) and predictions

according to linear regression model (dash lines)

The slope coefficient of the complete-case approach treatment for prediction of ARI

(dash line in Figure 7.38(a)) is equal to β = −0.027 and it is statistically significant

higher than testing value βARI
0 = −0.03̄ (Table A.1). Slope coefficients for other four

treatments are statistically significant lower than βARI
0 = −0.03̄.

The null tie imputation treatment is the first for which mARI values drop below 0.8 (Ta-

ble 7.16), and this happens for two non-respondents. With three non-respondents in

the network both the reconstruction and the combination of reconstruction and mode

imputations drop below this threshold for acceptable blockmodels according to agree-

ment between partitions. Thereafter their values for mARI fall further. The imputa-

tion based on the mode drops below the threshold of 0.8 for five non-respondents in

the network. This leaves the complete-case approach as the only treatment which is

able to reveal the position membership acceptably for the whole range of introduced
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non-respondents. If there are four non-respondents in the network, the actor response

rate is 63% and, up to this value, the imputation based on the mode permits the return

of acceptable blockmodels.

If the results are compared to results of the completely symmetric blockmodel structure

(Section 7.3.3.1) there is one potentially consequential difference. Rather than having

mErrB start near zero for one non-respondent, the trajectories for all five treatments

for this measure start above 0.11 in case of second non-symmetric blockmodel struc-

ture (Figure 7.38 and Table 7.17). This implies that at least one of nine blocks is in-

correctly identified. When two non-respondents are introduced to the network all the

mErrB values are below the threshold of 0.2 and imply that acceptable blockmodels

are returned. The null tie imputation treatment becomes unacceptable for three non-

respondents. The reconstruction treatment returns the unacceptable blockmodels for

five and six non-respondents. The mErrB trajectories for the other three treatments ap-

proach the 0.2 threshold and stay below as the number of non-respondents increases

to six non-respondents.

Table 7.16: Mean values and standard deviations for ARI for the second non-

symmetric blockmodel structure
Number of non-respondents 1 2 3 4 5 6

Missing

mechanism Treatment Mean Sd Mean Sd Mean Sd Mean Sd Mean Sd Mean Sd

Null tie imputations 0.907 0.133 0.799 0.174 0.683 0.166 0.605 0.168 0.526 0.171 0.459 0.169

Random Reconstuction 0.905 0.138 0.834 0.179 0.720 0.197 0.605 0.186 0.507 0.176 0.434 0.163

missing Mode 0.993 0.042 0.913 0.126 0.841 0.152 0.807 0.156 0.754 0.166 0.711 0.164

mechanism Reconstr. plus mode 0.905 0.138 0.862 0.178 0.782 0.198 0.702 0.219 0.650 0.238 0.574 0.259

Complete Case 0.979 0.051 0.959 0.107 0.938 0.136 0.912 0.173 0.874 0.212 0.828 0.253

missing Null tie imputations 0.934 0.125 0.836 0.167 0.746 0.176 0.673 0.177 0.596 0.181 0.525 0.181

mechanism Reconstuction 0.945 0.115 0.877 0.170 0.781 0.203 0.676 0.210 0.569 0.192 0.483 0.178

based Mode 0.898 0.124 0.827 0.137 0.777 0.148 0.725 0.154 0.678 0.153 0.626 0.150

on Reconstr. plus mode 0.946 0.114 0.889 0.166 0.812 0.199 0.737 0.217 0.653 0.232 0.541 0.236

outdegree Complete Case 0.969 0.092 0.948 0.121 0.917 0.162 0.876 0.196 0.826 0.229 0.756 0.261

missing Null tie imputations 0.859 0.142 0.652 0.120 0.548 0.095 0.493 0.086 0.481 0.112 0.504 0.176

mechanism Reconstuction 0.873 0.139 0.688 0.157 0.562 0.121 0.496 0.099 0.483 0.122 0.527 0.185

based Mode 0.965 0.092 0.925 0.128 0.874 0.158 0.849 0.163 0.778 0.172 0.747 0.174

on Reconstr. plus mode 0.870 0.142 0.692 0.159 0.570 0.133 0.507 0.120 0.494 0.138 0.530 0.193

indegree Complete Case 0.980 0.069 0.967 0.102 0.950 0.123 0.936 0.143 0.915 0.172 0.878 0.215

Because the values of mErrB are around 0.11 for one non-respondent for all treat-
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Table 7.17: Mean values and standard deviations for ErrB for the second non-

symmetric blockmodel structure
Number of non-respondents 1 2 3 4 5 6

Missing

mechanism Treatment Mean Sd Mean Sd Mean Sd Mean Sd Mean Sd Mean Sd

Null tie imputations 0.133 0.106 0.168 0.118 0.201 0.109 0.205 0.103 0.213 0.094 0.213 0.086

Random Reconstuction 0.133 0.114 0.150 0.124 0.174 0.123 0.199 0.113 0.221 0.103 0.234 0.099

missing Mode 0.110 0.110 0.116 0.114 0.125 0.119 0.138 0.125 0.152 0.123 0.174 0.129

mechanism Reconstr. plus mode 0.133 0.114 0.141 0.117 0.155 0.121 0.167 0.121 0.175 0.116 0.197 0.121

Complete Case 0.114 0.115 0.122 0.117 0.132 0.121 0.143 0.125 0.162 0.124 0.177 0.125

missing Null tie imputations 0.129 0.112 0.177 0.122 0.203 0.114 0.214 0.106 0.218 0.098 0.220 0.088

mechanism Reconstuction 0.124 0.115 0.139 0.128 0.168 0.132 0.195 0.120 0.220 0.103 0.238 0.096

based Mode 0.115 0.114 0.129 0.121 0.145 0.127 0.171 0.134 0.195 0.138 0.226 0.140

on Reconstr. plus mode 0.124 0.115 0.133 0.120 0.156 0.127 0.174 0.128 0.192 0.127 0.227 0.123

outdegree Complete Case 0.119 0.116 0.134 0.122 0.151 0.129 0.178 0.133 0.205 0.137 0.231 0.134

missing Null tie imputations 0.157 0.125 0.215 0.114 0.220 0.109 0.218 0.107 0.213 0.104 0.204 0.099

mechanism Reconstuction 0.149 0.126 0.192 0.125 0.209 0.115 0.214 0.109 0.207 0.104 0.188 0.097

based Mode 0.113 0.112 0.116 0.111 0.121 0.113 0.129 0.116 0.138 0.120 0.161 0.128

on Reconstr. plus mode 0.150 0.127 0.190 0.125 0.207 0.116 0.211 0.111 0.204 0.107 0.191 0.101

indegree Complete Case 0.112 0.111 0.117 0.111 0.123 0.113 0.131 0.114 0.143 0.115 0.164 0.119

ments, the linear predictions forced through point (0, 0) visually do not fit well to

the observed data. Slope coefficients are below testing value βErrB
0 = 0.03̄ only for the

complete-case approach and the imputations based on mode (Table A.2).

Therefore, the mode imputations performs the best for whole range of non-respondents

for mErrB, while for the mean value of ARI it is the best treatment only for one non-

respondent. The complete-case approach fares better over all values of introduced non-

respondents according to stability of position membership. Overall, the complete-case

performs the best, because the imputation using the mode does not return acceptable

partitions of actors when there are more than four non-respondents.

Figure 7.39 shows indices of blockmodel stability plotted versus the reciprocity values

of the whole networks. The reciprocity is in range from 0.26 to 0.57. The values of

mARI are almost invariant regarding to different reciprocity values of starting whole

network. According to Figure 7.38 we wrote that treatments form two groups. Accord-

ing to additional figures with reciprocity values the combination of reconstruction and

imputations based on mode for ties between non-respondents can be classified into its

own group. For mARI and ErrB values this treatment shows interesting behavior. For
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high symmetry in the network (high reciprocity values) the combination of reconstruc-

tion and imputations based on mode has higher values of mARI and is similar to the

complete-case approach and mode imputations. In networks with lower symmetry the

mARI values of that treatment decline and are similar to the null imputation and sim-

ple reconstruction treatment. For values of mErrB similar pattern is shown also with

reconstruction treatment which performs better for more symmetric networks. The

complete-case approach and mode imputations are the best treatments, irrespective of

reciprocity values of whole starting network.

Randomly missing data based on outdegree

Compared to random missing mechanism for this whole network structure, the same

broad conclusions hold, albeit with some interesting differences. The values of mARI

drop in the same way as the number of non-respondents increases (Figure 7.40(b)).

The trajectory for the complete-case treatment is the best for whole range of non-

respondents, but it does not permit the return of the correct position memberships

for six non-respondents. For one and two introduced non-respondents all treatments

assure the return of acceptable partitions of actors. For three non-respondents, re-

construction plus imputations based on mode remains, as well as the complete-case

approach, above the 0.8 threshold. The slope coefficients for linear predictions (dash

lines in Figure 7.40(a)) are for all treatments below the testing value βARI
0 = −0.03̄ (Ta-

ble A.1).

Results for the identification of block types are presented in Figure 7.40(b). The three

treatments that perform the best are the complete-case approach, the mode imputa-

tions and the combination of reconstruction and mode imputations. For less than five

non-respondents also the reconstruction treatment performs well. The null tie impu-

tations are unacceptable already for three non-respondents with mErrB values above

0.2. The slope coefficients of linear predictions (dash lines in Figure 7.40(b)) are for all

treatments statistically significant above the testing value βErrB
0 = 0.03̄ (Table A.2).

Combining the use of these two criteria, the complete-case treatment dominates all
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Figure 7.39: Mean of the Adjusted Rand Index, mARI (left), and the Mean of Incor-

rect block types, mErrB (right), for second non-symmetric blockmodel structure and

random missing mechanism

other treatments except for six non-respondents when mARI is too low and mErrB

to high. Even though the imputation based on the mode and combination of recon-
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Figure 7.40: Results of the simulation study based on the first non-symmetric block-

model structure for data missing based on outdegree (solid lines) and predictions ac-

cording to linear regression model (dash lines)

struction and mode imputation lead to correctly identified block types for less than six

non-respondents, it performs poorly with regard to position membership identification

for more than three non-respondents. But, to the extent that having the correct block-

model seems more important with regard to representing network structure, then the

blockmodel types identified after using this treatment are acceptable for whole range

of introduced non-respondents, even though the membership of identification of posi-

tions is not acceptable for all non-respondents.

The reciprocity values of whole networks reveal no special patterns (Figure 7.41). The

complete-case approach and imputations based on mode remains the bets treatments

irrespective of symmetry of the starting networks.

Randomly missing data based on indegree

The trajectories of mARI for all five treatments are shown in Figure 7.42. In case of

agreement between partitions (mARI) the complete-case treatment stays well above

the 0.8 threshold for all values of introduced non-respondents. The imputation based
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Figure 7.41: The mean of the Adjusted Rand Index, mARI (left) and the mean of the

Proportion of Incorrect block types, mErrB (right) for the second non-symmetric block-

model structure and missing mechanism based on outdegree

on the mode comes next in the identification of positions, but its mARI drops below

0.8 for five non-respondents. The other three treatments permit acceptable identifi-
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cations of position memberships only with one non-respondent. When the number

of non-respondents is increased all three of these treatments fail to recover position

membership.
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Figure 7.42: Results of the simulation study based on the first non-symmetric block-

model structure for data missing based on indegree (solid lines) and predictions ac-

cording to linear regression model (dash lines)

The trajectories for mErrB are presented in Figure 7.42(b). The two treatments that

perform the best are again the complete-case approach and the imputation based on

the mode. With one non-respondent in the network the mErrB is slightly above 0.11

(Table 7.17). For higher number of non-respondents the mean proportion of incorrectly

identified block types increases, but stays well below 0.2 for the whole range of non-

respondents. For these two treatments, the block type identification is acceptable and

on average there is only one misspecified block in the blockmodel. The three other

treatments have higher values for mErrB (around 0.15) for one non-respondent and

tend to increase when the number of non-respondents goes from 1 to 4. As the number

of non-respondents increases beyond four non-respondents, the trajectories flatten and

begin to decline very slightly. The mean of mErrB for the null tie imputation treatment

is above 0.2 when there are two or more non-respondents in the network and therefore

this treatment is not acceptable according to agreement between both blockmodels.
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While the trajectories for both reconstruction and the combination of reconstruction

with using the mode move closely together, they also move above the 0.2 threshold for

three non-respondents. The mErrB values drop below the 0.2 threshold for six non-

respondents, but it seems the safest to conclude that only the complete-case and the

imputation based on the mode permit correctly identified blockmodels.

The reciprocity values of whole starting networks in Figure 7.43 confirm the above

findings and reveal the additional pattern that the reconstruction and reconstruction

combined with mode imputations for mErrB values depend on the symmetry of the

whole networks. More symmetrical networks tend to have lower mErrB values, which

means that block agreement is better. This pattern is visible in smaller extent (especially

for one and two non-respondents) also in case of the Adjusted Rand Index where more

symmetric networks (with higher reciprocity values) have higher mARI values.

Establishment of multiple regression models

According to the simulation of actor non-response the factorial design has 90 cells (3

non-response mechanisms, five non-response treatments and six different numbers of

introduced non-respondents). Multiple regression models for mARI and mErrB were

established instead of anova due to unequal variances in cells (Tables 7.16 and 7.17).

The model summary ARI in Table 7.18 shows that our regression model explains 35%

of variation in ARI.

The established model for ARI for the second non-symmetric blockmodel structure is

similar to the regression model of the borrowing network (Figure 7.20) and can be with

estimated (unstandardized) coefficients (Figure 7.44) written as follows:

ŶARI = 0.8338 − 0.0561 · n.actor − 0.0062 · T RE + 0.1928 · T MO +

+ 0.0568 · T REMO + 0.3147 · T CC − 0.0039 · MM out +

− 0.0119 · MM in . (7.15)

All variables in a model for ARI are significant (p-values are 0.000 in Table 7.18). The

regression coefficients b for the second non-symmetric blockmodel structure can be

interpreted as follows:
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Figure 7.43: The mean of the Adjusted Rand Index, mARI (left), and the mean of the

Proportion of Incorrect block types, mErrB (right), for second non-symmetric block-

model structure and missing mechanism based on indegree

- n.actor: (b = −0.0561) If the number of non-respondents increases for one non-

respondent, the values of ARI decrease for 0.0561.
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- T RE vs. T NTI: (b = −0.0062) The reconstruction is the worst treatment. If the

reconstruction treatment is used, compared to the null tie imputation the value

of ARI decreases for 0.0062. Because of small absolute value of this coefficient,

the reconstruction procedure is the most similar to the null tie imputations.

- T MO vs. T NTI: (b = 0.1928) The imputation based on mode treatment turns

out to be the second best treatment. The value of ARI increases for 0.1928 when

imputations based on mode are used instead of the null tie imputation.

- T REMO vs. T NTI: (b = 0.0568) The reconstruction combined with the mode

imputations performs slightly better then reconstruction itself. In comparison

with the null tie imputations, the values of ARI in that case are higher for 0.0568.

- T MO vs. T CC: (b = 0.3147) The complete-case approach is the best treatment

in terms of partition agreement in a blockmodel. The values of ARI increase for

0.3147 if the complete-case approach is used instead of the null tie imputations.

- MM out vs. MM random: (b = −0.0039) The use of the missing mechanism

based on outdegree has little negative effect. The values of ARI decrease for just

0.0039, if the missing mechanism based on outdegree is used instead of randomly

selected non-respondents.

- MM in vs. MM random: (b = −0.0119) The use of the missing mechanism based

on indegree instead of the random missing mechanism decreases the value of

ARI for 0.0119. Both non-random missing mechanisms lead to a little bit unstable

blockmodels according to partitions.

We also try to set up the regression model for ErrB. Similar as for the note borrowing

network, it turns out that it explains just 5.1% of variance in proportion of incorrectly

identified block types (and it is not reported here). One reason why the percent of

explained variance is low is that there is no clear linear relationship between the num-

ber of non-respondents and values of ErrB index. In Figure 7.45 the radius of the

circles is proportional to the number of cases with the same value of ErrB. For one

non-respondent the majority of ErrB values is equal to 0 and 0.22, and for two to six

non-respondents the majority of ErrB values occupy four values; 0, 0.11, 0.22 and 0.33,
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Figure 7.44: Regression models for ARI with data for the Ssecond non-symmetric

blockmodel stucture

Table 7.18: Model summary and coefficients of regression analysis for ARI with data

for the second non-symmetric blockmodel structure

95% confidence

Estimate Std. Error t value Pr(>|t|) interval for b

(Intercept) 0.8338 0.0008 999.88 0.0000 0.8322 0.8355

n actor -0.0561 0.0001 -402.24 0.0000 -0.0564 -0.0558

T RE -0.0062 0.0005 -11.45 0.0000 -0.0073 -0.0052

T MO 0.1928 0.0005 354.54 0.0000 0.1917 0.1938

T REMO 0.0568 0.0005 104.48 0.0000 0.0557 0.0579

T CC 0.3147 0.0005 578.77 0.0000 0.3136 0.3158

MM out -0.0039 0.0004 -9.23 0.0000 -0.0047 -0.0031

MM in -0.0119 0.0004 -28.20 0.0000 -0.0127 -0.0111

Residual standard error: 0.194 on 1271992 degrees of freedom

Multiple R2: 0.350 Adjusted R2: 0.350

F-statistic: 97815.7 (on 7 and 1271992 df) p-value: 0.000

which indicates zero to three incorrectly identified block types. Therefore, the num-

ber of non-respondents is obviously inadequate to predict the proportion of incorrect

block types (ErrB) in the linear regression model.
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Figure 7.45: The relationship between the number of non-respondents and values of

ErrB index for the second non-symmetric blockmodel structure

7.3.4 Conclusions

The summary of results from simulation studies of two real networks and three artifi-

cial network structures is presented in Table 7.19. For each type of network, the best

overall treatment based on both the Adjusted Rand Index (mARI) and proportion of

incorrect block types (mErrB) is presented by the + sign. The worst overall perfor-

mance is represented by the - (minus) sign, and the moderate performances by the ◦
sign. We separate our summary report for the networks with a symmetric block struc-

ture from those whose underlying block structure departs from this form of symmetry.

The main conclusion is that the performance of the missing data treatments for nonre-

sponse in social networks depends on the symmetry of the networks. The symmetry

of the network refers to reciprocity value and also to the blockmodel structure. The

treatments that are the best for symmetric networks perform the worst in the case of

non-symmetric networks and vice versa. More exactly, the best treatments for symmet-

ric networks are reconstruction and combination of reconstruction and mode imputa-

tions. For the non-symmetric network the best treatments are the imputations based

on mode and the complete-case approach.
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Therefore, the Thesis 2 about the best non-response treatment presented on page 55

can be only partially confirmed. The stability of blockmodeling is higher when the re-

construction is used compared to imputations based on mode if the whole network is

symmetric. Otherwise, the opposite is true. In the non-symmetric networks the impu-

tations based on mode are more preferable treatment than the reconstruction.

Table 7.19: Impact of the non-response treatments on the stability of blockmodeling

Blockmodel Symmetric Non-symmetric

Simulated Simulated

Real Simulated First Real Second

Treatment ARI ErrB ARI ErrB ARI ErrB ARI ErrB ARI ErrB

Complete case + + ◦ - + ◦ + + + +

Reconstruction + + + + ◦ + - ◦ - -

Mode imputations ◦ ◦ - - - - ◦ + ◦ +

Null tie imputations - - - - - - - - - -

Reconstruction + mode + + + + ◦ + ◦ + - -

The null tie imputation and the complete-case approach have different performances,

but we do not advise using either of them. The null tie imputation always performs

the worst. In the complete case approach we lose information about the location of

actor(s) in a position, because non-respondents are deleted from the network.

Simulation studies for not at random deletion of actors based on indegree and outde-

gree show no major differences in performance patterns for different treatments com-

pared to randomly selected non-respondents. One of the reasons for this is also the

small size of networks in the studies where actors are similar to each other according

to their indegree and outdegree. Therefore, future work on actor non-response should

include larger networks and wider set of blockmodel structures.

The above findings are confirmed with simulation study on two real networks from

baseball Little League (Žnidaršič et al., 2011b). Networks consist of boys from two

teams and were first reported by (Fine, 1987) and extensively studied in terms of gen-

eralized blockmodeling by (Doreian et al., 2005). The best treatments for actor non-
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response in case of symmetric network (the Transatlantic Industries network) are re-

construction and combination of reconstruction and modes imputations. Results of

simulation study with an example of non-symmetric network (the Sharpstone Auto

network) show that the best treatments are imputations based on mode and the complete-

case approach. Again, the null tie imputation is not advisable.

We used ANOVA to investigate the effects of the number of non-respondents, treat-

ment of non-response data, non-response missing mechanism (MM) and type of the

symmetry of the network (Žnidaršič et al., 2011b). We established that the largest ef-

fect on both indices of blockmodeling stability (ARI and ErrB) has the number of non-

respondents. The second largest effect in the case of the Adjusted Rand Index has the

treatment, while in the case of the Proportion of incorrect blocks the second largest ef-

fect has the interaction of the treatment and the symmetry of the network. The lowest

main effect has in both case the non-response missing mechanism.

7.3.5 An example of generalized type of equivalence - A review of

the Student Government discussion network

In Section 6.2.2.1 we described a set of six networks which are an example of use of

complete-case approach as a non-response treatment. In early work of Hlebec (1992)

we found description of the partially reported ties between respondents and non-

respondent. Obtained blockmodels (Doreian et al., 2005, pg. 228-233) of the Student

Government recall discussion network will be compared to blockmodels of ’treated’

networks based on structural and also generalized type of equivalence.

As described above, the Student Government recall discussion data was used as complete-

case approach of a network with one non-respondent. The non-respondent R (or the re-

fusal actor) received two ties from respondents, namely a tie from prime minister (pm)

and from minister 2 (m2). Three different missing data treatments, described in section

4.3.1.1, can be used: reconstruction, imputations based on mode and null tie imputa-

tions. Combination of reconstruction and imputations based on mode in that case is

the same as reconstruction treatment alone, because there is only one non-respondent
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and no additional imputations for ties between non-respondents are needed.

The network with 11 actors presents the complete-case approach and is presented on

the top panel of Figure 7.46. Colors of vertices show two-clusters partition based on

structural equivalence. In blockmodeling procedure into two clusters we obtain two

equally well fitting partitions with 29 inconsistencies. In the first obtained partition

actors pm, m3, m6 and m7 form one cluster and the second cluster consist of actors

{m1, m2, m4, m5, a1, a2, a3}. The second equally well fitting partition has in first clus-

ter three actors m3, m6, m7, and the prime minister is moved to the second cluster. Both

partitions formed the same image matrix of centralized model with ties to the core po-

sition (complete block on the diagonal for the first cluster and between second and first

cluster). Table 7.20 shows the value of the Adjusted Rand Index between both parti-

tions which is equal to 0.64.

Table 7.20: The ARI between partitions obtained in blockmodeling procedure of Stu-

dent Government discussion into two-clusters with structural equivalence for four dif-

ferent non-response data treatments

Index ARI ErrB

Treatment CC RE MI NTI CC RE MI NTI

1st 2nd 1st 2nd 1st 2nd 1st 2nd

Complete case 1st part. 1.00 0.64 1.00 0.13 1.00 0.13 0.00 0.00 0.00 0.25 0.00 0.25

2nd part. 1.00 0.64 0.35 0.64 0.35 0.00 0.00 0.25 0.00 0.25

Reconstruction 1st part. 1.00 0.18 1.00 0.18 0.00 0.25 0.00 0.25

2nd part. 1.00 0.18 1.00 0.00 0.25 0.00

Mode imputations 1.00 0.18 0.00 0.25

Null tie imputations 1.00 0.00

In that case, we do not know the real whole network, therefore the comparison of

whole and treated blockmodel (as in previous sections) is not possible. However, we

can estimate the reciprocity of the real unknown network. If the reconstruction proce-

dure is introduced to network with one non-respondent, the outgoing ties from non-

respondent R are added in a way that they are symmetrical to the ingoing ties to that

actor (a row of missing ties is replaced with the column for actor R). In that case the
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Figure 7.46: Blockmodeling into two clusters based on structural equivalence of Stu-

dent Government discussion network and non-response data treatments

reciprocity of the real whole network will be the highest and will be equal to 0.49. If

the ties will be added in the opposite way as in reconstruction procedure (instead of

ties zeros will be imputed and otherwise, instead of zeros ties (ones) will be added),

the network will have the largest possible amount of asymmetric ties, therefore the

reciprocity will be the lowest and will be equal to 0.35. In previous sections we try to

determine the best non-response data treatment. The main conclusion was that the se-

lection of the best missing data treatment depends on symmetry of the whole network.

According to possible values of reciprocity, which are between 0.35 and 0.49 for real

Student Government discussion network, the network is an example of non-symmetric
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network. According to the range of reciprocity values, the Student Government dis-

cussion network is similar to the networks generated for the second non-symmetric

blockmodel structure, where reciprocity values are in range from 0.25 to 0.58 (Figure

7.38(a) in Section 7.3.3.3). The summary of the results in Table 7.19 shows that the best

treatments for non-symmetric networks are the complete-case approach and mode im-

putations.

If imputation based on mode is used, four outgoing ties for actor R are added (shown

in green in sociomatrix in Figure 7.46). We get one best partition with 31 inconsisten-

cies. The partition is the same as the first partition in the complete-case approach. In

addition to the complete-case approach, we know that the refusal actor R belongs to

the larger second cluster.

Reconstruction is not the advised treatment for non-symmetric networks. With recon-

struction procedure two best fitting partitions with 25 inconsistencies are obtained. The

first obtained partition is the same as the first partition in the complete-case approach.

The second obtained partition is different from partitions obtained with complete-case

or mode imputations. In the first cluster are actors m3, m6, m7, a1 and a3 and the second

cluster consist of actors {m1, pm, m2, m4, m5, a2, R}. The described partition is the same

as partition obtained with null tie imputations, which turns out to be the worst pos-

sible missing data treatment. With this partition we get different image matrix with

complete block on the diagonal and three null blocks.

Without knowledge about the best treatments, the conclusion can be made only about

’stable’ members of each cluster. Irrespective of the chosen treatment, actors {m3, m6, m7}
and {m1, m2, m4, m5, a2, R} are always in the same cluster, while the other actors pm, a1, a3

are changing their position between both clusters.

According to above qualitative analysis of obtained partitions, the preferable parti-

tion is {pm, m3, m6, m7} {m1, m2, m4, m5, a1, a2, a3}, which is obtained by both preferable

treatments, complete-case approach and mode imputations. When the mode imputa-

197



tions are used, we also know the position of the refusal actor R, which belong to the

second (larger) cluster.

Different selection of equivalence leads to different partitions. Doreian et al. (2005)

investigated the generalized equivalence with allowed block types restricted to {null,

com, rdo, cdo, reg} into two to five clusters for the Student Government recall discus-

sion network (the complete case approach). The summary of their findings is presented

in Table 6.2 on page 76. The obtained results for four-cluster blockmodels were com-

pared with ’treated’ blockmodels.

Table 7.21 presents obtained blockmodels for different treatments of non-response for

the Student Government discussion network into four clusters with allowed block

types {null, com, rdo, cdo, reg}. With complete-case approach three equally well

fitting partitions are obtained. Again, quantitative comparison of obtained partitions

with real starting network is not possible. In the complete-case approach four ’stable’

pairs of actors are established. In all equally well fitting partitions, the following pairs

of actors are always placed together: {m1, m2}, {pm, m4}, {m3, m5} and {a1, a3}. Com-

parison of all three equally well fitting partitions with value of criterion function 0 with

the Adjusted Rand Index is presented in Table 7.2221.

The above conclusion, that preferable treatments are complete-case approach and mode

imputations have been made on the basis of simulations for structural equivalence.

The findings can not be generalized without additional simulations. The presented

example and qualitative analysis of obtained results can be viewed just as a starting

point for planning future simulations.

Based on ARI values presented in Table 7.22 the average values of ARI between dif-

21The presented partitions are obtained with the constraint that each cluster must contain at least two

vertices. Without this constraint we obtain in Pajek with 10000 repetitions seven additional partition

with just one actor in a cluster for complete-case approach, three additional equally well fitting partitions

for reconstruction, six partitions for mode imputations and seven partitions with one actor in a cluster

for null tie imputations.
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Table 7.21: Optimal partitions for Student Government recall discussion network and

different non-response treatments and allowed block types {null, com, rdo, cdo, reg}
Treatment Partition Imin

Complete 1st part. {m1, m2} {pm, m4} {m3, m5, m6, m7, a2} {a1, a3} 0

case 2nd part. {m1, m2, a2} {pm, m4} {m3, m5, m6, m7} (a1, a3} 0

3rd part. {m1, m2, a2} {pm, m4, m6, m7} {m3, m5} {a1, a3} 0

Reconstruction 1st part. {m1, a2} {pm, m2, m5, m6, a3, R} {m3, m4} {m7, a1} 1

2nd part. {m1, R} {pm, m3, m5, m7, a1, a3} {m3, a2} {m3, m6} 1

3rd part. {m1, R} {pm, m4} {m2, m3, m5, m6, m7, a2} {a1, a3} 1

4th part. {m1, R} {pm, m2, m3, m4, m5, m7} {m6, a3} {a1, a2} 1

5th part. {m1, R} {pm, m5, m6} {m2, a2} {m3, m4, m7, a1, a3} 1

6th part. {m1, R} {pm, m4, m5, m6, m7} {m2, a2} {m1, a1, a3} 1

7th part. {m1, a2} {pm, m4} {m2, m3, m5, m6, m7, R} {a1, a3} 1

Mode 1st part. {m1, m2, a2} {pm, m4} {m3, m5, m6, m7, R} {a1, a3} 0

imputations 2nd part. {m1, m4} {pm, R} {m2, m3, m5, m6, m7, a2} {a1, a3} 0

3rd part. {m1, m2, a2} {pm, m4, m6, m7, R} {m3, m5} {a1, a3} 0

4th part. {m1, m2} {pm, m4} {m3, m5, m6, m7, a2, R} {a1, a3} 0

Null tie 1st part. {m1, m4} {pm, R} {m2, m3, m5, m6, m7, a2} {a1, a3} 1

imputations 2nd part. {m1, m2, m3, m4, m5, m7} {pm, R} {m6, a3} {a1, a2} 1

3rd part. {m1, a2} {pm, m4} {m2, m3, m5, m6, m7, R} {a1, a3} 1

ferent treatments can be computed. This values can rawly reveal which treatments

produces the most similar partitions. The highest average value of ARI values is be-

tween complete-case approach and the mode imputations (0.59). The average values

of ARI between other pairs of treatments are lower and are in range from 0.19 (aver-

age values of ARI between the reconstruction and the null tie imputations) and 0.37

(average values of ARI between the mode imputations and the null tie imputations).

Therefore, the complete-case approach and the imputations based on mode are the

best non-response treatments for non-symmetric networks and blockmodeling based

on structural equivalence. Our example shows that both treatments produce the most

similar solutions also in case of generalized equivalence. Additional simulations are
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necessary to make conclusions about best treatment in that case.

The complete-case approach and the mode imputations also produce the most similar

equally well fitting partitions. The average value of ARI among three comparisons of

pairs of partitions for complete-case approach is equal to 0.50. The average value of

ARI for comparison of four equally well fitting partitions for imputations based on

mode is 0.44. The averages of ARI values for the remaining two treatments are rather

low; 0.14 for the reconstruction procedure and 0.32 for the null tie imputations.

The same pair of ’stable’ actors, as described in complete-case approach, can also be

found in imputations based on mode. In three of four partitions, the refusal actor R is

placed in the same cluster as actors {m6, m7} and in one case it is placed in a cluster

with prime minister (pm).

Table 7.22: The ARI between partitions obtained in blockmodeling procedure of the

Student Government discussion into four-clusters with generalized equivalence and

allowed block types {com, reg, null, rdo, cdo} for four different non-response data

treatments
Treatment Complete case Reconstruction Mode imputations Null tie imputations

Partition 1st 2nd 3rd 1st 2nd 3rd 4th 5th 6th 7th 1st 2nd 3rd 4th 1st 2nd 3rd

Complete case 1st part. 1 0.68 0.26 -0.21 0 0.73 0 -0.03 0.17 0.50 0.68 0.64 0.26 1 0.64 0 0.50

2nd part. 1 0.55 -0.06 0.15 0.53 0.06 0.12 0.33 0.68 1 0.43 0.55 0.68 0.43 0.06 0.68

3rd part. 1 -0.06 0.15 0.15 0.06 0.12 0.54 0.26 0.55 0.06 1 0.26 0.06 -0.04 0.26

Reconstruction 1st part. 1 0 -0.09 0.09 0.17 -0.03 0.09 -0.06 -0.09 -0.06 -0.21 -0.09 -0.09 0.09

2nd part. 1 -0.02 0.06 0.33 0.33 0 0.15 -0.02 0.15 0 -0.02 -0.19 0

3rd part. 1 0.15 -0.03 0.15 0.73 0.53 0.91 0.15 0.73 0.91 0.06 0.73

4th part. 1 -0.03 0.15 0.27 0.06 0.06 0.06 0 0.06 0.57 0.27

5th part. 1 0.43 -0.03 0.12 -0.03 0.12 -0.03 -0.03 -0.12 -0.03

6th part. 1 0.17 0.33 0.06 0.54 0.17 0.06 -0.12 0.17

7th part. 1 0.68 0.64 0.26 0.50 0.64 0.18 1

Mode 1st part. 1 0.43 0.55 0.68 0.43 0.06 0.68

imputations 2nd part. 1 0.06 0.64 1 0.15 0.64

3rd part. 1 0.26 0.06 -0.04 0.26

4th part. 1 0.64 0 0.50

Null tie 1st part. 1 0.15 0.64

imputations 2nd part. 1 0.18

3rd part. 1
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Conclusions

Based on the above example, we could speculate that in case of non-symmetric net-

work the complete-case approach and the mode imputations are the best treatments

also when generalized equivalence is used. It should be noted that this is only an as-

sumption, which should be tested in extended simulation study, where the obtained re-

sults can be compared with real starting blockmodels. The results of simulations stud-

ies with random measurement errors and different types of equivalence (presented in

Section 7.5) suggest that the determination of the best non-response treatment for reg-

ular and generalized equivalence will be difficult or maybe even impossible because

of high instability of blockmodeling in that case. High number of equally well fitting

partitions, which are frequently result of generalized blockmodeling, even more ag-

gravates the decision about the best missing data treatment.

7.4 Errors caused by item non-response

Logical continuation of the studies about the impact of actor non-response on the sta-

bility of blockmodeling presented in the previous section is the investigation of tie non-

response. The theoretical background about tie (or item) non-response is presented in

Section 4.3.2. All concepts of non-response treatments (except the complete-case ap-

proach if the tie non-response is high) used for an actor non-response can be used also

for replacement of non-reported or absent ties.

The results of simulation studies on tie non-response were preliminary presented in

QMSS2 2011 Workshop about Social Network Data Collection and the detailed version

can be found in Žnidaršič et al. (2011a). Only outline of simulations with main conclu-

sions are presented here.

In the tie non-response we have no information regarding the nature of a tie regard-

less of whether it is a tie or a null tie. We called such non-reported ties the absent ties.

The absent tie could be every tie in the adjacency matrix and the researchers are often

inattentive to the presence of absent ties and record them as null ties (zero). With the
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simulations we tried to establish if reporting of absent ties with zeros could be accept-

able and if this problem could be reduced with different non-response treatments.

The simulation of tie non-response was performed with four real whole networks: boy

girl-liking ties network, note borrowing network, and two networks of Little League,

Transatlantic Industries and Sharpstone Auto. Different amounts of tie non-response

were introduced to the whole networks which were then treated with four tie non-

response treatments: reconstruction, imputations based on the mode values of incom-

ing ties, a combination of reconstruction with imputations based on the mode, and the

null tie imputation. For all networks, whole and treated, blockmodels using structural

equivalence were established and compared. For every combination of a real whole

network, amount22 of introduced tie non-response, and tie non-response treatment our

simulations were based on 100 repetitions.

Both factors from the simulation design, the amount of tie non-response and the treat-

ment non-response, together with the blockmodel structure of a network and the level

of reciprocity all have an impact on the results of blockmodeling. We draw the fol-

lowing conclusions. First, the combination of reconstruction and imputation based

on mode is the best overall treatment method for tie non-response according to both

correctly revealed position membership and blockmodel structure. Second, both reci-

procity and block model structure matter in systematic ways. The results of blockmod-

eling following the use of imputation based on mode are good when reciprocity is low,

but they are unacceptable for networks with high reciprocity23. Imputation based on

modes fares badly for core-periphery structures, while reconstruction works well for

them. Third, the null tie imputation is the worst treatment for tie non-response and

its use never succeeds with regard to correctly obtaining the membership of positions.

Therefore, the simple recording of zeros instead of absent ties is the worst solution,

although it is frequently used in network data collection process. Forth, the criteria

of getting the position membership correct and the blockmodel structure correct do

not always lead to the same implications with regard to blockmodeling outcomes. In

22The percent of tie-nonresponse varies from 1% to 50%.
23The same conclusion was made for the actor-nonresponse case.
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general, performances are better for the blockmodel structure than for position mem-

bership. Put differently, performance is better with regard to the macrostructure of the

networks (the image matrix) and worse with regard to micro-structural details (the po-

sition membership of actors).

The described simulations should be extended to larger networks, different block-

model structures or block patterns, different types of equivalence, non-random pat-

terns of tie non-response, different treatments of non-response which also consider

actor’s characteristics, and valued networks.

7.5 Random measurement errors

In this section the stability of blockmodeling to randomly changed ties will be pre-

sented and we try to confirm our Thesis 1 (from page 36) that structural equivalence

gives more stable results than regular (or other generalized types) equivalence.

The definition of random measurement error is presented in Section 4.3.3. The design

of simulation studies is presented in Section 7.5.1. The simulations were run on both

real and simulated networks with different types of equivalence. The results for real

and simulated networks based on structural equivalence are presented in Section 7.5.2

and Section 7.5.3, respectively. The impact of random measurement error to blockmod-

els established based on regular equivalence is presented in Section 6.2.4 with extensive

set of simulated networks according to cohesive subgroups model and core-periphery

model. The stability of blockmodeling established based on generalized type of equiv-

alence is presented in Section 7.5.5.

7.5.1 The design of our simulation studies for random measurement

errors

The basic scheme of simulations is presented on page 70 in Section 6.1. More detailed

construction on random measurement errors (or measured network due randomly in-

troduced errors) from item 3 (a) in the basic scheme is described here.
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The measured networks were constructed from real or simulated whole networks by

introducing controlled amount of random measurement errors. According to the defi-

nition of Holland and Leinhardt (1973) presented on page 57 in Section 4.3.3, the mea-

surement error occurs when there is no tie recorded for underlying relation or opposite,

or when tie is recorded in the network for which there is no corresponding relation in

the true underlying structure. Therefore, to imitate the random measurement error the

ties were randomly selected to be changed, and if there was a tie in the whole network

we replaced it with zero in measured network and vice versa. The amount of randomly

changed ties was controlled in the studies.

7.5.2 Real networks based on structural equivalence

The simulation study was performed with two real networks, the boy-girl liking ties

network and the note borrowing network.

7.5.2.1 Results for the boy-girl liking ties network

In the boy-girl liking ties network (Section 6.2.1.1), the percent of random measure-

ment errors was selected in range from 1 to 40. The number of possible ties in the

network is 11 · 10 = 110, for the network consisting of 11 actors. The number of all

possible combinations for random selection of ties increases with higher number (or

proportion) of ties to be changed. For example, there is 110 = (110
1 ) possibilities to

randomly change one tie, (110
2 ) = 5995 possible combinations how to change two ties,

(110
3 ) = 215820 combinations for selecting three ties,... Because the blockmodeling al-

gorithm is very time consuming, the simulations were run 50 times for one percent of

random errors and 100 times for higher percent or random measurement errors. In the

whole simulation study, 3950 new measured networks with different percent of errors

were constructed and for every new measured network a blockmodel based on struc-

tural equivalence was established and compared with structure shown in Figure 6.1 on

page 72.

Figure 7.47(a) presents mean values for ARI together with boxplots. For 11% of changed
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ties the mARI is 1, which indicates perfect agreement between real starting partition

and measured partitions after introducing random measurement errors into boy-girl

liking ties network. For higher percent of changed ties the mARI values start to de-

cline and exceed the value 0.8 at 23% of changed ties. For 23% of changed ties or less

there are three-quarters of ARI values above 0.8 according to boxplots. For 35% of

changed ties the values of mARI approach 0, which indicates that there is absolutely

no agreement between real and measured partitions. Figure 7.47(b)presents results of

stability of blockmodeling in terms of correctly identified block types.
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Figure 7.47: Results of the simulation study based on the boy-girl liking ties network

with random measurement errors

Values of mErrB increase, when the percent of changed ties increases. There is perfect

agreement between blocks positions for 15% of introduced measurement errors or less

and acceptable agreement for 26% of introduced random measurement errors or less

(mErrB values below 0.2).

7.5.2.2 Results for the student note borrowing network

The student note borrowing network with blockmodeling structure based on struc-

tural equivalence is presented in Figure 6.2 in Section 6.2.1.2. The percent of random

measurement errors was selected in range from 1 to 40. The network is larger than
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the boy-girl liking ties network, so the number of combinations for selecting different

number of changed ties increases even faster. The number of ties in the network with

15 actors, because loops are not allowed, is 210. This means that we have 210 possibili-

ties how one tie can be changed, (210
2 ) = 23871 combinations for selecting two ties to be

changed, (120
3 ) = 1726669 possible combinations for selection of three ties,... Similarly

as for the boy-girl liking ties network (Section 7.5.2.1) we decided to run the simula-

tions 50 times for 1% of random error and for higher percent of random measurement

errors the simulations were run 100 times. In the simulation study 3950 new measured

networks with different percent of errors were constructed and measured established

blockmodel was compared with structure shown in Figure 6.2 in page 72.

Figure 7.48 presents results of simulation study with introduced random measurement

errors to the student note borrowing network (Figure 6.2 in Section 6.2.1.2). In Figure

7.48(a) dots represent mean values of ARI and boxplots are drawn in gray. The mean

values for ARI decline almost linearly when the percent of introduced error increases.

According to determined boundaries for acceptable values of mARI, only 9% or less of

changed ties lead to satisfying measured partition of actors.

If we set up more restrictive rules that also rectangle of boxplots should be above 0.8,

then maximally 4% of introduced errors lead to acceptable agreement between parti-

tions. The blockmodeling seems to be more stable in terms of block agreement (Figure

7.48(b)). The mean values of ErrB are below 0.2 for 27% of changed ties or less. For 17%

of introduced random measurement errors or less the Err values above 0.2 in almost

three-quarters of simulations. The note borrowing network shows similar stability in

terms of correctly identified block types as the boy-girl liking ties network and far

higher instability in terms of partitions (Figure 7.47).

7.5.3 Studies of simulated networks based on structural equivalence

Studies of empirical networks provide some clues about sensitivity of blockmodels

to random measurement errors. The extension of our study to simulated whole net-

works with known structure and properties will provide us an adequate foundation

for assessing the general impact of amount of random measurement on the results of
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Figure 7.48: Results of the simulation study based on the note borrowing network with

random measurement errors

blockmodeling procedure. The strategies for simulated whole networks are described

in Section 6.2.3.

7.5.3.1 Results for the completely symmetric blockmodel structure

The whole networks for completely symmetric blockmodel structure follow the block-

model structure of the boy-girl liking ties network (Figure 6.1 in Section 6.2.1.1) and

generation of amount of random measurementerrors described in Section 7.5.1.

Figure 7.49 presents results of the simulation study with introduced random mea-

suremet errors. The mean values of ARI (Figure 7.49(a)) decrease with higher pro-

portion of measurement errors. The decline is not linear, but it is bigger with higher

proportion of randomly changed ties. The mean values of the Adjusted Rand Index

suggest that the blockmodel is stable in terms of preserving the starting partition if

the amount of randomly introduced errors is lower or equal to 19%. As a reminder,

according to (Steinley, 2004) we decided that the correspondence of the position mem-

berships is acceptable if values of mARI ≥ 0.8.
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Figure 7.49: Results of the simulation study based on the completely symmetric block-

model structure with random measurement errors

On the other hand, the blockmodel structure, or position and type of blocks in a block-

model, is acceptable if the mean value of incorrectly identified block types (mErrB)

is lower than 0.2. The stability of blockmodels of completely symmetric blockmodel

structure is higher in terms of block types than in terms of concordance between parti-

tions. If 26% or less of random measurement errors are introduced, the mean values of

ErrB suggest that the blockmodel is stable. The rectangles of boxplots or three-quarters

of ErrB values are below 0.2 for 23% of introduced errors or less.

7.5.3.2 Results for the first non-symmetric blockmodel structure

The whole networks for the first non-symmetric blockmodel structure (presented in

Section 6.2.3.2) is similar to blockmodel structure of the note borrowing network (Fig-

ure 6.2 in Section 6.2.1.2) with additional complete block on the diagonal.

Figure 7.50(a) presents results of the simulation study with randomly introduced er-

rors. The mean values of the Adjusted Rand Index decrease with higher percent of in-

troduced measurement errors. The agreement between partitions from the whole and

measured network is acceptable for 16% of introduced errors or less, because mean
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ARI values are above 0.8.
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(a) Mean of the Adjusted Rand Index, mARI
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Figure 7.50: Results of the simulation study based on the first non-symmetric block-

model structure with random measurement errors

The stability of blockmodel in terms of correctly identified block types for the first

non-symmetric blockmodel structure is even higher than in terms of partitions. The

mean values of proportion of incorrect block types (mErrB) are below 0.2, which indi-

cates acceptable blockmodels for 26% of introduced measurement errors or less (Figure

7.50(b)).

7.5.3.3 Results for the second non-symmetric blockmodel structure

The whole networks for the second non-symmetric blockmodel structure follow the

blockmodel structure of the student note borrowing network (Figure 6.2 in Section

6.2.1.2).

Figure 7.51(a) presents impact of randomly introduced errors to the stability of block-

modeling in terms of partitions. The agreement between partitions from the whole and

measured network is acceptable, if the mean values of ARI are above 0.8. In case of

the second non-symmetric blockmodel structure, the blockmodel is stable in terms of

partitions for introduced 19% of random errors or less. If we compare those results to
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results for the first non-symmetric blockmodel structure (Figure 7.50(a)), we can con-

clude that the second non-symmetric structure is more stable in terms of agreement

between partitions.
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(a) Mean of the Adjusted Rand Index, mARI
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(b) Mean of Incorrect block types, mErrB

Figure 7.51: Results of the simulation study based on the second non-symmetric block-

model structure with random measurement errors

The second non-symmetric blockmodel structure is stable in terms of correctly identi-

fied block types for 28% of introduced errors or less (Figure 7.51(b)). If we compare this

result with the first non-symmetric blockmodel structure we can say that the second

non-symmetric blockmodel structure is more stable also in terms of correctly identified

block types. Therefore, we can conclude that the second non-symmetric blockmodel

structure is more stable than the first one on both, micro and macro level of the block-

model.

7.5.4 Simulated whole networks based on regular equivalence

Two blockmodeling structures, the cohesive subgroups model and core-periphery model,

were used to generate the starting whole networks based on regular equivalence. Net-

works are presented in Section 6.2.4.
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7.5.4.1 Results for the cohesive subgroup model

Two-clusters partitions

First, the results with smaller network with 10 actors and two-cluster partition will

be presented (Section 6.2.4.1 ). Figure 7.52 presents results with randomly introduced

measurement errors in model with two equally large clusters (5 actors in each cluster).

One percent of randomly changed ties (or one tie) leads to unstable blockmodeling in

terms of partitions because mean value of the Adjusted Rand Index is below 0.8 (Fig-

ure 7.52(a)). When 2% of ties were randomly changed, the mARI is below 0.5, which

according to Steinley (2004) indicates poor agreement between partitions. Agreement

between correctly identified block types and therefore stability of blockmodeling in

terms of block types is just a little bit better.
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(a) Mean of the Adjusted Rand Index, mARI
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(b) Mean of Incorrect block types, mErrB

Figure 7.52: Results of the simulation study based on two clusters (5,5) regular cohesive

subgroups model with random measurement errors

Mean values of proportion of incorrect blocks in blockmodels are above 0.2 for 4% of

randomly introduced errors or more (Figure 7.52(b)). When mErrB is around 0.25 that

means that on average one block was incorrectly classified. In more detailed investiga-

tion we observed that one null block is changed to regular one and this happened first

with 7% of introduced random errors.
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Figure 7.53 shows the results of randomly introduced errors to two-cluster regular co-

hesive subgroups model with 6 and 4 actors in clusters. For 1% of introduced random

measurement errors the mean values of ARI are above 0.8, which indicates good agree-

ment between partitions (Figure 7.53(a)). Higher percent of introduced errors leads to

unstable blockmodel with mARI around 0 for 8% of introduced errors or more, which

indicates that partition from whole network and from measured network are in fact

two random partitions (Figure 7.53(a)). Mean proportion of incorrectly identified block

types (mErrB) is below 0.2 for at least 3% of introduced errors (Figure 7.53(b)).
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(a) Mean of the Adjusted Rand Index, mARI
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Figure 7.53: Results of the simulation study based on two clusters (6,4) regular cohesive

subgroups model with random measurement errors

Figure 7.54 compares results for two starting partitions in simulation of two-cluster

regular cohesive subgroups model. Values of mARI are practically the same, except for

1% of introduced errors, where (6,4) partition is stable and (5,5) is not (Figure 7.54(a)).

The mean values of ErrB show a little differentiation between both partitions, where

partition with equal membership in both clusters (5,5) has lower values of mErrB. De-

spite these differences, both starting partitions (with (6,4) and (5,5) actors in clusters)

are unstable in terms of correctly recovered blockmodel for 4% of randomly introduced

errors or more (because mErrB values are above 0.2).
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Figure 7.54: Comparison of results of two-clusters regular cohesive subgroups model

with random measurement errors

Three-clusters partitions

Starting networks with 15 actors and two three-clusters partitions were used in simu-

lation. One partition has 5 actors in each cluster and the other partition has 4, 5, and

6 actors in separate clusters. The blockmodel of the whole network is presented with

image matrix IM2 from Equation (6.6) in Section 6.2.4.1.

The established blockmodels are even less stable in three-clusters case than in two-

clusters examples. Figure 7.55(a) shows that mean values of the Adjusted Rand Index

are below 0.5 if just 1% of ties is randomly changed. For higher percent of introduced

errors the mARI values are around 0.

Mean values of proportion of incorrect block types are below 0.2 only for 1% of changed

ties (Figure 7.55(b)). In range from 3 to 15% of changed ties, the mErrB values are ap-

proximately 0.3, which indicates that one third of blocks (3 blocks out of nine) are

incorrectly identified in an established measured blockmodel. For 16% of introduced

errors or more the ErrB values start to increase linearly.
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(a) Mean of the Adjusted Rand Index, mARI
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(b) Mean of Incorrect block types, mErrB

Figure 7.55: Results of the simulation study based on three-clusters (4,5,6) regular co-

hesive subgroups model with random measurement errors

The three-cluster partition with 5 actors in each cluster shows that partition is unstable

also if only one percent of ties is changed (Figure 7.56(a)). The stability of blockmodel

in terms of correctly identified block types (mErrB) is also poor with values of ErrB

below 0.2 just for 1% of randomly changed ties (Figure 7.56(b)).

Results for both three-clusters partitions together are presented in Figure 7.57. There

are no major differences neither in stability of partition (mARI) nor in stability of block

types (mErrB).

7.5.4.2 The core-pheriphery model

The scheme of core-periphery model and image matrices of starting whole networks

in simulations are presented in Section 6.2.4.2. Results with two-cluster partitions with

10 actors and three-clusters partitions with 15 actors are presented below.

Two-clusters partitions

Results of introduced random errors to regular core periphery structure with 6 actors

in core cluster and 4 in periphery are presented in Figure 7.58(a). The mean values of

Adjusted Rand index are above 0.8 only for 1% of changed ties, which indicates good
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Figure 7.56: Results of the simulation study based on three-clusters (5,5,5) regular co-

hesive subgroup model with random measurement errors
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Figure 7.57: Comparison of results of three-clusters regular cohesive subgroups model

with random measurement errors

agreement between real and measured partitions. For higher percent of changed ties

values of mARI decrease to 0, but this fall is a little bit slower than in regular cohesive

subgroup model (Figure 7.58(a)).
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Figure 7.58: Results of the simulation study based on two clusters (6,4) regular core-

periphery model with random measurement errors

The mean proportion of incorrectly identified block types (mErrB) is less or equal to

0.2 for all range of introduced errors (Figure 7.58(b)). As written in Section 5.1.2, we

could say that blockmodel is stable in terms of correctly identified block types in a

blockmodel. Boxplots show that for higher percentages of introduced errors (17% or

more) three-quarters of ErrB values are below 0.25 which indicates that one out of 4

blocks is incorrectly identified.

The mean values of ARI are above 0.8 only for 1% of randomly changed ties, for

higher percentage of changed ties the mARI values exponentially drop to zero (Fig-

ure 7.59(a)). This pattern in case of equally large core and periphery clusters (5 actors

in both of them) is similar to previously presented partition with larger core cluster

(Figure 7.58(a)) and is also observed in the following figure (Figure 7.60(a)) with larger

periphery cluster.

The values of mErrB show stirred patterns. First, values quickly increase to 15% of

changed ties, where mErrB is around 0.3 and then values slowly decrease to 0.2 (Figure

7.59(b)). The measured blockmodels are stable for 3% or less of randomly introduced
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(a) Mean of the Adjusted Rand Index, mARI
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Figure 7.59: Results of the simulation study based on two-clusters (5,5) regular core-

periphery model with random measurement errors

errors. Between 30% and 40% of changed ties the mErrB values are again below 0.2,

but if we also take into consideration the results for stability of partitions, we can not

conclude that blockmodel is unstable for higher percentages of change ties.

As mentioned before, the results for the Adjusted Rand Index with smaller core cluster

with four actors and periphery cluster with six actors are similar to other two starting

partitions (five actors in both, core and periphery, clusters and bigger core cluster with

six actors). Only 1% of changed ties leads to mARI values above 0.8 (Figure 7.60(a)).

The pattern of correctly identified block types is similar to the above example of equally

large core and periphery clusters. The blockmodel is stable in terms of mErr for 3% of

randomly changed ties or less (Figure 7.60(b)). For 26% of changed ties or more, the

mean proportion of incorrectly identified block types is again below 0.2, but the stabil-

ity of partitions (mARI values) indicates that there is no satisfied agreement between

both blockmodels.

Combined results for all three real partitions with different number of actors in each
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(a) Mean of the Adjusted Rand Index, mARI

1 3 5 7 9 12 15 18 21 24 27 30 33 36 39

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Percent of changed ties

T
he

 P
ro

po
rt

io
n 

of
 in

co
rr

ec
t b

lo
ck

s
(b) Mean of Incorrect block types, mErrB

Figure 7.60: Results of the simulation study based on two-clusters (4,6) regular core-

periphery model with random measurement errors

cluster in Figure 7.61(a) indicate that there is no clear differentiation between partitions

in terms of mARI values. As observed above, the agreement between three image

matrices is the best, when the core cluster is larger than the periphery one (Figure

7.61(b)).
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Figure 7.61: Comparison of results of two-clusters regular core-periphery models with

random measurement errors
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Three-clusters partitions

Three types of three-clusters partitions with regular core-periphery models (presented

with image matrix IM4 in Section 6.2.4.2) were used in the next simulations. Because of

unstable results for low percent of introduced random measurement errors in previous

examples, the maximal amount of introduced random errors in these examples is 20%.

First, the results for starting whole blockmodel with larger first core cluster with six ac-

tors, second core cluster with 5 actors and periphery cluster with 4 actors are presented.

The mARI value for one percent of introduced measurement errors is a little bit be-

low 0.8, which indicates moderate agreement between ’real’ and ’measured partition’

(Figure 7.62(a)). The mean values of incorrectly classified block types (mErrB) are be-

low 0,2 for maximally 4% of introduced errors. For higher percentages of introduced

random errors, mErrB values are around 0.25 (Figure 7.62(b)).
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(a) Mean of the Adjusted Rand Index, mARI
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Figure 7.62: Results of the simulation study based on three-clusters (6,5,4) regular core-

periphery model with random measurement errors

In three-cluster partition with equally large cores and periphery clusters (5 actors in

each of them) the mARI values are below 0.8 for the whole range of introduced ran-

dom measurement errors and exponentially decline with higher percent of introduced

errors (Figure 7.63(a)). The mean proportion of incorrectly identified block types is be-
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low 0.2 only for 1% of changed ties which indicates acceptable agreement between both

image matrices (Figure 7.63(b)). For 5% of introduced errors mErrB values increase to

0.4 and then decrease slowly back to 0.2, but stay above this threshold.
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(a) Mean of the Adjusted Rand Index, mARI
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Figure 7.63: Results of the simulation study based on three-clusters (5,5,5) regular core-

periphery model with random measurement errors

The third partition with regular core-periphery model has the smallest first core cluster

with 4 actors, second core cluster has 5 actors and the periphery cluster is the biggest

with 6 actors. The mARI value for one percent of introduced measurement errors is

below 0.65, which indicates poor agreement between starting and measured partitions

(Figure 7.64(a)). The mErrB values are below 0.2 only for one percent of randomly

introduced measurement errors and the pattern is similar as in the above example.

Values for mErrB increase to 5% of introduced errors and then linearly decline and ap-

proach to 0.2 with 20% of changed ties (Figure 7.64(b)).

Comparison between all three types of starting partitions is presented in Figure 7.65.

The highest values for mARI has C654 partition with biggest core cluster. Values of

mARI for all three partitions exponentially decrease and are for the whole range below

0.3, which indicates that blockmodeling is unstable in terms of agreement between

membership of actors (Figure 7.65(a)). The patterns in values of mErrB (Figure 7.65(b))
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Figure 7.64: Results of the simulation study based on three-clusters (4,5,6) regular core-

periphery model with random measurement errors

reveal that partition with biggest core cluster (C654) is the most stable also in terms

of correct block types in a blockmodel. Acceptable agreement between starting and

measured image matrices is obtained with at most 4% of changed ties.
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(b) Mean of Incorrect block types, mErrB

Figure 7.65: Comparison of results of three-clusters regular core-periphery model with

random measurement errors
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If we compare results for mErrB from both, two-clusters (Figure 7.61) and three-clusters

partitions (Figure 7.65(b)) for regular core-periphery models, we observe that parti-

tions with biggest core cluster have the lowest values of mErrB. Patterns for other two

partitions are similar to each other and values of ErrB are higher.

7.5.4.3 Detailed view on regular equivalence

We try to ascertain why regular equivalence is extremely unstable and what happens

with blockmodel when random measurement errors are introduced. Therefore, some

particular whole starting networks with known blockmodel structure based on regular

equivalence and with small amount of randomly generated errors are presented below.

Example of a network with calculated probability pTiereg of a tie in a regular block

First, an example of a network for regular cohesive subgroup model with probability

of ties in a regular block (pTiereg) calculated from Equation (6.5) was examined. The

network is presented in Figure 7.66(a). The starting partition for generation of network

is two-cluster partition with 5 actors in each cluster (C55) and the starting image matrix

has regular blocks on the diagonal. According to Equation (6.5) the probability for gen-

eration of ties in a regular blocks is 1
4 . As described in Section 6.2.4.1, regular blocks are

checked for regularity and ties are enforced if the regularity condition of at least one 1

in each row and each column is not satisfied. The density of presented network is 0.19

and the mean density of regular blocks is 0.425.

Figure 7.66(b) presents the same network in matrix format and it reveals that the best

fitting partition with zero inconsistencies is the same as the partition used in genera-

tion of network. In network representation clusters are presented with different colors,

blue and red.

Random measurement errors were introduced to the presented network. First, we ran-

domly introduced 1% of errors and Figure 7.67 shows that a tie from actor 3 to actor 2

was deleted. This deletion of a tie causes that actor 3 has no outgoing ties and in matrix

representation in Figure 7.66(b) this results in an empty row. The blockmodeling pro-

222



1

2

3 4

5

6

7

89

10

Pajek

(a) Network for cohesive subgroups model (b) Sociomatrix with two clusters based

on regular equivalence

Figure 7.66: Example of a network for cohesive subgroups model with probability of

ties in regular block pTiereg and corresponding sociomatrix with best fitting two-cluster

partition

cedure into two clusters was run on the measured network and results are presented

in Figure 7.67. We obtained one cluster with just one actor (actor 3) and second cluster

with nine actors. As described in Section 5, the agreement between two blockmodels is

measured with two indices. The Adjusted Rand Index between real starting partition

C55 and measured partition c(1, 1, 2, 1, 1, 1, 1, 1, 1, 1) is 0, which indicates absolutely no

agreement between them.

Sociomatrix in Figure 7.67(b) shows that the image matrix has three null blocks and

one large regular block within the second cluster. Therfore the proportion of incor-

rectly identified block types (ErrB) is 0.75. The value of criterion function is 1 (one

present tie in a null block). This example shows that one changed tie can completely

destroy the obtained blockmodel based on regular equivalence.

The second question was what happens if larger amount of random measurement er-

rors is introduced. 2% of random measurement errors were introduced to the pre-

sented network in Figure 7.66. Figure 7.68(a) shows that two ties were added; a tie
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(a) Network (b) Sociomatrix

Figure 7.67: Measurement network with one changed tie and corresponding socioma-

trix with best fitting two-cluster partition

from actor 6 to actor 5 and a tie from actor 7 to actor 3.
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(a) ’Measured’ network with two changed ties (b) Sociomatrix with two-cluster parti-

tion C55

Figure 7.68: Measurment network with two changed ties and corresponding socioma-

trix with two-cluster partition C55

The blockmodels based on regular equivalence was established for measured network

with 2 changed ties. As mentioned above, sociomatrix of real network (Figure 7.66(b))
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reveals that the best fitting partition of starting real network with zero inconsistencies

is the same as the partition used in generation of network. The next step was the calcu-

lation of criterion function if the starting partition with 5 actors in each cluster (C55) is

enforced to measured network (Figure 7.68(a)). Figure 7.68 reveals that image matrix

represents two cohesive subgroups and that value of criterion function is 2.

According to the results presented in Section 7.5.4.1, we made a conclusion that block-

modeling based on regular equivalence is extremely unstable. Therefore, there is high

chance that blockmodel of measured network presented above is not the best one. The

blockmodeling procedure was run again on measured network, and results in Figure

7.69 reveal that partition C55 is one of three equally well fitting partitions. We obtained

two partitions with one actor in a cluster (actor 10 or actor 8) and with the same image

matrix as in ’the one changed tie example’ presented above. There is no accordance

between first two partitions and partition C55 (ARI=0) and the image matrix is highly

deformed with three quarters of incorrectly identified block types. The third solution

(the right panel in Figure 7.69) presents the same partition C55 (and image matrix) as

was used in generation of a starting network. Because there is no objective criteria for

selection between equally well fitting partitions, the mean values of indices of stability

(ARI and ErrB) were calculated. Consequently, the mean value of the Adjusted Rand

Indices of three equally well fitting partitions is 0.33 and the mean value of the propor-

tion of incorrectly identified block types is 0.5. The above results help to understand

the high instability of blockmodeling based on regular equivalence. In many exam-

ples of established measured blockmodels (from networks with randomly introduced

errors) based on regular equivalence equally well fitting partitions are obtained. They

can be completely different to the real starting partition or just the opposite, they could

be identical. Because at the moment we have no objective quantitative criteria for se-

lection between well fitting partitions, the regular equivalence should be used with

extra caution and combined with additional knowledge of the researchers.

The starting network (Figure 7.66) with calculated probability of ties in regular blocks

pTiereg from Equation (6.5) has the mean regular block density equal to 0.425. The
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Figure 7.69: Results ob blockmodeling procedure based on regular equivalence with

three equally well fitting partitions for ’measured’ network with two changed ties

ties were enforced to the network during the generation process to satisfy the regular

equivalence condition of at least one tie in each row and column. Therefore, our sus-

picion was that the main reason for high instability of blockmodeling based on regular

equivalence were this ’barely’ regular starting blockmodels. The next step was to ex-

amine what effect has higher density of regular blocks to stability of blockmodeling

procedure.
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Example of a network with probability of a tie in a regular block equal to 0.6

In the algorithm for generating starting networks on page 81 in Section 6.2.4.1 the prob-

ability of ties in regular blocks was set to 0.6 instead of calculated probability from

Equation 6.5. The network was still checked for regularity and additional ties were

added if necessary.

Similarly as for regular cohesive subgroups model with calculated density of regular

blocks (Section 6.2.4.1), ten starting networks were generated. The densities of net-

works were in range from 0.23 and 0.31 with mean network density equal to 0.28 and

standard deviation 0.03. The densities of regular blocks are in range from 0.52 to 0.70

with mean density of regular blocks equal to 0.62 (sd=0.07). In comparison, the mean

density of regular blocks in networks with computed probability of regular ties based

on block size is 0.29.

The results of stability of blockmodeling are presented in Figure 7.70(a) and are almost

the same as in Figure 7.52. The blockmodeling results are extremely unstable in terms

of agreement between partitions and image matrices already for 1% of introduced mea-

surement errors. The agreement between block types in two image matrices for five or

more percent of introduced errors leads on average to half of incorrectly identified

block types (mErrB ≈ 0.5).

In the next step, we set the probability of ties in regular blocks even higher, pTiereg =

0.8. The mean density of 10 starting real networks is 0.33 and standard deviation is

0.02. The differences from previously introduced networks (with pTiereg = 0.6) are

even higher in mean density of regular blocks. Density of regular blocks ranges from

0.68 to 0.82 with mean value 0.75 (sd=0.046).

Figure 7.71 shows the results of blockmodeling procedure based on regular equiva-

lence. The blockmodeling results show similar, but also a little more extreme patterns

than those presented in Figure 7.70. The mean values of proportion of incorrectly iden-

tified block types are on average equal to 0.6.
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Figure 7.70: Results of the simulation study based on two-clusters (5,5) regular cohe-

sive subgroup model with pTiereg = 0.6 and introduced random measurement errors
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Figure 7.71: Results of the simulation study based on two-clusters (5,5) regular cohe-

sive subgroup model with pTiereg = 0.8 and introduced random measurement errors

Comparison of stability of blockmodeling for regular cohesive subgroup model with

different probabilities of ties in regular blocks is presented in Figure 7.72. As inter-
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preted above, the higher densities of regular blocks lead to even poorer agreement

between partitions. Differences are higher in comparison of index of agreement be-

tween two image matrices (Figure 7.72(b)). The mErrB for networks with probabilities

of ties in regular blocks calculated based on Equation (6.5) increases with higher per-

cent of introduced errors to 0.3. Networks with mean density of regular blocks around

0.6 have on average proportion of incorrectly identified block types equal to 0.5 (for

five percent or introduced errors on more). Mean values of ErrB are constant around

all range of introduced errors and are approximately equal to 0.6 for networks with

density of regular blocks 0.8.
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Figure 7.72: Comparison of results for the simulation studies based on two-clusters

(5,5) regular cohesive subgroup model with different probabilities of ties in regular

blocks and introduced random measurement errors

Therefore, our suspicion that models with higher density of regular blocks could lead

to more stable blockmodeling results turn out to be incorrect. On concrete example of

a network we tried to examine what happens to blockmodel when small amount of

errors is introduced.

Figure 7.73(a) presents network with regular cohesive subgroup model with probabil-

ity of ties in regular blocks (pTiereg) equal to 0.8. Blue and red color present two clusters
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for starting partition, which was used in the simulation of a network. We randomly

changed one tie in a network and we got an example of measured network. Figure

7.73(b) presents measured network where a tie is added from actor 4 to actor 6.
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(a) Network for cohesive subgroups model

1

2

3 4

5

6

7

89

10

Pajek

(b) ’Measured’ network with one changed tie

Figure 7.73: Example of a network for cohesive subgroups model with probability of

ties in regular block pTiereg = 0.8 and measured network with one changed tie

The blockmodeling procedure based on regular equivalence was run with both net-

works from Figure 7.73. Patterns in a sociomatrix in Figure 7.74(a) show that with

blockmodeling procedure (for real starting network) we get the same partition which

was used in simulation of a network (7.73(a)). The blockmodel has two regular blocks

in the diagonal and null blocks out of diagonal. Value of criterion function is 0, which

means that we get perfectly fitting partition. If the measured blockmodel is stable

in terms of partition, then the partition of real starting network should be the best

fitting partition also for the measured network. We imposed the partition C55 =

(1, 1, 1, 1, 1, 2, 2, 2, 2, 2) to the measured network and we observed that the image ma-

trix is the same (Figure 7.74(b)), but the value of criterion function is one (a tie from

actor 4 to actor 6 in a null block).

The next step was to examine if the forced measured blockmodel with C55 partition

is the best one. The answer to that question is presented in Figure 7.75. With block-
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(a) Sociomatrix for cohesive sub-

groups model

(b) Matrix of ’measured’ network

with one changed tie

Figure 7.74: Sociomatrices for cohesive subgroups model with probability of ties in

regular block pTiereg = 0.8 and measured network with one changed tie

modeling procedure of measured network we get three best fitting partitions (value of

criterion function is 0). In the first case we get partition with six and four actors which

are completely disarranged compared to original C55 partition. This is also confirmed

with value of the Adjusted Rand Index which is equal to -0.1194. Image matrix shows

four regular blocks, therefore the value of proportion of incorrectly identified block

types is equal to 0.5. The second and the third blockmodel show equal image matrix

with half of correctly identified block types in a blockmodel. Both ARI indices are

around 0, which indicates no agreement between real starting and measured partition.

When the results of two changed ties in the network with calculated probability pTiereg

(from Equation 6.5) of a tie in a regular block were presented, we suggested that be-

cause of obtained equally well fitting partition, the addition expertise knowledge of

researchers should be used in blockmodeling procedure based on regular equivalence.

Remember, one of three equally well fitting paritions was the real one and the other

two partitions had (usually) undesired pattern of just one actor in a cluster. In this

situation an experienced researcher could be able to select the right partition. The net-

works with calculated pTiereg have low regular blocks density (Section 6.2.4.1) and the

first explanation was that this is the main cause for instability of blockmodels based on

regular equivalence. The simulations with higher density of regular blocks show even

higher instability of blockmodeling procedure in terms of agreement between parti-
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Figure 7.75: Results ob blockmodeling procedure based on regular equivalence with

three equally well fitting partitions for ’measured’ network with one changed ties

tions and block types in image matrices. But unfortunately, as shown in particular

example, none of three equally well fitting partitions are accordant with the real one

and there are no objective criteria for selection between them.

One solution could be use of structural equivalence instead or regular one, even if the

blocks meet the criteria for regular equivalence. Figure 7.76 shows results of blockmod-

eling procedure based on structural equivalence with networks of regular cohesive

subgroups models with probability of ties in regular blocks equal to 0.8 (pTiereg = 0.8).
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The real partition has, as in previous examples, five actors in each cluster (C55) and the

image matrix has two complete blocks on the diagonal and null blocks out of diagonal.
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Figure 7.76: Results of the simulation study with two-clusters (5,5) regular cohesive

subgroup networks with pTiereg = 0.8 with introduced random measurement errors

and blockmodeling procedure based on structural equivalence

The obtained blockmodel is stable in terms of partitions for 21% of randomly intro-

duced measurement errors or less (mARI values are above 0.8). The agreement be-

tween real and established blockmodel is acceptable for 25% of measurement errors

or less, because mean values of incorrectly identified block types (mErrB) are lower

than 0.2. Similar results were obtained also with boy-girl liking ties network (Section

7.5.2.1) and in simulation study of randomly introduced errors to completely symmet-

ric blockmodel structure presented in Section 7.5.3.1.

7.5.5 Real networks partitioned based on generalized types of equiv-

alence

In this section the impact of randomly introduced errors on blockmodels established

with generalized equivalence will be examined. Only one real network will be used,

the Student Government discussion network, therefore the obtained results are used
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only for illustrative purposes. Following the results from the previous section about

regular equivalence, we expect high instability of blockmodeling also in case of ex-

tended selection of block types based on philosophy of generalized equivalence.

The Student Government data was in terms of generalized equivalence extensively

studied by Doreian et al. (2005) and the main results of obtained blockmodel are pre-

sented in Section 6.2.2.1.

The restriction of block types to {null, com, rdo, cdo, reg} and applied blockmodeling

procedure into three clusters produce three equally well fitting partitions. Therefore, in

the simulation of randomly introduced errors the measured networks were compared

to each of those four equally well fitting solutions. Figure 7.77 shows the obtained

results. The colors on the figure distinguish between equally well fitting partitions of

the whole network (presented in Table 6.2 on page 76). Despite of small differences

the results are overwhelming. One percent of randomly introduced errors completely

destroys the position membership (regardless of the starting partition), because mARI

values are around zero (Figure 7.77(a)).
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Figure 7.77: Results of the simulation study with Student Government discussion net-

work with introduced random measurement errors and blockmodeling procedure into

three clusters based on generalized equivalence with {null, com, rdo, cdo, reg} blocks
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The agreement between whole and measured blockmodel in terms of correct block

types and positions is also poor. With one percent of randomly introduced errors the

mErrB values are around 0.5 which indicates that on average half of blocks is incor-

rectly identified (Figure 7.77(a)) which is unacceptable.

The blockmodeling with the same blocks types as above into four clusters also re-

sults in criterion function with zero inconsistencies. The results for all three equally

well fitting starting partitions from the whole network are practically the same (Figure

7.78) and are also similar to the results with three-clusters partitions from the previ-

ous figure. One percent of introduced errors completely destroy both, position mem-

bership of actors (ARI ≈ 0.2) and also composition of blocks in the image matrix

(mErrB ≈ 0.5).
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Figure 7.78: Results of the simulation study with Student Government discussion net-

work with introduced random measurement errors and blockmodeling procedure into

four clusters based on generalized equivalence with {null, com, rdo, cdo, reg} blocks

In the next step the block types were restricted to {null, rdo, cdo}. There are two

equally well fitting partitions of the whole network into three clusters with zero in-

consistencies (Table 6.3 on page 76). The results of randomly introduced errors (Figure

7.79) show that the obtained blockmodels are extremely unstable. One percent of ran-

domly changed ties completely destroys the position membership of the actors and
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causes incorrect identification of half of blocks in a blockmodel. Practically the same

results as described above are also obtained with four-clusters partition based on gen-

eralized blockmodeling with block types restricted to {null, rdo, cdo} (Figure 7.80).
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Figure 7.79: Results of the simulation study with Student Government discussion net-

work with introduced random measurement errors and blockmodeling procedure into

three clusters based on generalized equivalence with {null, rdo, cdo} blocks

According to the above results we can conclude that blockmodels established based on

generalized equivalence (at least those for the Student Government data) are extremely

sensitive to the minimal changes in composition of ties. Another interesting result

is that with randomly introduced errors equally well fitting partitions behave almost

identically. Therefore, randomly introduced errors can not help to distinguish between

them in order to find the most stable one.

7.6 Conclusions

Based on the described simulations two main conclusions can be drawn. First, the

blockmodeling based on structural equivalence is highly stable. According to the pre-

sented results with real and simulated networks, blockmodels are a little bit more sta-

ble in terms of blockmodel structure than in terms of position membership of actors.
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Figure 7.80: Results of the simulation study with Student Government discussion net-

work with introduced random measurement errors and blockmodeling procedure into

four clusters based on generalized equivalence with {null, rdo, cdo} blocks

Therefore, the blockmodels based on structural equivalence (regardless of the number

of clusters and the symmetry of the blockmodel) are more stable on macro than the

micro level of the network.

Second, blockmodels based on regular or generalized equivalence are extremely sensi-

tive to the minor changes in network ties. One randomly changed tie could completely

destroy both, position membership and the blockmodel structure. The importance of

guidelines made by Doreian et al. (2005) that in generalized blockmodeling the prior

knowledge of the researcher should be incorporated in prespecified blockmodels prior

to blockmodeling analysis is confirmed with our results. We could probably aggravate

this guideline to ’use the generalized equivalence only with previous knowledge about

the desired model’.

The suspicion that high density of regular blocks leads to more stable blockmodeling

based on regular equivalence turns out to be incorrect. One solution could be the use

of structural equivalence even if the networks posses patterns of regular equivalence.
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Therefore, our Thesis 1 (from page 36) that Structural equivalence gives more stable re-

sults than regular (or other generalized types) equivalence can be confirmed. The unstable

blockmodeling based on regular equivalence demands the precise revision of the def-

inition of regular equivalence. Based on that the detailed guideline should be made

about when to use the regular equivalence and how to correctly interpret the obtained

blockmodels.
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8 The impact of differences in network

characteristics on the stability of

blockmodeling

In this chapter we tried to answer the first research question (presented on page 37)

about impact of network characteristics and properties on stability of blockmodeling.

In more detail, we want to determine to what extent the relative differences in network

characteristics and correlation and/or Euclidean distance between vectors of vertex

properties are able to predict the results of blockmodeling.

First, the short review of methods used to investigate the impact of network charac-

teristics on the stability of blockmodeling is presented in Section 8.1. The impact of

network characteristics on the stability of blockmodeling is then presented with real

data (8.2.2) and afterwards our study is expanded to simulated networks (Section 8.3).

The network characteristics and properties used in studies are presented in Section 2.2.

8.1 Methods used to investigate the impact of differences

in networks characteristic on the stability of block-

modeling

As presented in Chapter 5, the stability of blockmodeling can be measured with two in-

dices. The Adjusted Rand index is used for measuring the agreement between two par-

titions and the proportion of incorrect block types is used for investigating the amount
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of correctly identified block types in a blockmodel.

8.1.1 Relative differences between network characteristics

In Section 2.2 main network characteristics and actor properties are presented. Ac-

cording to second research question, our goal was to examine the impact of relative

differences in network characteristics to prediction of blockmodeling result. If the

characteristic of a network is expressed by a single number (e.g., network density),

then the relative difference between two networks, whole one and measured one, was

calculated. The relative difference of two networks according to density Dens was cal-

culated as

Dens =
|∆(whole network)− ∆(measured network)|

∆(real network)
, (8.1)

where ∆(whole network) indicates the density (Equation 2.1) of whole starting net-

work and ∆(measured network) indicates the density of measured network with in-

troduced errors.

Similarly, the relative difference in number of null dyads (D Null), the relative differ-

ence in number of asymmetric dyads (D Asymm), the relative difference in number

of mutual dyads (D Mut), and the relative difference in reciprocity index (Rec) can be

computed.

8.1.2 Pearson correlation coefficient and Euclidean distances between

vectors of actor properties

On the other hand, measures of centrality and prestige (Section 2.2.2) are calculated

on an actor level, which means that mentioned measures are calculated for each vertex

separately and presented for whole network as a vector. For comparison of two vectors

two dissimilarity measures were selected; Euclidean distance, and Pearson correlation

coefficient.
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Let’s say that we have two vectors of actor properties yWN = (y1, y2, . . . , yn) and

yMN = (y′1, y′2, . . . , y′n) from the whole network and from the measured network, re-

spectively. The Euclidean distance is defined as

dE(yWN, yMN) =

√

n

∑
i=1

√

(

yi − y′i
)2

. (8.2)

Another used measure is Pearson correlation coefficient, which measures the strength

and linear relationship between two vectors. It is defined as

r(yWN, yMN) =
∑

n
i=1

√

(

yi − µy

)

(

y′i − µy′
)

√

∑
n
i=1

√

(

yi − µy

)2
(

y′i − µ′
y

)2

, (8.3)

where µy = ∑
n
i=1 yi and µy′ = ∑

n
i=1 y′i.

Values of Pearson correlation coefficient are in range between -1 and 1.

Ferligoj (1989) argued that we should be careful when selecting measure of dissim-

ilarity. First of all, we have to know what kind of dissimilarity we would like to

measure. The Pearson correlation coefficient between vector u = (u1, u2, . . . , un) and

vector v = (u1 + a, u2 + a, . . . , un + a), which is obtained from vector u with addition

of constant a to each component of vector u (it means that vectors u and v are paral-

lel), is equal to 1. The ’profile’ of those two vectors is translated, but equal. Values

of both vectors are different, which can be revealed with use of Euclidean distance as

dissimilarity measure24. (Kang, 2007, 140) noted that in such example the correlation

coefficient indicates proximity, but not similarity.

The correlations and Euclidean distances between both indices of blockmodeling sta-

bility (ARI and ErrB) and indices of network characteristics presented in Section 2.2.

In this chapter, the notation presented in Table 8.1 will be used beside the standard

notation ARI and ErrB.

24The Euclidean distance between vectors u and v is dE(u, v) = a
√

n
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Label Meaning

p.changed Percent of randomly changed ties in a network.

Relative difference in . . .

Dens . . . density between whole and measured network.

Rec . . . reciprocity between whole and measured network.

D Mut . . . number of mutual dyads between real and measured network.

D Asymm . . . number of asymmetric dyads between real and measured network.

D Null . . . number of null dyads between real and measured network.

Euclidean distance between vectors of. . .

PP e . . . proximity prestige for real and measured network.

CCout e . . . closeness centrality based on outdegree for real and measured network.

CCin e . . . closeness centrality based on indegree for real and measured network.

Dall e . . . all-degree centrality for real and measured network.

Dout e . . . outdegree centrality for real and measured network.

Din e . . . indegree centrality for real and measured network.

B e . . . betweenness centrality for real and measured network.

A e . . . authority weights for real and measured network.

H e . . . hub weights for real and measured network.

Correlation between vectors of. . .

PP cor . . . proximity prestige for real and measured network.

CCout cor . . . closeness centrality based on outdegree for real and measured network.

CCin cor . . . closeness centrality based on indegree for real and measured network.

Dall cor . . . all-degree centrality for real and measured network.

Dout cor . . . indegree centrality for real and measured network.

Din cor . . . outdegree centrality for real and measured network.

B cor . . . proximity prestige for real and measured network.

A cor . . . authority weights for real and measured network.

H cor . . . hub weights for real and measured network.

Table 8.1: Notation used in studies of impact of network characteristics on results of

blockmodeling
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8.1.3 Linear regression models

Beside the correlation coefficients, the linear relationships between indices of network

characteristics as predictors and indices of stability as outcome variables are exam-

ined. The amount of variance explained is reported with R2, and if linear relationship

is strong enough, the linear model is drawn together with corresponding data. In the

literature different interpretations of strength of correlation coefficients can be found.

Cohen (1988, 79-81) and Field (2009, 170) divided the values of Pearson correlation co-

efficient into three categories: ±0.1 represents small effect, ±0.3 a medium effect and

±0.5 large effect. Cohen (1988) pointed out that this criteria are in fact arbitrary and

should be redefined, if necessary, for particular problem. Beside the scatterplots, the

linear models are drawn if the correlation coefficient is higher or equal to 0.5.

Because the amount of data for each simulation study is large (e.g. for the the boy-girl

liking ties network we have 3950 comparisons of measured networks to the whole one,

and with simulated data we have 316000 comparisons to the whole starting network

within each starting blockmodel structure), the ’aggregated’ scatterplots are drawn. The

values of two indices of interest are rounded to one decimal place. On obtained grid

circles are drawn, where the radius of the circle is proportional to the number of data

in the corresponding grid point. The artificial example of ’aggregated’ scatterplot is

presented in Figure 8.1. This is just the rough picture of the data and is used just as

first insight to the distribution of data. All regression models in this chapter are calcu-

lated on original non-aggregated data.

In Section 7.5 the impact of random measurement error on stability of blockmodeling is

investigated. In addition to regression models with indices of network characteristics

as predictor variables, models with number of randomly changed ties (p.changed) as

independent variable are established.

8.1.4 Generalized linear models

In cases where distribution of indices suggested the exponential functional depen-

dency, generalized linear models (GLM) are used instead of linear ones. The restrictive
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Figure 8.1: The ’aggregated’ scatterplot

assumption from linear models that the variance should be constant is loosened in

GLM. It could be proportional to a function of the mean (Friedl, 2010), e.g. when the

mean increases also the variance is increasing. A generalized linear model procedure

consists of three-part specification (McCullagh and Nelder, 1989, 27):

(i) The random component: y1, . . . , yn are independently distributed from a member

of exponential family with E(yi) = µi (i = 1, . . . , n) and var(yi) = φV(µi), where

φ is a dispersion parameter.

(ii) The systematic component: fixed covariates xi1, . . . , xip define a linear predictor

η;

ηi =
p

∑
j=1

xijβ j , (8.4)

where xij are values of p explanatory and β j are unknown parameters, which

should be estimated from the data.

(iii) The link function between random and systematic components, g(µi) = ηi. It

provides the relationship between the linear predictor and the mean of y.
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”To determine the fit of a given model, a GLM evaluates the linear predictor for each

value of the response variable, then compares the predicted value with a transformed

value of y. The transformation to be employed is specified in the link function” (Craw-

ley, 2007, 513). The measure of goodness of fit of our model is called the deviance. The

scaled deviance compares the maximum of the log-likelihood under our current model

with its maximum under the best, saturated, model. If the value of scaled deviance is

similar to the degrees of freedom (number of observations n minus number of explana-

tory variables p) of our model, then the model is expectable.

The GLM requests the precisely established relationship between the variance and the

mean. When the precise form of the error distribution is hard to determine, the ro-

bust alternative known as quasi-likelihood can be used (Crawley, 2007, 516-517). In

our models, where the exponential dependency was present, we used quasi-Poisson

errors, which can compensate also the overdispersion (an extra, unexplained variance

than assumed) together with the log link.

In order to compare the linear models with the generalized linear ones in some way,

the pseudo R2 measures can be used. They are based on the concept of deviance and

can be defined as (Mittlbock, 2004):

R2
D = 1 − the scaled deviances o f the f ull model

the scaled deviances o f the null model
. (8.5)

The adjustment of R2 (Equation 8.5) for GLM can be made with consideration of the

number of parameters fitted as

R2
D,d f = 1 − the scaled deviances o f the f ull model · (n − 1)

the scaled deviances o f the null model · (n − k − 1)
, (8.6)

where n is the number of observations and k the number of fitted covariates.
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8.2 The impact of differences in network characteristic

on the stability of blockmodeling in case of real net-

works

In this section the impact of differences in network characteristics and properties is

investigated in case of two real networks; the boy-girl liking ties network and the note

borrowing network.

8.2.1 The boy-girl liking ties network

First, we investigated the impact of different network characteristics to the stability of

blockmodeling with data from the boy-girl liking ties network (Figure 6.1 in Section

6.2.1.1). The network has symmetric structure and its blockmodel based on structural

equivalence has two clusters. The image matrix has two complete blocks on diagonal

and null blocks out of diagonal. The stability of blockmodeling will be examined with

two indices; with the Adjusted Rand Index (ARI) which measures agreement between

two partitions and with percent (or proportion) of correctly identified block types in

blockmodel (ErrB).

8.2.1.1 Stability of partitions

First, the impact of differences in network characteristics to stability of blockmodels in

terms of partitions agreement with data from the simulation of randomly introduced

measurement errors to the boy-girl liking network (Figure 6.1 in Section 6.2.1.1) is ex-

amined.

The correlation coefficient between ARI and other network characteristics indices are

presented in Table 8.2. The highest correlation coefficient is between the Adjusted

Rand Index (ARI) and the proportion of changed ties (r = −0.773). The proportion

of changed ties is not an index of network characteristic known from social network

data analysis. It is a parameter from the simulation process of networks with intro-

duced errors. We already know that it has a great impact on values of ARI and ErrB
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from figures in Section 7.5. We will try to compare its impact with other ’more stan-

dard’ indices in the following sections.

Table 8.2: Correlations and results of fitted linear models for ARI with data for the

boy-girl liking ties network

index r R2 b0 b1

p.changed -0.773 0.598 1.298 -0.030

Dens -0.484 0.235 0.981 -1.556

Rec -0.555 0.309 1.178 -1.718

D Mut -0.326 0.106 0.873 -1.035

D Asymm -0.642 0.412 1.235 -0.371

D Null -0.622 0.386 1.178 -1.668

PP e -0.563 0.317 1.203 -0.899

CCout e -0.573 0.329 1.170 -1.137

CCin e -0.571 0.326 1.170 -1.157

Dall e -0.572 0.327 0.993 -2.06

Dout e -0.593 0.351 1.047 -1.518

Din e -0.589 0.347 1.041 -1.448

B e 0.370 0.137 0.474 1.956

A e -0.460 0.211 1.118 -0.966

H e -0.445 0.198 1.103 -0.947

PP cor 0.206 0.042 0.540 0.378

CCout cor 0.185 0.034 0.560 0.347

CCin cor 0.208 0.043 0.537 0.384

Dall cor 0.475 0.226 0.301 0.775

Dout cor 0.406 0.165 0.383 0.677

Din cor 0.452 0.205 0.319 0.735

B cor 0.086 0.007 0.631 0.153

A cor 0.451 0.203 0.397 0.660

H cor 0.424 0.179 0.415 0.624

Legend:

r - Pearson correlation coefficient

R2 - variance explained

b0 - the intercept parameter in regression model

b1 - the slope parameter in regression model

Among differences in network characteristic, ARI correlates the highest with differ-

ences in number of asymmetric dyads (r = −0.642) and null dyads (r = −0.622). In-

dices based on Euclidean distance have higher correlation coefficients with ARI than

corresponding indices of correlation between two vectors of network properties. There
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are the highest correlations between closeness centrality based on outdegree obtained

with Euclidean distance (r = −0.593) and closeness centrality based on indegree with

Euclidean distance (r = −0.589). The smallest correlation coefficient among indices of

Euclidean distance between vectors of network properties and ARI index is obtained

by betweenness centrality (r = 0.370). Similarly, betweenness centrality index based

on correlation among vectors has the smallest correlation coefficient (r = 0.086) among

all indices based on correlations.

The Pearson correlation coefficients among indices of network properties themselves

are presented in Table B.1 in Appendix B. Correlation coefficients between correspond-

ing indices calculated with correlation or Euclidean distance (e.g. between PP e and

PP cor,...) are in range from -0.86 to -0.07. The negative sign is expected, because

higher Euclidean distance indicates bigger difference between two vectors. Low abso-

lute values of correlation coefficients between corresponding indices indicate that Eu-

clidean distance and correlation between vectors reveal different patterns in the data.

Table 8.2 presents results of fitted linear regression models to the data for ARI. As

written in Section 8.1 the linear models are drawn only if the model explains at least

25% of variation in ARI. Figure 8.2 presents scatterplots for indices from the boy-girl

liking ties network data. The linear regression models are fitted to indices of differ-

ences in reciprocity, the number of asymmetric dyads and the number of null dyads.

Although these linear regression models are able to explain between 30% and 40% of

variation in ARI, there is no clear linear relationship. The majority of ARI values is

equal to 1, regardless of the values of explanatory indices. The reason of high stability

of blockmodeling (Section 7.5.2.1) is probably the completely symmetrical blockmodel

structure (Figure 6.1). On the other hand, this high stability prevents the correct pre-

diction of ARI from differences in network characteristics.

Almost all linear regression models with indices based on Euclidean distance as pre-

dictors are able to explain more than 30% of variance, exceptions are betweenness cen-

trality, authority weights and hub weights. The highest percent of variance (35%) in
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Figure 8.2: Impact of differences in network characteristics to values of ARI with data

for the boy-girl liking ties network

ARI can be explained with closeness centrality based on outdegree based on Euclidean

distance (model is drawn in Figure 8.3).

Models based on correlation between two vectors of vertex properties are obviously

not the best models, because the percentages of explained variance are low. All the

’aggregated’ scatterplots presented in Figure 8.4 show the same pattern; different val-

ues of ARI are almost equally distributed accross the range of correlation values25.

These models are able to explain at most 23% of variance in ARI (in case of all-degree

centrality).

The percent of changed ties has the greatest impact on values of ARI among all in-

dices of network characteristics (Table 8.2). Figure 8.5 present different fitted models;

linear, two piecewise linear and quadratic regression models. Linear regression model

25In all cases where vectors of network properties are compared with correlation, only the strength of

correlation is taken into account and not the sign of the correlation.
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Figure 8.3: Impact of differences in network properties based on Euclidean distance to

values of ARI with data for the boy-girl liking ties network

is presented as red straight line. Table 8.3 shows that this model explains just 59.8% of

variance in values of ARI. The data in Figure 7.47(a), where also error bars of one stan-

dard deviation are presented, suggest that piecewise linear regression model should

be more appropriate.

In piecewise regression modeling two questions should be answered (Crawley, 2007):

(i) how many segments to choose to divide the line into, and

(ii) where to position the break points on the x axis (predictor values).

In our example the data suggest two lines. On the left side of Figure 7.47(a) where there
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Figure 8.4: Impact of differences in network properties based on correlations to values

of ARI with data for the boy-girl liking ties network

are standard deviations equal to zero (or very small) should be (almost) horizontal line

and the second line on the right should be steeper (with negative slope coefficient).

The answer to the second question can be simply computed. For each value on x-axes

a two-segment piecewise regression model is estimated. The best piecewise model is

defined as the model with the minimum deviance. The plot of residual standard errors

according to different breaks (or percents of changed ties) is presented on the right part

of Figure C.1 in Appendix C. It suggests that break should be made at 24% of changed

ties, with slightly worse results by breaks between 18 and 23% of changed ties.
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Figure 8.5 presents two piecewise models. The first one has break at 18% of changed

ties because standard deviations are visibly smaller (the blue lines) and the second

one (the green lines) is determined analytically at 24% of changed ties (see above ex-

planation and Figure C.1(a)). The percent of explained variance with two piecewise

models was compared also to quadratic regression model, where the quadratic term

of the p.changed is added to the regression equation. The fit of the quadratic model is

a little bit worse than both piecewise linear regression models, because the percent of

explained variance in quadratic model is approximately for one percent lower.
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Figure 8.5: Impact of percent of changed ties on values of ARI with data for the boy-

girl liking ties network

8.2.1.2 Stability of block types

The stability of blockmodel in terms of correctly identified blocks is measured by ErrB.

The correlation coefficients between differences in network characteristics and ErrB are

all lower than 0.5, which indicates medium linear relationship effect according to Co-

hen (1988). In comparison to Pearson correlation coefficient for ARI (Table 8.2), all
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Table 8.3: Different fitted models for ARI with p.changed ties as a predictor with data

from the boy-girl liking ties network

Name of the model Formula R2

Linear model ŷARI = 1.298 − 0.030 · p.changed 0.598

Piecewise linear models where

break=18 ŷARI =







1.007 − 0.001 · p.changed; p.changed < 18

1.893 − 0.049 · p.changed; p.changed ≥ 18
0.694

break=24 ŷARI =







1.040 − 0.006 · p.changed; p.changed < 24

1.803 − 0.047 · p.changed; p.changed ≥ 24
0.695

Quadratic model ŷARI = 0.974 − 0.015 · p.changed − 0.001 · p.changed2 0.681

corresponding correlations are lower.

The highest correlation coefficient is between the proportion of incorrect blocks and

relative difference in number of asymmetric dyads (D Asymm) which is equal to 0.495.

Between all indices of vertex properties based on Euclidean distance and ErrB, there

is the highest correlation coefficient for closeness centrality based on outdegree (r =

0.443). The correlation coefficient is positive, indicating that the larger Euclidean dis-

tances between whole and measured vector of vertex outdegree lead to lower values

of ErrB index and lower blockmodeling stability in terms of correctly identified block

types. There is the highest negative correlation coefficient between ErrB and indices

calculated based on correlations between two vectors in case of all-degree centrality

(−0.331). All indices based on correlation have negative sign, indicating that larger

values on those indices lead to lower values of ErrB. Correlations between correspond-

ing indices calculated with Euclidean distance and correlation are in range from -0.63

to -0.96 (Table B.2 in Appendix B).

The low or medium linear effect of indices to values of ErrB shown with correlation

is visible also on ’aggregated scatterplots’. Figure 8.6 shows that the majority of ErrB

values are equal to 0 and are distributed across the whole range of possible values of

a predictor (for all indices of differences in network characteristics; Dens, Rec, D Mut,
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Table 8.4: Correlations and results of fitted linear models for ErrB with data for the

boy-girl liking ties network

index r R2 b0 b1

p.changed 0.580 0.337 -0.155 0.015

Dens 0.351 0.123 0.011 0.764

Rec 0.437 0.191 -0.106 0.917

D Mut 0.274 0.075 0.05 0.589

D Asymm 0.495 0.245 -0.131 0.194

D Null 0.467 0.218 -0.095 0.851

PP e 0.416 0.173 -0.103 0.45

CCout e 0.424 0.18 -0.087 0.571

CCin e 0.422 0.178 -0.087 0.581

Dall e 0.41 0.168 0.007 1.001

Dout e 0.443 0.196 -0.027 0.77

Din e 0.44 0.194 -0.024 0.734

B e -0.268 0.072 0.261 -0.963

A e 0.339 0.115 -0.06 0.483

H e 0.324 0.105 -0.05 0.468

PP cor -0.143 0.02 0.225 -0.178

CCout cor -0.12 0.014 0.212 -0.153

CCin cor -0.145 0.021 0.227 -0.182

Dall cor -0.333 0.111 0.339 -0.369

Dout cor -0.283 0.08 0.299 -0.32

Din cor -0.327 0.107 0.336 -0.36

B cor -0.056 0.003 0.18 -0.068

A cor -0.331 0.109 0.3 -0.328

H cor -0.3 0.09 0.287 -0.299

Legend:

r - Pearson correlation coefficient

R2 - variance explained

b0 - the intercept parameter in regression model

b1 - the slope parameter in regression model

D Asymm and D Null).

The linear regression models with indices based on Euclidean distance as predictors

are able to explain from 10% to 20% of variance in ErrB. Despite of medium linear

effect shown in correlation coefficients, there is no clear linear relationship visible in

Figure 8.7.

Linear models based on correlation between two vectors of vertex properties are able
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Figure 8.6: Impact of differences in network characteristics to values of ARI with data

for the boy-girl liking ties network

to explain maximally 11% of variance in ErrB. Therefore just ’aggregated’ scatterplots

without fitted linear models are presented in Figure 8.8. Similarly as in scatterplots

for ARI there are no clear nonlinear functional relationships between indices based on

correlation between two vectors of vertex properties and ErrB values.

The next step was to find out which function best describes the relationship between

percent of changed ties and Err values. Beside the linear regression model which ex-

plains 33.7% of variance in ErrB we also try to fit two-piecewise linear model.

In order to find the best two tailed linear model, the models were fitted to all possible

break points from 1 to 39 percent of changed ties. The best model was determined

based on the small residual error. Figure C.1 in Appendix C suggests that the break

at 25% of changed ties leads to the best piecewise model. It explains 40% of variance

in ErrB and is drawn in blue in Figure 8.9. The scatterplot of data also suggest that

non-linear model could be suitable. Another step was to fit quadratic model and gen-

eralized linear model, because Figure 7.47(b) (in Section 7.5.2.1) shows that the stan-

dard deviation and/or variation increases with higher percent of changed ties. The
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Figure 8.7: Impact of differences in network properties based on Euclidean distance to

values of ErrB with data for the boy-girl liking ties network

quadratic model explains 39% of variance and is therefore similar to piecewise linear

model. The exponential generalized linear model is the best one, because it is able to

explain almost 50% of variance in ErrB.
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Figure 8.8: Impact of differences in network properties based on correlations to values

of ErrB with data for the boy-girl liking ties network

Table 8.5: Different fitted models for ErrB with p.changed ties as a predictor with data

for the boy-girl liking ties network

Name of the model Formula R2

Linear model ŷErrB = −0.155 + 0.015 · p.changed 0.337

Exponential model ŷErrB = e−5.580+0.133·p.changed 0.491

Piecewise linear models where

break=25 ŷErrB =







−0.021 + 0.003 · p.changed; p.changed < 24

−0.438 − 0.025 · p.changed; p.changed ≥ 24
0.400

Quadratic model ŷErrB = 0.025 − 0.010 · p.changed − 0.0006 · p.changed2 0.392
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Figure 8.9: Impact of percent of changed ties on values of ErrB with data for the the

boy-girl liking ties network

8.2.2 The note borrowing network

The second real network used in the study of impact of network characteristics to sta-

bility of blockmodeling was the student note borrowing network (Figure 6.2 in Section

6.2.1.2 ). With blockmodeling procedure based on structural equivalence three clusters

were obtained with non-symmetric structure (image matrix).

8.2.2.1 Stability of partitions

First, we examined the correlations between ARI and indices of network character-

istics (Table 8.6). The highest negative correlation among network characteristics is

between ARI and relative difference in null dyads (r = −0.758) and relative difference

in network density (r = −0.746).
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Table 8.6: Correlations and results of fitted linear models for ARI with data for the note

borrowing network

index R R2 b0 b1

p.changed -0.848 0.718 1.023 -0.029

Dens -0.746 0.556 0.909 -1.325

Rec -0.097 0.009 0.479 -0.392

D Mut -0.514 0.264 0.651 -0.750

D Asymm -0.672 0.451 0.913 -1.055

D Null -0.758 0.575 0.965 -1.957

PP e -0.794 0.630 1.054 -0.610

CCout e -0.786 0.619 0.975 -0.786

CCin e -0.794 0.630 1.055 -0.611

Dall e -0.745 0.555 0.782 -1.137

Dout e -0.735 0.541 0.814 -1.084

Din e -0.785 0.617 0.825 -0.773

B e -0.460 0.211 0.977 -3.752

A e -0.833 0.693 0.926 -1.664

H e -0.734 0.539 0.908 -3.002

PP cor 0.667 0.445 -0.398 1.224

CCout cor 0.539 0.291 0.133 0.805

CCin cor 0.668 0.446 -0.399 1.225

Dall cor 0.736 0.542 -0.374 1.169

Dout cor 0.567 0.322 0.069 0.879

Din cor 0.738 0.545 -0.549 1.31

B cor 0.462 0.213 0.175 0.702

A cor 0.758 0.575 -0.491 1.266

H cor 0.742 0.551 -0.022 0.95

Legend:

r - Pearson correlation coefficient

R2 - variance explained

b0 - the intercept parameter in regression model

b1 - the slope parameter in regression model

If we look at Euclidean distances between network properties, the highest correlations

are in proximity prestige and closeness centrality based on indegree (r = −0.794),

closeness centrality based on outdegree (r = −0.786), and degree centrality based on

indegree (r = −0.785). The smallest correlation is obtained in case of betweenness cen-

trality (r = −0.46r). All correlations between ARI and Euclidean distances have nega-

tive sign, indicating that the higher differences between vectors of network properties

mean lower values of ARI, or more precisely lower blockmodeling stability in terms
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of partitions. On the other hand, correlations between ARI and differences between

network properties based on correlation have positive sign. That means that higher

correlations between vectors of whole and measured network properties, indicate the

higher values of the Adjusted Rand Index. The highest correlations between ARI and

correlations among corresponding vectors are by authority weights (r = 0.753), degree

centrality based on indegree (r = 0.735), and hub weights (r = 0.730). The high-

est correlations among all indices and ARI are obtained with percent of changed ties

(r = −0.848).

The second step was to fit linear regression models. Table 8.6 present proportion of

variance explained (R2, which is in fact the square of correlation coefficient), and both

parameters b0 and b1 in fitted linear function (ARI = b0 + b1 · index). Models in below

figures are fitted just to predictors with correlation higher or equal to 0.5.

Figure 8.10 shows values of ARI plotted against differences in network characteristics.

Linear trend is present in case of differences in network density, number of asymmet-

ric dyads, and number of null dyads. The linear regression model explains 56% of

variance in values of ARI, when the predictor is difference in network density. A little

bit more variance can be explained (58%) if predictor is difference in number of null

dyads. The difference in number of asymmetric dyads explains (45%) of variance in

values of ARI.

Figure 8.11 presents linear models for ARI and Euclidean distances between vectors of

network properties. There is no correlation or linear trend in the case of betweenness

centrality, this is why the linear function is not fitted to the data. The linear regression

model for authority weights explains 69% of variance in values of ARI. More than 60%

of variance is also explained with use of proximity prestige (63%), closeness centrality

based on indegree (63%) and closeness centrality based on outdegree (62%).

Figure 8.12 presents linear regression models for ARI with predictors obtained by cor-

relation between vectors of network properties for whole and measured network. The
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Figure 8.10: Impact of differences in network characteristics to values of ARI with data

for the note borrowing network

linear models are not fitted to the figure where betweenness centrality should be a pre-

dictor, because there is no clear linear trend. The highest percent of explained variance

(58%) we get in case where correlation between authority weights between networks

is used for predictor.

Table 8.7 shows results of fitted generalized linear models with exponential depen-

dency. The most predictive power has percent of changed ties p.changed, which is able

to explain 67.3% variance in values of ARI. Between indices of network characteristics

the highest percent of explained variance in values of ARI is obtained with relative

difference in number of null dyads (53.3%), and relative difference in network density

(53.2%) as a predictor. The ’aggregated’ scatterplot for relative difference in reciprocity

values as a predictor in Figure 8.10 shows no functional relationship, which is also

confirmed with very low percent of explained variance in ARI values with both, lin-

ear (0.9%) and GLM model (0.8%). All GLMs with indices calculated with Euclidean

distance between vectors of network properties (except Be) as predictors are able to

explain between 51.7% and 67.4% of variance in ARI. The GLM models are drawn
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Figure 8.11: Impact of differences in network properties based on Euclidean distance

to values of ARI with data for the note borrowing network

in blue in Figures 8.10, 8.11, and 8.12. Models with indices based on correlation as

predictors explain a little less variance in ARI than corresponding indices based on

Euclidean distance. The most variance in values of ARI (75.8%) can be explained with

use of correlation between vectors of authority scores (A cor) as a predictor.

Although the percent of changed ties is not a network characteristic in the narrower

sense, it turns out that it predicts the values of ARI best. Figure 7.48 from Section

7.5.2.2 is supplemented with regression model which explains 72% of variance in ARI.

The linear model is presented in Figure 8.13 with red line.
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Figure 8.12: Impact of differences in network properties based on correlations to values

of ARI with the note borrowing network

Beside the linear regression model, the quadratic and the exponential models were also

fitted to the data. The exponential model performs worse than the linear model. The

quadratic model (drawn in magenta in Figure 8.13) is a little bit better than the simple

linear one, because it can explain 72.9% of variance in ARI values (Table 8.8).
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Table 8.7: Results of fitted generalized linear models for ARI with data for the note

borrowing network

index a b Dispersion Residual deviance Scaled deviance R2

p.changed 0.37 -0.055 0.094 376.497 4011.563 0.673

Dens 0.212 -2.606 0.131 539.976 4116.673 0.532

Rec -0.492 -0.724 0.261 1142.877 4374.543 0.008

D Mut -0.158 -1.732 0.191 828.687 4327.669 0.281

D Asym 0.21 -1.976 0.163 669.556 4097.426 0.419

D Null 0.278 -3.67 0.132 538.387 4078.645 0.533

PP e 0.372 -1.074 0.125 508.033 4055.633 0.559

CCout e 0.264 -1.435 0.125 504.156 4030.381 0.563

CCin e 0.372 -1.075 0.125 507.496 4054.424 0.560

Dall e 0.072 -2.735 0.114 459.955 4036.938 0.601

Dout e 0.127 -2.505 0.122 492.345 4042.77 0.573

Din e 0.133 -1.804 0.099 397.673 4034.164 0.655

B e 0.23 -5.834 0.233 952.412 4079.693 0.174

A e 0.232 -3.38 0.095 375.637 3957.501 0.674

H e 0.217 -5.927 0.141 556.151 3943.213 0.517

PP cor -2.662 2.857 0.145 603.181 4153.529 0.477

CCout cor -1.129 1.323 0.21 867.388 4134.981 0.247

CCin cor -2.665 2.86 0.145 602.223 4153.074 0.478

Dall cor -2.703 2.812 0.121 475.941 3924.844 0.587

Dout cor -1.286 1.537 0.202 823.563 4086.217 0.285

Din cor -3.376 3.452 0.11 432.548 3931.494 0.625

B cor -1.041 1.146 0.226 943.753 4181.282 0.181

A cor -3.147 3.228 0.107 408.557 3832.663 0.646

H cor -1.533 1.722 0.148 578.478 3902.915 0.498

Degrees of freedom: 3949 for the null model and 3948 for the residual model

Null deviance of all models: 1152.917

All models are significant, p-value is 0.000

Legend:

R2 - deviance explained

a, b - parameters in exponential glm ŷARI = ea+b·index

Table 8.8: Different fitted models for ARI with p.changed ties as a predictor with data

for the note borrowing network

Name of the model Formula R2

Linear model ŷARI = 1.022 − 0.029 · p.changed 0.718

Exponential model ŷARI = e0.369−0.055·p.changed 0.673

Quadratic model ŷARI = 1.235 − 0.043 · p.changed − 0.0003 · p.changed2 0.729
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Figure 8.13: Impact of percent of changed ties on values of ARI with the note borrow-

ing network

8.2.2.2 Stability of block types

Another index for estimation of stability of blockmodeling is proportion of incorrectly

identified block types (ErrB). Table 8.9 presents the correlations between differences in

network characteristics and properties, and values of ErrB.

The highest correlation is similar as in case for ARI; the Pearson correlation coefficient

between ErrB and percent of changed ties is r = 0.702. Among indices calculated

with Euclidean distance we get the highest correlation for closeness centrality based

on indegree (r = 0.681). Among all indices based on correlations between network

properties the highest correlation is obtained with authority weights (r = −0.629).

Similarly as for ARI values there is no correlation between ErrB and relative differ-

ences in network reciprocity.

Figure 8.14 shows values for percent of incorrectly identified block types (ErrB) plot-

ted against differences in network characteristics. Linear trend (correlation coefficient

above 0.5) is present in case of differences in network density and number of null
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Table 8.9: Correlations and results of fitted linear models for ErrB with data for the

note borrowing network

index R R2 b0 b1

p.changed 0.702 0.492 -0.06 0.009

Dens 0.643 0.413 -0.032 0.414

Rec 0.044 0.002 0.110 0.064

D Mut 0.471 0.221 0.045 0.249

D Asym 0.551 0.304 -0.026 0.314

D Null 0.642 0.413 -0.047 0.601

PP e 0.658 0.432 -0.070 0.183

CCout e 0.663 0.440 -0.049 0.240

CCin e 0.658 0.433 -0.070 0.184

Dall e 0.665 0.443 0.004 0.369

Dout e 0.661 0.437 -0.007 0.354

Din e 0.681 0.464 -0.006 0.243

B e 0.338 0.114 -0.028 1.001

A e 0.677 0.458 -0.028 0.490

H e 0.569 0.324 -0.016 0.845

PP cor -0.566 0.320 0.372 -0.376

CCout cor -0.387 0.150 0.195 -0.210

CCin cor -0.566 0.320 0.373 -0.377

Dall cor -0.607 0.368 0.358 -0.350

Dout cor -0.418 0.175 0.215 -0.235

Din cor -0.621 0.385 0.416 -0.399

B cor -0.334 0.112 0.185 -0.184

A cor -0.629 0.396 0.395 -0.381

H cor -0.564 0.318 0.243 -0.262

Legend:

r - Pearson correlation coefficient

R2 - variance explained

b0 - the intercept parameter in regression model

b1 - the slope parameter in regression model

dyads. The linear regression model explains 41% of variance in values of ErrB, when

the predictor is difference in network density or number of null dyads.

Figure 8.15 presents linear models for ErrB and indices obtained by Euclidean dis-

tance from vectors of network properties. Similarly as for ARI values, there is no linear

trend in the case of betweenness centrality. The fitted model is also not drawn for hubs

weight because of correlation coefficient below 0.5. The linear regression models for
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Figure 8.14: Impact of differences in network characteristics to values of ErrB with the

note borrowing network

closeness centrality based on indegree and authority weights explain 46% of variance

in values of ErrB. Both indices based on outdegree, closeness centrality and degree

centrality are able to explain 44% of variance.

In Figure 8.16 linear regression models for ErrB with predictors obtained by correlation

between vectors of network properties for whole and measured network are presented.

The linear models are fitted for six indices with correlation coefficient higher than 0.5.

Among them, the highest percent of variance (40%) can be explained with use of au-

thority weights between networks. In general, the linear models for ErrB explain less

variance than models for ARI.

The generalized linear models for values of ErrB are presented in Table 8.10. Similarly

as in linear models, the most variance can be explained with use of percent of changed

ties (p.changed) as a predictor (48.5%). Similar pattern as for values of ARI among in-

dices of differences in network characteristics can be observed. The most variance can
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Figure 8.15: Impact of differences in network properties based on Euclidean distance

to values of ErrB with note borrowing network

be explained with the use of relative difference in number of null dyads as a predictor

(39.4%). Percent of explained variance in values of ErrB when indices based on Eu-

clidean distance are used as a predictor is in range from 11.9% for B e to 44.8% for PP e

and CCin e. Among indices calculated with correlation between vectors of network

properties the most variance can be explained with use of A cor. The generalized lin-

ear models are presented in above figures (with blue) for those models, where at least

25% of variance in values of ErrB is explained.

Similarly as for the Adjusted Rand Index, the highest percent of explained variance

(49%) is obtained with percent of changed ties as a predictor. Figure 8.17 shows data
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Figure 8.16: Impact of differences in network properties based oncorrelations to values

of ARI with note borrowing network

from note borrowing network plotted against percents of changed ties.

The ’aggregated’ scatterplot in Figure 8.17 indicates that instead of linear model, other

models with functional dependency will be more suitable. The exponential model is

able to explain 48.5% of variance in values of ErrB, and the quadratic model is able to

explain 50.0% of variance in values of ErrB. Because the majority of ErrB values be-

tween 1 and 15 percent of changed ties is 0, the two-piecewise model (drawn in green

in Figure 8.17) was also fitted to the data. It is able to explain 50.8% of variance in

values of ErrB (Table 8.11).
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Table 8.10: Results of fitted generalized linear models for ErrB with data for the note

borrowing network

index a b Dispersion Residual deviance Scaled deviance R2

p.changed -4.351 0.086 0.090 367.526 4062.532 0.485

Dens -3.724 3.565 0.108 446.329 4130.240 0.375

Rec -2.204 0.529 0.165 712.935 4312.481 0.001

D Mut -2.738 1.658 0.145 592.493 4085.404 0.170

D Asym -3.599 2.716 0.127 514.963 4044.137 0.279

D Null -3.996 5.587 0.106 433.005 4095.596 0.394

PP e -4.547 1.950 0.097 394.307 4072.665 0.448

CCout e -4.216 2.428 0.097 399.481 4113.363 0.440

CCin e -4.547 1.95 0.097 394.253 4072.548 0.448

Dall e -3.182 2.587 0.111 463.84 4195.574 0.350

Dout e -3.269 2.508 0.111 464.615 4181.825 0.349

Din e -3.332 1.800 0.106 442.522 4180.561 0.380

B e -3.738 10.272 0.145 629.227 4324.873 0.119

A e -3.755 4.288 0.100 415.222 4154.760 0.418

H e -3.439 6.835 0.127 510.608 4025.775 0.285

PP cor -0.562 -2.581 0.133 535.367 4033.008 0.250

CCout cor -1.475 -2.166 0.149 603.799 4054.447 0.154

CCin cor -0.561 -2.581 0.133 535.225 4032.904 0.250

Dall cor -0.633 -2.489 0.125 503.977 4019.441 0.294

Dout cor -1.366 -2.224 0.146 592.596 4050.055 0.170

Din cor -0.366 -2.629 0.123 505.552 4122.230 0.292

B cor -1.561 -1.862 0.156 632.857 4067.795 0.114

A cor -0.455 -2.601 0.120 494.476 4119.499 0.307

H cor -1.165 -2.643 0.123 486.664 3945.478 0.318

Degrees of freedom: 3949 for the null model and 3948 for the residual model

Null deviance of all models: 1152.917

All models are significant, p-value is 0.000

Legend:

R2 - deviance explained

a, b - parameters in exponential glm ŷErrB = ea+b·index
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Figure 8.17: Impact of differences in network properties based on correlations to values

of ErrB with data for the note borrowing network

Table 8.11: Different fitted models for ErrB with p.changed ties as a predictor for data

from the note borrowing network

Name of the model Formula R2

Linear model ŷErrB = −0.060 + 0.009 · p.changed 0.492

Exponential model ŷErrB = e−4.351+0.086·p.changed 0.485

Piecewise linear models where

break=17 ŷErrB =







−0.011 + 0.003 · p.changed; p.changed < 17

−0.092 + 0.010 · p.changed; p.changed ≥ 17
0.508

Quadratic model ŷErrB = −0.029 − 0.004 · p.changed − 0.0001 · p.changed2 0.500
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8.3 The impact of differences in network characteristic

on the stability of blockmodeling in case of simu-

lated networks

In this section the impact of differences in network characteristics and properties is in-

vestigated with data from three simulated blockmodel structures: completely symmet-

ric blockmodel structure (Section 8.3.1) and two non-symmetric blockmodel structures

(Sections 8.3.2 and 8.3.3).

8.3.1 The completely symmetric blockmodel structure

The blockmodel structure for the completely symmetric blockmodel structure is the

same as for the boy-girl liking ties network. The construction of starting whole net-

works is described in Section 6.2.3.1.

8.3.1.1 Stability of partitions and block types

The stability of blockmodeling it terms of partitions and therefore in terms of ARI val-

ues is high for quite a large percent of changed ties p.changed as presented in Figure

7.49 in Section 7.5.3.1. If the percent of changed ties is lower than 20%, the mean value

of Adjusted Rand Index is above 0.8, which indicates good agreement between parti-

tions. The patterns in data on differences in network characteristics and their impact

on indices of network stability observed with the boy-girl liking ties network (Section

8.2.1) are far more explicit with the simulated completely symmetric blockmodel struc-

ture.

Pearson correlation coefficient between percent of changed ties (p.changed) and ARI

is -0.71 (Table B.3 in Appendix B). The linear model with p.changed ties as a predictor

is therefore able to explain 50.4% of variation in ARI. This indicates that the model

is good, but the ’aggregated’ scatterplot can not confirm this conclusion (left part of

Figure 8.18). The majority of ARI values is 1 for percent of changed ties in range from

1 to 30, and when percent of changed ties is higher than 30% there is absolutely no
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agreement between whole starting and measured partition (ARI = 0). The variation

in values of ARI increases with higher percent of changed ties as shown with boxplots

on the right part of Figure 8.18 (the mean values of ARI are plotted with blue dots).

This indicates that generalized linear model could be more appropriate. It explains

41.5% of variation in ARI, but visually it does not fit the data well.

Figure 8.18: ’Aggregated’ scatterplots with predictor p.changed to values of ARI with

the completely symmetric blockmodel structure (left), and boxplots with mean values

of ARI (right)

Other indices of changes in network characteristic and network properties reveal even

less functional dependency with values of ARI. Figure 8.19 presents two ’aggregated’

scatterplots with Euclidean distance (D e) and correlation between two vectors of net-

work indegree from the whole and measured networks as predictors. The linear re-

gression model with Din e as a predictor is able to explain 27.2% of variation in ARI

(red line on the left part of Figure 8.19). The exponential model is drawn in blue dashed

curve, because it explains only 24.6%, and usually the models are drawn if they explain

more than 25% of variation. Other indices of differences in network characteristics (ex-

cept Dout e) perform even worse. The absolute values of correlation coefficients be-

tween ARI and other indices are in range from 0.05 and 0.335 (Table B.3 in Appendix

B). As presented on the right part of Figure 8.19 for all range of values of index Din cor

from 0 to 1, the Adjusted Rand Index can take the value 1, which indicates excellent

agreement between two partitions, or value -0.1 which indicates that partitions from

the whole and measured networks are obtained at random. There is clearly no pattern

in data which could have predictive power. Similar results (not presented here) are
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obtained with other indices of differences in network characteristics and properties.

Figure 8.19: ’Aggregated’ scatterplots of predictors Din e and Din cor to values of ARI

with data for the completely symmetric blockmodel structure

The above results show that in the completely symmetric blockmodel structure indices

of differences in network characteristics have practically no predictive power to values

of ARI and similarly to percent of incorrect block types (ErrB). The explanation for

these results is visible from the figure below. Figure 8.20 shows that both predictors,

calculated with Euclidean distance and with correlation, are sensitive to percent of

changed ties in a measured network. Those changes reflect in values of Din e and/or

Din cor and their increasing variation practically from one or two changed ties on-

wards.

On the other hand, the blockmodel is stable for almost 20% of changed ties, which is

shown on boxplots where 75% of ARI values are equal to 1 (Figure 8.19) or in Figure

7.49 where mean values are above 0.8. According to the above findings, we can con-

clude that index which is sensitive to changes in percent of changed ties (e.g. Din cor)

can not successfully predict another index which is extremely insensitive (ARI), at any

rate not only with simple models. Results of low prediction power are even more ex-

treme with second index of blockmodeling stability, the percent of incorrect block types

(ErrB) and therefore they are not presented here.
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Figure 8.20: Boxplots for Din e and Din cor according to percent of changed ties

(p.changed) with data for the completely symmetric blockmodel structure

8.3.2 The first non-symmetric blockmodel structure

The structure of a network which was used in simulation study is presented in Equa-

tion (6.3) in Section 6.2.3.2. The real whole starting networks have 15 actors and the

real blockmodel structure based on structural equivalence has three-cluster partition

with complete blocks on diagonal and one off-diagonal complete block.

First, the predictive power of differences in network characteristics and properties to

the Adjusted Rand Index is examined in Section 8.3.2.1. The impact of differences in

network characteristic on the stability of blockmodeling in terms of correctly identified

block types is presented in Section 8.3.2.2.

8.3.2.1 Stability of partitions

The correlations between ARI and indices of network characteristics reveal (Table 8.12)

that the highest linear relationship is between relative differences in number of mutual

dyads DMut and values of ARI (r = −0.411). All correlations between indices of net-

work characteristics and ARI are in range −0.288 (D Asym) and −0.411, which indi-

cates medium linear effect according to Cohen (1988). Among all indices of network

properties calculated with Euclidean distances, there is the highest correlation between
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all three indices of degree centrality and ARI (e.g. correlation between degree central-

ity based on indegree (Din e) and ARI is r = −0.701). There is no linear effect between

values of ARI and betweenness centrality based on Euclidean distance (r = 0.085).

The correlations between indices of network properties calculated with correlations

between two vectors show higher linear relationship with ARI than corresponding in-

dices calculated with Euclidean distance. The highest positive correlation is between

relative differences in hub weights and ARI (r = 0.764) and relative differences in

closeness centrality based on all-degree and ARI (r = 0.763). The medium linear effect

is also between differences in betweenness centrality B cor and ARI (r = 0.319).

The linear regression models with the Adjusted Rand Index as dependent variables

were fitted to data where correlations are higher than 0.5. Figure 8.21 presents ’ag-

gregated’ scatterplots where values of ARI are plotted against difference in network

characteristics. There is no large linear effect (Table 8.12), therefore no linear model is

fitted to the data.
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Figure 8.21: Impact of differences in network characteristics to values of ARI with data

for the first non-symmetric blockmodel structure

Figure 8.22 shows the ARI values plotted against the indices calculated with Euclidean

276



Table 8.12: Correlations and results of fitted linear models for ARI with data for the

first non-symmetric blockmodel structure

index r R2 b0 b1

p.changed -0.832 0.692 1.2 -0.03

Dens -0.374 0.14 0.731 -1.671

Rec -0.3 0.09 0.74 -1.317

D Mut -0.343 0.118 0.732 -0.902

D Asym -0.288 0.083 0.727 -0.752

D Null -0.411 0.169 0.803 -1.389

PP e -0.229 0.053 0.668 -0.218

CCout e -0.251 0.063 0.677 -0.281

CCin e -0.274 0.075 0.69 -0.314

Dall e -0.693 0.48 0.936 -1.939

Dout e -0.694 0.482 0.949 -1.082

Din e -0.701 0.491 0.935 -0.998

B e 0.085 0.007 0.545 0.876

A e -0.638 0.407 0.853 -2.608

H e -0.697 0.486 0.927 -3.749

PP cor 0.693 0.48 -0.28 1.257

CCout cor 0.653 0.427 -0.132 1.075

CCin cor 0.694 0.481 -0.282 1.258

Dall cor 0.763 0.582 -0.427 1.375

Dout cor 0.706 0.498 -0.229 1.158

Din cor 0.738 0.545 -0.38 1.315

B cor 0.319 0.102 0.386 0.482

A cor 0.759 0.576 -0.392 1.319

H cor 0.764 0.584 -0.321 1.254

Legend:

r - Pearson correlation coefficient

R2 - variance explained

b0 - the intercept parameter in regression model

b1 - the slope parameter in regression model

distances between network properties. Linear models (red lines) are fitted for all three

indices of degree centrality and correlations between vectors of hub and authority

weights. The highest percent of explained variance (49.1%) in values of ARI is ob-

tained with closeness centrality based on indegree (Din e) as predictor. All linear mod-

els (except for betweenness centrality) show positive relationship between predictor

and values of ARI. ’Aggregated’ scatterplots also show that if values of predictor are 1

(perfect correlation between two vectors of network properties between real and mea-
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sured network), there is almost perfect agreement between partitions (the majority of

ARI is above 0.8).
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Figure 8.22: Impact of differences in network properties based on Euclidean distance

to values of ARI with first non-symmetric blockmodel structure

The regression linear models are plotted for all indices of network properties calcu-

lated as correlations between two vectors except for betweenness centrality (Figure

8.22). The highest percent of variance in ARI is explained with use of hub weights

(58.4%) and with use of closeness centrality based on all-degree (58.2%).

Different regression models were also fitted to the percent of changed ties as a predic-

tor p.changed. Table 8.12 shows that linear regression model (red line in Figure 8.24)

can explain 69.2% of variance in ARI.
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Figure 8.23: Impact of differences in network properties based on correlations to values

of ARI with the first non-symmetric blockmodel structure

For small percent of changed ties the majority of ARI values is 1, which suggests that

two-piecewise regression model will probably be able to explain more variance in ARI.

Figure C.3(a) in Appendix C suggests that break at 14% of changed ties will lead to the

best piecewise model. The model is presented in blue in Figure 8.24 and it is able to

explain 71.4% of variance in ARI (Table 8.13).

Beside the linear regression models, also the quadratic model is fitted to the data. Be-

cause the piecewise model is better than the regular linear model, this indicates that

other functional dependencies could be more suitable. The quadratic model is similar,

but a little bit worser than piecewise model with break at 14% changed ties and can
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Table 8.13: Different fitted models for ARI with p.changed ties as a predictor for data

from the first non-symmetric blockmodel structure

Name of the model Formula R2

Linear model ŷARI = 1.200 − 0.030 · p.changed 0.692

Exponential model ŷARI = e0.453−0.043·p.changed 0.588

Piecewise linear models where

break=14 ŷARI =







1.009 − 0.007 · p.changed; p.changed < 14

1.348 − 0.035 · p.changed; p.changed ≥ 14
0.714

Quadratic model ŷARI = 1.074 − 0.015 · p.changed − 0.0004 · p.changed2 0.706

explain 70.6% of variance in ARI. It is drawn in magenta in Figure 8.24 where it can

be seen that it fails to correctly predict values of ARI for small percentages of changed

ties.

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Percent of changed ties

A
dj

us
te

d 
R

an
d 

In
de

x

linear model
exponential model
piecewise linear model, break=14
quadratic model

Figure 8.24: Impact of percent of changed ties on values of ARI with the first non-

symmetric blockmodel structure

The last step of searching for the best fitting model for ARI was investigation of gener-

alized linear models. Figures of ARI values plotted against percent of changed ties in

Section 7.5.3.2 suggested that variance is proportional to the mean values of Adjusted
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Rand Index. When values of ARI decrease, the variance increases, which is a sign that

GLM could be appropriate selection. Table 8.14 presents results of fitted GLM with

exponential dependency to 24 predictor variables.

Table 8.14: Results of fitted generalized linear models for ARI with data for the first

non-symmetric blockmodel structure

index a b Dispersion Residual deviance Scaled deviance R2
D,d f

p.changed 0.453 -0.043 0.109 36404.076 334231.435 0.588

Dens -0.095 -2.916 0.205 76543.524 373813.952 0.135

Rec -0.102 -2.002 0.217 81426.956 374933.113 0.079

D Mut -0.093 -1.55 0.21 78482.373 374018.496 0.113

D Asym -0.122 -1.138 0.219 82011.193 374934.122 0.073

D Null -0.016 -2.142 0.203 75136.449 370327.275 0.15

PP e -0.205 -0.332 0.224 84336.807 377227.609 0.046

CCout e -0.189 -0.438 0.222 83460.588 375631.708 0.056

CCin e -0.171 -0.489 0.219 82512.873 376082.52 0.067

Dall e 0.208 -3.533 0.137 46512.955 339309.011 0.474

Dout e 0.214 -1.907 0.139 47298.684 341494.117 0.465

Din e 0.222 -1.878 0.13 44615.052 342240.458 0.496

B e -0.374 1.135 0.232 87936.431 379676.093 0.006

A e 0.121 -5.332 0.146 50226.405 344039.041 0.432

H e 0.189 -6.792 0.137 46181.987 337058.585 0.478

PP cor -1.923 2.176 0.142 47907.74 336633.482 0.458

CCout cor -1.618 1.811 0.164 53079.125 322883.921 0.4

CCin cor -1.927 2.18 0.142 47799.345 336531.639 0.46

Dall cor -2.361 2.584 0.112 36872.618 328435.652 0.583

Dout cor -1.865 2.041 0.145 46000.849 316351.617 0.48

Din cor -2.24 2.439 0.123 40538.621 328724.248 0.542

B cor -0.605 0.649 0.222 81132.931 365894.06 0.083

A cor -2.309 2.497 0.115 37248.531 324659.695 0.579

H cor -2.145 2.335 0.115 37076.115 322052.062 0.581

Degrees of freedom: 315999 for the null model and 315998 for the residual model

Null deviance of all models: 88441.61

All models are significant, p-value is 0.000

Legend:

R2 - deviance explained

a, b - parameters in exponential glm ŷARI = ea+b·index

Comparison of scaled deviance to residual degrees of freedom reveals the fit of the

model. In order to compare generalized linear models to linear ones, the pseudo

R2
D,d f was used (Mittlbock, 2004). For example, the scale deviance for the model with

p.changed as a predictor is 334231 which is close to residual degrees of freedom d fR =
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315998. The pseudo R2
D,d f shows that this model explains 58.8% of variance in ARI

which is in fact a little bit worse than if linear model is fitted to the data (R2 = 69.2% in

Table 8.12). Percentages of explained variance are very similar in linear models and in

GLMs. The GLMs perform slightly better when Din e, Dall cor, and A cor are predic-

tors in the models. When models explain more than 25% of variance (R2
D,d f is higher

than 0.25), the exponential models are drawn (in blue) beside the linear ones in Figures

8.21, 8.22, and 8.23.

8.3.2.2 Stability of block types

In this section we tried to find out if differences in network characteristics and prop-

erties are able to predict stability of blockmodel structure or values of ErrB in case of

the first non-symmetric blockmodel structure. Table 8.15 shows correlations between

predictors and values of ErrB together with percent of explained variance in fitted lin-

ear regression model. Quick overview reveals that predictors have smaller power to

predict values of ErrB compared to corresponding linear model for ARI.

All indices of differences in network characteristics have small linear effect to stabil-

ity of block types (ErrB) with correlation coefficients in range between 0.24 and 0.33.

Among them, the highest percent of explained variance in ErrB (11%) is obtained with

use of differences in number of null dyads (D Null). Among indices of network prop-

erties calculated with Euclidean distance the strong linear relationship with ErrB is

shown by all three indices of degree centrality (Dall e, Dout e, and Din e), and differ-

ences in authority and hub weights (A e, H e). The review of correlation coefficients

between indices of network properties obtained by correlations reveals that all indices,

except CCout cor and B cor, have strong linear relationships with values of ErrB. Cor-

relation coefficients among all indices are presented in Table B.4 in Appendix B.

As written above, the differences in network characteristics shows no clear linear re-

lationship to values of ErrB. Therefore only ’aggregated’ scatterplots without fitted

linear models are presented in Figure 8.25.
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Table 8.15: Correlations and results of fitted linear models for ErrB with data for the

first non-symmetric blockmodel structure

index r R2 b0 b1

p.changed 0.678 0.460 -0.085 0.011

Dens 0.254 0.064 0.095 0.509

Rec 0.240 0.058 0.084 0.474

D Mut 0.248 0.061 0.092 0.292

D Asym 0.246 0.061 0.085 0.289

D Null 0.328 0.107 0.061 0.497

PP e 0.151 0.023 0.115 0.064

CCout e 0.195 0.038 0.107 0.098

CCin e 0.180 0.032 0.109 0.092

Dall e 0.557 0.310 0.013 0.700

Dout e 0.591 0.350 0.000 0.414

Din e 0.530 0.281 0.020 0.339

B e -0.092 0.008 0.158 -0.427

A e 0.450 0.202 0.055 0.825

H e 0.554 0.307 0.017 1.338

PP cor -0.584 0.341 0.467 -0.475

CCout cor -0.487 0.238 0.380 -0.360

CCin cor -0.584 0.342 0.467 -0.476

Dall cor -0.639 0.408 0.520 -0.517

Dout cor -0.535 0.287 0.417 -0.394

Din cor -0.632 0.399 0.510 -0.506

B cor -0.263 0.069 0.213 -0.179

A cor -0.656 0.431 0.519 -0.512

H cor -0.599 0.359 0.458 -0.441

Legend:

r - Pearson correlation coefficient

R2 - variance explained

b0 - the intercept parameter in regression model

b1 - the slope parameter in regression model

Figure 8.26 shows ’aggregated’ scatterplots for indices of network properties calcu-

lated with Euclidean distance. The linear models are fitted to those data, where mod-

els are able to explain at least 25% of variance in ErrB values and are represented as

red lines on scatterplots. The most variance (35.0%) in values of ErrB can be explained

by Dout e, the Euclidean distance between two vectors of oudegree from whole and

measured network.
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Figure 8.25: Impact of differences in network characteristics to values of ErrB with data

for the first non-symmetric blockmodel structure

Figure 8.27 presents ’aggregated’ scatterplots with linear models where predictors are

differences in network properties calculated as correlation between two corresponding

vectors. Scatterplot for differences in betweenness centrality (B cor) reveals no clear

predictive pattern. For all range of possible values [0, 1] for B cor there are networks

with perfect stability of block types (ErrB = 0). The strongest linear relationship is

obtained with use of A cor as a predictor, where model explains 43.1% of variance in

values of ErrB.

The strongest linear effect is shown when the percent of change ties (p.changed) is used

as a predictor. The linear model presented in Figure 8.28 explains 46% of variance in

ErrB (Table 8.16). The ’aggregated’ scatterplot suggests that instead of linear model,

piecewise model will be more appropriate. For 25% of changed ties, the majority of

blocks were correctly identified (ErrB=0), and for larger percents of changed ties, the

ErrB values start to increase.
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Figure 8.26: Impact of differences in network properties based on Euclidean distance

to values of ErrB with the first non-symmetric blockmodel structure

Figure C.3 in Appendix C shows that break at 17% of changed ties would be the most

appropriate for two-piecewise linear model. The model is drawn in green in Figure

8.28 and explains 48.8% of variance, which is for 2.8% higher than in case of linear

model. Quadratic model is practically the same as piecewise one according to Figure

8.28 and also according to percent of explained variance 48.2% in values of ErrB.

The fitted generalized linear models for ErrB are presented In Table 8.17. The pseudo
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Figure 8.27: Impact of differences in network properties based on correlations to values

of ErrB with first non-symmetric blockmodel structure

R2 shows that GLM for percent of changed ties (p.changed) explains 48.7% of variance,

which is for 2.7% more than linear model. Exponential model with p.changed ties as

a predictor is presented with blue curve in Figure 8.28. For other indices of network

characteristics, the linear model performs better than generalized one with exponential

dependency.
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Figure 8.28: Impact of percent of changed ties on values of ErrB with the first non-

symmetric blockmodel structure

Table 8.16: Different fitted models for mErrB with p.changed ties as a predictor for data

from the first non-symmetric blockmodel structure

Name of the model Formula R2

Linear model ŷErrB = −0.085 + 0.011 · p.changed 0.460

Exponential model ŷErrB = e−4.414+0.094·p.changed 0.487

Piecewise linear models where

break=17 ŷErrB =







−0.010 + 0.003 · p.changed; p.changed < 17

−0.201 + 0.015 · p.changed; p.changed ≥ 17
0.488

Quadratic model ŷErrB = −0.015 + 0.001 · p.changed + 0.0002 · p.changed2 0.482

8.3.3 The second non-symmetric blockmodel structure

The second non-symmetric structure is presented in Equation (6.4) in Section 6.2.3.3.

The study in this section is an extension of the study for the note borrowing network in

Section 8.2.2, because the starting blockmodel structure in simulation of whole starting

networks is the same as for the note borrowing network.
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Table 8.17: Results of fitted generalized linear models for mErrB with data for the first

non-symmetric blockmodel structure

index a b Dispersion Residual deviance Scaled deviance R2

p.changed -4.414 0.094 0.145 40081.459 276447.608 0.487

Dens -2.25 2.796 0.237 74001.396 311595.6 0.052

Rec -2.354 2.928 0.236 74104.448 313351.818 0.051

D Mut -2.252 1.544 0.235 74285.879 315516.602 0.049

D Asym -2.351 1.797 0.235 73896.339 313873.27 0.054

D Null -2.526 3.066 0.235 70710.996 300744.869 0.094

PP e -2.14 0.411 0.24 76475.546 318111.021 0.021

CCout e -2.191 0.598 0.238 75490.68 317406.064 0.033

CCin e -2.182 0.575 0.24 75854.898 315647.834 0.028

Dall e -2.794 3.62 0.193 59287.896 307517.669 0.241

Dout e -2.944 2.271 0.183 56100.428 306437.263 0.282

Din e -2.726 1.726 0.2 61220.446 306700.99 0.216

B e -1.824 -3.622 0.237 77356.758 326894.383 0.009

A e -2.486 4.042 0.217 66302.807 306151.569 0.151

H e -2.803 7.179 0.195 59026.866 302656.215 0.244

PP cor -0.316 -2.719 0.187 56088.661 300373.981 0.282

CCout cor -0.682 -2.173 0.205 62151.163 302639.471 0.204

CCin cor -0.315 -2.719 0.187 56057.206 300406.261 0.282

Dall cor -0.141 -2.82 0.173 52697.81 304469.518 0.325

Dout cor -0.534 -2.31 0.197 59284.885 301540.146 0.241

Din cor -0.18 -2.768 0.175 53156.396 303855.258 0.319

B cor -1.461 -1.401 0.227 72504.049 319598.486 0.071

A cor -0.162 -2.792 0.168 51336.29 305240.792 0.343

H cor -0.39 -2.503 0.185 55138.422 298822.702 0.294

Degrees of freedom: 315999 for the null model and 315998 for the residual model

Null deviance of all models: 878080.34

All models are significant, p-value is 0.000

Legend:

R2 - deviance explained

a, b - parameters in exponential glm ŷErrB = ea+b·index

8.3.3.1 Stability of partitions

The linear regression models for the second non-symmetric blockmodel structure are

very similar to those for the first non-symmetric blockmodel structure in Section 8.3.2.

The most variance (70.2%) in values of ARI is explained when pecent of changed ties

(p.changed) ties is used as a predictor in simple linear regression model (Table 8.18).

Among indices of differences in network characteristics, the most variation (30.9%) in
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values of the Adjusted Rand Index can be explained with use of relative differences in

number of null dyads (D Null). Other indices of differences in network characteristics

explain less than 17.0% of variance in ARI, therefore the linear models are not drawn

on the ’aggregated’ scatterplots in Figure 8.29.

Table 8.18: Correlations and results of fitted linear models for ARI with data for the

second non-symmetric blockmodel structure

index r R2 b0 b1

p.changed -0.838 0.702 1.152 -0.03

Dens -0.413 0.170 0.717 -0.793

Rec -0.250 0.063 0.642 -0.720

D Mut -0.372 0.138 0.668 -0.379

D Asym -0.282 0.079 0.665 -0.616

D Null -0.556 0.309 0.874 -1.609

PP e -0.241 0.058 0.628 -0.103

CCout e -0.312 0.097 0.649 -0.253

CCin e -0.25 0.062 0.633 -0.113

Dall e -0.644 0.415 0.829 -1.144

Dout e -0.646 0.417 0.872 -1.129

Din e -0.730 0.533 0.897 -0.665

B e 0.074 0.005 0.505 0.625

A e -0.695 0.483 0.865 -1.614

H e -0.641 0.410 0.868 -3.176

PP cor 0.692 0.478 -0.518 1.450

CCout cor 0.485 0.236 0.196 0.738

CCin cor 0.694 0.482 -0.522 1.455

Dall cor 0.769 0.591 -0.456 1.36

Dout cor 0.595 0.354 0.076 0.894

Din cor 0.781 0.610 -0.768 1.634

B cor 0.400 0.160 0.246 0.607

A cor 0.789 0.622 -0.726 1.589

H cor 0.76 0.577 -0.102 1.067

Legend:

r - Pearson correlation coefficient

R2 - variance explained

b0 - the intercept parameter in regression model

b1 - the slope parameter in regression model

Among predictors in linear models calculated with Euclidean distance, the most vari-

ance in values of ARI can be explained with use of Euclidean distance between vectors

of indegree Din e (53.3%) and with use of Euclidean distance between vectors of au-

thority weights Ae (48.3). There is practically no linear relationship (R2 is in all cases
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Figure 8.29: Impact of differences in network characteristics to values of ARI with data

for the second non-symmetric blockmodel structure

lower or equal to 0.097) when PP e, CCout e, CCin e, and B e are used as predictors,

therefore linear models are not added to ’aggregated’ scatterplots in Figure 8.30.

Figure 8.31 presents ’aggregated’ scatterplots for indices calculated with correlation.

The most variance in values of ARI regression(62.2%) is explained when A cor is used

as a predictor. The linear models are also reasonable when PP cor and CCin cor are

used as predictors, which was not true for the corresponding indices calculated with

Euclidean distance.

The next step was to fit the generalized linear models with exponential dependency

to the data from the second non-symmetric blockmodel structure. Among indices of

relative differences in network characteristics the most variation in the Adjusted Rand

Index can be explained with use of relative difference in number of null dyads D Null

(Table 8.19). Compared to the corresponding linear model, the exponential model per-

forms a little bit worse, because it explains for 2.8% less variance in values of ARI.
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Figure 8.30: Impact of differences in network properties based on Euclidean distance

to values of ARI with data for the second non-symmetric blockmodel structure

On the other hand, exponential models with Dall e and Dout e as predictor perform

better than corresponding linear models. The best exponential model among indices

calculated with correlation is A cor, which is able to predict 70.0% of variation in ARI.

This model is far better than corresponding linear model, because it is able to explain

7.8% more variation in values of ARI. The GLMs, which can explain at least 25% of

variance in ARI, are on above figures drawn with blue curve.

Figure 8.32 presents different models fitted to data from the second non-symmetric

blockmodel structure, where percent of changed ties p.changed is a predictor. The lin-

ear model (drawn in red) explains 70.3% of variation in ARI. The exponential model,
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Figure 8.31: Impact of differences in network properties based on correlations to values

of ARI with the second non-symmetric blockmodel structure

drawn with blue curve, performs worse, because it is able to explain just 61.8% of

variation in values of ARI. The ’aggregated’ scatterplot indicates that two-piecewise

model should be more suitable, because for small percent of changed ties (less than

10 or 15 percent) the majority of ARI values is equal to 1. Figure C.4 in Appendix C

indicates that break at 23 percent of changed leads to the lower residual standard error

and therefore the highest percent of explained variance. The two piecewise model is

drawn in green and it explains 71.4% of variation in ARI. The quadratic model, drawn

in magenta, explains 70.6% of variance in ARI (Table 8.20).
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Table 8.19: Results of fitted generalized linear models for ARI with data for the second

non-symmetric blockmodel structure

index a b Dispersion Residual deviance Scaled deviance R2

p.changed 0.431 -0.046 0.102 33641.068 330789.793 0.618

Dens -0.103 -1.442 0.203 73291.057 360278.862 0.167

Rec -0.221 -1.256 0.226 82727.901 365822.652 0.06

D Mut -0.166 -0.754 0.208 75372.544 361512.496 0.144

D Asym -0.194 -1.024 0.223 81543.819 364998.222 0.074

D Null 0.094 -2.606 0.179 63312.349 353131.328 0.281

P e -0.252 -0.17 0.227 83316.287 366679.739 0.053

CCout e -0.216 -0.444 0.218 79805.426 366621.985 0.093

CCin e -0.245 -0.187 0.226 82932.939 366483.787 0.058

Dall e 0.095 -2.346 0.149 49425.111 331609.956 0.438

Dout e 0.156 -2.201 0.151 50358.018 333565.067 0.428

Din e 0.169 -1.281 0.121 40565.001 334225.531 0.539

B e -0.435 0.871 0.238 87618.512 367643.702 0.005

A e 0.127 -3.152 0.133 44598.366 335014.658 0.493

H e 0.133 -5.982 0.154 51816.075 336459.751 0.411

PP cor -2.537 2.786 0.136 45289.935 333425.333 0.485

CCout cor -0.936 1.091 0.205 70249.071 342671.78 0.202

CCin cor -2.554 2.804 0.135 44859.279 333378.321 0.490

Dall cor -2.576 2.772 0.103 33569.583 324799.455 0.619

Dout cor -1.171 1.384 0.18 60561.46 336129.58 0.312

Din cor -3.585 3.757 0.087 27565.99 316775.146 0.687

B cor -0.85 0.9 0.218 75938.837 347645.202 0.137

A cor -3.489 3.649 0.084 26438.935 314674.165 0.700

H cor -1.603 1.819 0.124 40520.859 326331.45 0.540

Degrees of freedom: 315999 for the null model and 315998 for the residual model

Null deviance of all models: 88017.06

All models are significant, p-value is 0.000

Legend:

R2 - deviance explained

a, b - parameters in exponential glm ŷARI = ea+b·index

8.3.3.2 Stability of block types

The highest correlation coefficient between all indices of network characteristics and

properties is between percent of changed ties (p.changed) and proportion of incorrect

blocks (ErrB) and is equal to 0.664 (Table 8.21). In comparison to correlation coeffi-

cients between indices of network characteristic and indices of blockmodeling stability,

we can notice that correlation coefficients between ARI values (Table 8.18) are higher
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Figure 8.32: Impact of percent of changed ties on values of ARI with data for the

second non-symmetric blockmodel structure

Table 8.20: Different fitted models for ARI with p.changed ties as a predictor with data

for the second non-symmetric blockmodel structure

Name of the model Formula R2

Linear model ŷARI = 1.152 − 0.030 · p.changed 0.702

Exponential model ŷARI = e0.431−0.045·p.changed 0.618

Piecewise linear models where

break=23 ŷARI =







1.076 − 0.022 · p.changed; p.changed < 23

1.043 − 0.026 · p.changed; p.changed ≥ 23
0.714

Quadratic model ŷARI = 1.090 − 0.021 · p.changed − 0.0002 · p.changed2 0.706

than corresponding coefficient with ErrB values.

Pearson correlation coefficients between indices of relative difference in network char-

acteristics and the proportion of incorrect block types (ErrB) are presented in Table

8.21. The relative difference in number of null dyad (D Null) is able to explain 21.8%
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Table 8.21: Correlations and results of fitted linear models for ErrB with data for the

second non-symmetric blockmodel structure

index R R2 b0 b1

p.changed 0.664 0.442 -0.056 0.009

Dens 0.312 0.097 0.073 0.221

Rec 0.184 0.034 0.095 0.195

D Mut 0.278 0.077 0.087 0.105

D Asym 0.208 0.043 0.089 0.168

D Null 0.467 0.218 0.019 0.499

PP e 0.152 0.023 0.102 0.024

CCout e 0.214 0.046 0.095 0.064

CCin e 0.159 0.025 0.101 0.027

Dall e 0.513 0.263 0.038 0.336

Dout e 0.526 0.277 0.023 0.339

Din e 0.566 0.320 0.021 0.19

B e -0.067 0.005 0.134 -0.21

A e 0.512 0.262 0.034 0.439

H e 0.472 0.223 0.034 0.863

PP cor -0.530 0.281 0.422 -0.410

CCout cor -0.367 0.134 0.219 -0.206

CCin cor -0.531 0.282 0.423 -0.411

Dall cor -0.606 0.367 0.413 -0.396

Dout cor -0.453 0.205 0.253 -0.251

Din cor -0.599 0.358 0.493 -0.462

B cor -0.314 0.098 0.208 -0.176

A cor -0.61 0.372 0.484 -0.453

H cor -0.599 0.359 0.310 -0.311

Legend:

R - Pearson correlation coefficient

R2 - variance explained

b0 - the intercept parameter in regression model

b1 - the slope parameter in regression model

of variation in values of ErrB. All other indices perform worse and can explain at most

9.7% of variation. The ’aggregated’ scatterplots, without fitted models, are presented

in Figure 8.33.

There are four indices of network properties calculated with Euclidean distance which

are able to explain more than 25% of variance in values of ErrB (Table 8.21). Three of

them are calculated from vectors of network degree. The best linear predictor is Eu-
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Figure 8.33: Impact of differences in network characteristics to values of ErrB with data

for the second non-symmetric blockmodel structure

clidean distance between vectors of indegree Din e (32.0%), Dout e is able to explain

27.7% of variance, Dall e can explain 26.3% of variance in values of ErrB. Linear model

with Euclidean distance between vectors of authority weights as predictor can explain

26.2% of variation in ErrB. Linear models are drawn in blue on the ’aggregated’ scat-

terplots in Figure 8.34.

The ’aggregated’ scatterplots with indices calculated with correlation coefficient be-

tween two vectors of network properties are presented in Figure 8.35. Among indices

of network properties calculated with correlation, A cor has the highest percent of ex-

plained variance in values of ErrB (37.2%). The correlation between vectors of allde-

gree (Dall cor) can explain 36.7% of variance in ErrB. A little less predictive power has

the correlation between vectors of indegree (Dall cor) which is able to explain 35.8% of

variation in values of ErrB.

The next step was to examine the generalized linear models with exponential depen-
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Figure 8.34: Impact of differences in network properties based on Euclidean distance

to values of ErrB with data for the second non-symmetric blockmodel structure

dency. In comparison with corresponding linear models, they can explain less variance

in values of ErrB. Among indices of network characteristic, the best predictor in expo-

nential models is D Null which can explain 19.1% of variation in ErrB. Among indices

calculated with Euclidean distance the best predictor is Din e (R2 = 0.255). The index

calculated as correlation between vectors of hub weights (H cor) is the best predictor

among indices calculated with correlation and it can explain 32.0% of variation in val-

ues of ErrB (Table 8.22). The exponential models, which are able to explain at least 25%

of variance in ErrB, are in above figures drawn with blue curve.

The last step was to examine the predictive power of percent of changed ties p.changed
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Figure 8.35: Impact of differences in network properties based on correlations to values

of ErrB with data for the second non-symmetric blockmodel structure

for values of the proportion of incorrectly identified block types ErrB. Figure 8.36

presents ’aggregated’ scatterplot with different fitted models. The simple linear model

is able to explain 44.2% of variation in values of ErrB. The pattern in data indicates that

two-piecewise model should be appropriate, because for lower percentages of changed

ties the majority of ErrB values is equal to zero. Figure C.4 in Appendix C indicates

that break at p.changed = 14 is the most appropriate. The suggested piecewise model,

drawn in green, explains 1.5% more variation in ErrB than simple linear regression

model. The generalized linear model with exponential dependency performs a little

bit worse than the linear model, and the predictive power of the quadratic model is

between the simple linear regression model and two-piecewise model. The differences
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Table 8.22: Results of fitted generalized linear models for mErrB with data for the

second non-symmetric blockmodel structure

index a b Dispersion Residual deviance Scaled deviance R2

p.changed -4.186 0.082 0.116 34128.463 294854.677 0.44

Dens -2.469 1.433 0.173 56263.215 324899.442 0.077

Rec -2.298 1.288 0.178 59310.503 332908.169 0.027

D Mut -2.345 0.624 0.174 57430.748 329196.654 0.058

D Asym -2.362 1.182 0.178 58744.244 330348.207 0.036

D Null -3.025 3.768 0.161 49301.716 306689.279 0.191

PP e -2.26 0.174 0.18 59760.298 332771.191 0.02

CCout e -2.312 0.44 0.179 58658.779 328225.224 0.038

CCin e -2.27 0.192 0.179 59645.148 332292.805 0.022

Dall e -2.727 1.995 0.152 49041.874 323039.17 0.196

Dout e -2.837 2.056 0.15 48220.264 321968.299 0.209

Din e -2.943 1.247 0.144 45446.915 315443.106 0.255

B e -1.997 -1.898 0.178 60692.941 341414.942 0.005

A e -2.807 2.825 0.153 48400.606 315815.952 0.206

H e -2.785 5.522 0.158 50303.051 317738.841 0.175

PP cor -0.351 -2.593 0.151 47666.33 315526.246 0.218

CCout cor -1.382 -1.764 0.164 53131.595 323341.216 0.129

CCin cor -0.348 -2.597 0.151 47591.824 315409.288 0.219

Dall cor -0.445 -2.522 0.138 43563.678 315619.064 0.285

Dout cor -1.175 -2.071 0.157 49352.984 314741.158 0.191

Din cor -0.1 -2.706 0.141 44935.702 319654.887 0.263

B cor -1.459 -1.473 0.17 55309.867 325804.192 0.093

A cor -0.145 -2.672 0.138 44263.336 320076.739 0.274

H cor -0.887 -2.434 0.135 41467.64 306437.978 0.32

Degrees of freedom: 315999 for the null model and 315998 for the residual model

Null deviance of all models: 60969.16

All models are significant, p-value is 0.000

Legend:

R2 - deviance explained

a, b - parameters in exponential glm ŷmErrB = ea+b·index

in percent of explained variance in values of ErrB are very small, therefore, according

to principle of parsimony (Crawley, 2007), the linear regression model is preferred.
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Figure 8.36: Impact of percent of changed ties on values of ErrB with data for the

second non-symmetric blockmodel structure

Table 8.23: Different fitted models for mErrB with p.changed ties as a predictor for data

from the second non-symmetric blockmodel structure

Name of the model Formula R2

Linear model ŷErrB = −0.056 + 0.009 · p.changed 0.442

Exponential model ŷErrB = e−4.186+0.082·p.changed 0.440

Piecewise linear models where

break=14 ŷErrB =







−0.101 + 0.099 · p.changed; p.changed < 14

−0.112 + 0.011 · p.changed; p.changed ≥ 14
0.457

Quadratic model ŷErrB = −0.019 + 0.004 · p.changed + 0.0001 · p.changed2 0.451
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8.4 The impact of measured network characteristic on the

stability of blockmodeling

In this section, before final conclusions, we expanded our studies of impact of relative

differences in network characteristics on the stability of blockmodeling to investiga-

tion of predictive power of network characteristics of measured networks. When the

network is sampled or measured, we in fact do not know what the hidden underlying

structure is. According to Holland and Leinhardt (1973) the mathematical representa-

tion of a network as a graph or a sociomatrix is just approximation of true structure

which is unobservable. Therefore, we decided to investigate the impact of network

characteristics of measured network to the stability of blockmodeling.

Supposed that the whole network, before introduced random measurement error, pre-

sents the true underlying structure and the network with introduced errors is the

measured network. In surveys the measured networks are collected. Therefore, the

characteristic of the measured network will be used as predictors for two indices of

blockmodeling stability, ARI and ErrB. In calculation of the Adjusted Rand index and

proportion of incorrect blocks, the blockmodel or whole network (which presents the

’true’ structure) is used as reference network for comparison. The simulation of ran-

dom measurement errors is presented in Section 7.5.1.

The impact of characteristics of measured networks to stability of blockmodeling will

be presented on two examples of real networks, the boy-girl liking ties network (8.4.1)

and the note borrowing network (Section 8.4.2).

8.4.1 The impact of measured network characteristics on the stability

of blockmodeling with data from the boy-girl liking ties net-

work

Data were generated separately from the data of differences in network characteristics

from previous sections. Therefore, the correlation coefficient between ARI, ErrB, and
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p.changed differs a little from previously reported coefficients. For example, the Pear-

son coefficient between ARI and p.changed for the boy-girl liking ties network is in

simulation of differences in network characteristics (Section 8.2.1) equal to r = −0.773.

In new simulation, where measurement errors were again generated randomly, the

Person correlation between these two indices is r = −0.763 (Table 8.24).

Table 8.24: Pearson correlation coefficients between indices of measured network char-

acteristics and indices of stability of blockmodeling for the boy-girl liking ties network

1 2 3 4 5 6 7 8

1 ARI -0.825 -0.763 -0.448 0.535 0.253 -0.617 0.594

2 ErrB -0.825 0.569 0.309 -0.421 -0.226 0.467 -0.434

3 p.changed -0.763 0.569 0.713 -0.717 -0.252 0.857 -0.873

4 Density -0.448 0.309 0.713 -0.292 0.339 0.631 -0.893

5 Reciprocity 0.535 -0.421 -0.717 -0.292 0.795 -0.921 0.688

6 Mut 0.253 -0.226 -0.252 0.339 0.795 -0.516 0.120

7 Asymm -0.617 0.467 0.857 0.631 -0.921 -0.516 -0.912

8 Null 0.594 -0.434 -0.873 -0.893 0.688 0.120 -0.912

*All correlation coefficients are significant at 0.001 significance level.

In this study, we investigated the impact of network density (Density), reciprocity of a

network (Reciprocity), number of mutual (Mut), asymmetric (Asymm) and null dyads

(Null) to the indices of network stability; the Adjusted Rand Index (ARI) and the per-

cent of incorrectly identified blocktypes (ErrB).

The highest Pearson correlation coefficient is between ARI and the number of asym-

metric dyads (r = −0.617), which indicates that higher number of asymmetric dyads

leads to lower values of ARI and therefore lower stability of blockmodeling in terms

of partitions. On the other hand, changes in number of mutual dyads have little pos-

itive effect (r = 0.253). The number of null dyads also have large effect, where higher

number of null dyads indicates lower values of ARI (r = 0.594) and therefore lower

network stability in terms of partitions. The correlation coefficient between ARI and

reciprocity is equal to r = 0.535, which also indicates large effect (Table 8.24).

The next step was to establish multiple regression models with indices of network
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characteristics, where number of changed ties (p.changed) is controlled. The summary

of those models is presented in Table 8.25. The simple linear model with percent of

changed ties (p.changed) as a predictor is significant (p-value=0.000) and is able to

explain 58.2% of variation in values of ARI. If percent of changed ties increases for

one changed tie, the value of ARI increases for 0.029. When Density is added to the

model as a predictor (Model 2), the percent of explained variance increases for 1.9%

(R2 = 60.1%). If the number of changed ties is held constant, the change in network

density for 0.1 increases the ARI values for 0.1701. The overall model with reciprocity

is significant (p-value in Model 3 is 0.000), but the coefficient for reciprocity is not sig-

nificantly different from zero (b = −0.030, p − value = 0.091).

Table 8.25: Regression models for ARI with characteristics of measured networks as

predictors with data for the boy-girl liking ties network

Index added Coefficients (p-value) Model summary

Model in Model 1 (Intercept) p.changed index R2 p-value

1 / 1.291 (0.000) -0.029 (0.000) / 0.582 0.000

2 Density 0.703 (0.000) -0.034 (0.000) 1.701 (0.000) 0.601 0.000

3 Reciprocity 1.359 (0.000) -0.030 (0.000) -0.096 (0.091) 0.583 0.000

4 Mut 1.135 (0.000) -0.029 (0.000) 0.011 (0.000) 0.586 0.000

5 Asymm 1.185 (0.000) -0.034 (0.000) 0.010 (0.000) 0.587 0.000

6 Null 2.071 (0.000) -0.039 (0.000) -0.025 (0.000) 0.604 0.000

The addition of number of mutual dyads or number of asymmetric dyads as predictor

to the Model 1 increases the percent of explained variance just for 0.4% and 0.5%, re-

spectively (Model 4 and Model 5 in Table 8.25). The reason for this are high correlations

between both predictors, e.g. the Pearson correlation coefficient between p.changed

and Asymm is 0.857, which indicates multicollinearity problem. A major change in

percent of explained variance is obtained when number of null dyads is added in the

model as a predictor (Model 6). If number of null dyads is held constant, than the

change in percent of changed ties (p.changed) for 1, decreases the ARI values for 0.039.

On the other hand, when the number of changed ties is held constant, the change in
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number of null dyads for 1 decreases the ARI values for 0.025.

Pearson correlation coefficients between ErrB and other indices are a little bit lower

than corresponding indices with ARI (Table 8.24). This indicates that network charac-

teristics have higher prediction power for stability of partitions (ARI) than number of

incorrectly classified block types (ErrB). The highest correlation coefficient (r = 0.467)

is between ErrB and number of asymmetric dyads (Asymm), which indicates that

higher number of asymmetric dyads leads to more unstable blockmodel in terms of

block types (higher values of ErrB). Positive coefficient is also obtained with Density

(r = 0.309). Negative effect on values of ErrB have reciprocity (r = −0.421), number of

mutual dyads (r = −0.226), and number of null dyads (r = −0.434), which means that

higher values of those indices lead to lower values of ErrB and therefore more stable

blockmodel in terms of correctly identified block types.

The simple linear regression model with percent of changed ties (p.changed) as a pre-

dictor is able to explain 32.4% of variation in ErrB (Table 8.26). If the percent of changed

ties increase for one, the values in ErrB increases for 0.015.

Table 8.26: Regression models for ErrB with characteristics of measured networks as

predictors with data for the boy-girl liking ties network

Index added Coefficients (p-value) Model summary

Model in Model 1 (Intercept) p.changed index R2 p-value

1 / -0.151 (0.000) 0.015 (0.000) / 0.324 0.000

2 Density 0.254 (0.000) 0.019 (0.000) -1.175 (0.000) 0.343 0.000

3 Reciprocity -0.103 (0.000) 0.014 (0.000) -0.068 (0.170) 0.324 0.000

4 Mut -0.006 (0.000) 0.014 (0.000) -0.011 (0.000) 0.331 0.000

5 Asymm -0.112 (0.000) 0.017 (0.000) -0.004 (0.003) 0.325 0.000

6 Null -0.616 (0.000) 0.021 (0.000) 0.015 (0.000) 0.340 0.000

When network density is added in the model as predictor (Model 2 in Table 8.26), the

percent of explained variance in values of ErrB increases for 1.9% (R2 = 34.3%). When
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the number of changed ties in this model is held constant, the change in network den-

sity for 0.1 increases the values of ErrB for 0.1175. A higher density, when percent of

changed ties is held constant, means that ties are more likely to be randomly added.

This means that random addition of ties is more likely to preserve the blockmodel

structure than random deletion of ties.

Similarly as in model for ARI, the coefficient in Model 3 for Reciprocity is not statisti-

cally different from zero.

Among indices of changes in dyad census, the highest change in percent of explained

variance in values of ErrB is obtained with the use of number of null dyads as a predic-

tor in multiple regression model. The obtained model (Model 6 in Table 8.26) is able to

explain 34.0% of variation in ErrB, which is for 1.6% more than in simple model with

p.changed ties as predictor. If the percent of changed ties is held constant, the increase

of number of null dyads for one increases the value of ErrB for 0.015. This means that

higher number of null dyads with the same number of changed ties leads to a little bit

more unstable blockmodel in terms of block types (higher values of ErrB).

8.4.2 The impact of measured network characteristics on the stability

of blockmodeling with data from the note borrowing network

The study of measured network characteristics on the stability of blockmodeling was

also performed with data from the note borrowing network (Section 6.2.1.2).

The highest correlation coefficient is between ARI and percent of changed ties (r=-

0.854). Among indices of network characteristics the highest absolute values of corre-

lation coefficients are obtained with number of null dyads (r = 0.768), network density

(r = −0.750), number of asymmetric dyads (r = −0.684), and number of mutual dyads

(r = −0.506). All those indices indicate large linear effect to values of ARI. The corre-

lation coefficient between Reciprocity and ARI values is not significant (Table 8.27).

The simple linear regression model with percent of changed ties (p.changed) as a pre-
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Table 8.27: Pearson correlation coefficients between indices of measured network char-

acteristics and indices of stability of blockmodels for the note borrowing network

1 2 3 4 5 6 7 8

1 ARI -0.729 -0.854 -0.750 0.001 -0.506 -0.684 0.768

2 ErrB -0.729 0.705 0.635 0.009 0.434 0.572 -0.647

3 p.changed -0.854 0.705 0.912 0.048 0.644 0.799 -0.921

4 Density -0.750 0.635 0.912 0.219 0.807 0.768 -0.966

5 Reciprocity 0.001 0.009 0.048 0.219 0.746 -0.449 0.036

6 Mut -0.506 0.434 0.644 0.807 0.746 0.241 -0.628

7 Asymm -0.684 0.572 0.799 0.768 -0.449 0.241 -0.907

8 Null 0.768 -0.647 -0.921 -0.966 0.036 -0.628 -0.907

*All correlation coefficients are significant at 0.001 significance level, except the correlation

coefficient between ARI and Reciprocity (p-value=0.945) and between ErrB and

Reciprocity (p-value=0.559).

dictor is able to explain 72.9% of variation in values of ARI (Table 8.28). If the network

density is added as predictor in Model 1, the percent of explained variance in values

of ARI increases just for 0.5%, but the obtained new model is significantly better from

the simple linear one (p-value=0.000). If the percent of changed ties is held constant,

then the increase of measured network density for 0.1 increases the values of ARI for

0.1098. This means that added ties (because p.changed is held constant) increase the

stability of blockmodeling in terms of partitions (higher values of ARI).

Table 8.28: Regression models for ARI with characteristics of measured networks as

predictors with data for the note borrowing network

Index added Coefficients (p-value) Model summary

Model in Model 1 (Intercept) p.changed index R2 p-value

1 / 1.021 (0.000) -0.029 (0.000) /0.729 0.000

2 Density 0.728 (0.000) -0.034 (0.000) 1.098 (0.000) 0.734 0.000

3 Reciprocity 0.911 (0.000) -0.029 (0.000) 0.261 (0.000) 0.731 0.000

4 Mut 0.938 (0.000) -0.031 (0.000) 0.007 (0.000) 0.732 0.000

5 Asymm 1.027 (0.000) -0.029 (0.000) -0.0002 (0.812) 0.729 0.000

6 Null 1.319 (0.000) -0.033 (0.000) -0.005 (0.000) 0.731 0.000
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The multiple regression model with added reciprocity to predictors (Model 3 in Table

8.28) is able to explain just 0.2% more variance in values of ARI than simple linear

model. If the p.changed is held constant, then the change in reciprocity for 0.1 in-

creases the ARI values for 0.026. This means that for selected percent of changed ties

(p.changed) more symmetrical network leads to more stable blockmodel in terms of

partitions.

In the multiple regression model with number of asymmetric dyads (Asymm) as a pre-

dictor, the coefficient at Asymm is not significantly different from zero (p-value=0.812).

Another two models with indices from dyad census, number of mutual dyads and

number of null dyads in measured network are also able to explain just 0.3% and 0.2%

more variation in values of ARI, respectively (Models 4 and 6 in Table 8.28). Reasons

for that are high correlation coefficient between percent of changed ties and other in-

dices of network characteristics presented in Table B.2. If the percent of changed ties

in the Model 5 is held constant, then the increase of number of mutual dyads for 1,

increases the ARI values for 0.007. This means that a higher number of mutual dyads,

with selected percent of changed ties, leads to more stable blockmodel in values of

ARI. On the other hand Model 6 shows that the increase of number of null dyads for 1

causes the drop of ARI values for 0.005, if the percent of changed ties is held constant.

Therefore, for selected p.changed a higher number of null dyads leads to less stable

blockmodel in terms of agreement between two partitions.

Among all indices, the highest correlation coefficient (r = 0.705) is between percent

of incorrect block types in a blockmodel and percent of changed ties (Table 8.27). The

simple linear regression model with percent of changed ties as a predictor (Model 1 in

table 8.29) can explain 49.65% of variation in values of ErrB.

When density of a measured network is added in the model, the percent of explained

variance increases for just 0.04%, but the coefficient at Density is not significant.
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Table 8.29: Regression models for ErrB with characteristics of measured networks as

predictors with data for the note borrowing network

Index added Coefficients (p-value) Model summary

Model in Model 1 (Intercept) p.changed index R2 p-value

1 / -0.056 (0.000) 0.008 (0.000) / 0.4965 0.000

2 Density -0.028 (0.108) 0.009 (0.000) -0.104 (0.102) 0.4969 0.000

3 Reciprocity -0.033 (0.002) 0.008 (0.028) -0.054 (0.170) 0.4972 0.000

4 Mut -0.043 (0.000) 0.009 (0.000) -0.001 (0.024) 0.4972 0.000

5 Asymm -0.070 (0.000) 0.0004 (0.000) -0.004 (0.204) 0.4967 0.000

6 Null -0.065 (0.012) 0.0001 (0.000) 0.015 (0.725) 0.4965 0.000

In regression models with added Reciprocity, number of asymmetric dyads (Asymm)

or number of null dyads (Null), the coefficients for corresponding indices are not sta-

tistically significantly different from zero.

In multiple regression model with added number of mutual dyads (Mut) as a predic-

tor, the percent of explained variance is higher for 0.07% compared to simple linear

model (Model 1 in Table 8.29). If the number of changed ties is held constant, the in-

crease of number of mutual dyads for one, causes the drop of ErrB values for 0.001.

This means that higher number of mutual dyads in measured network for selected per-

cent of changed ties decreases the ErrB values, and therefore the blockmodel is a little

bit more stable.

If we compare the results for the boy-girl liking ties network (Section 8.4.1) and the note

borrowing network, we can conclude that Density and number of mutual dyads (Mut)

are the best predictors (when percent of changed ties is constant) for stability of block-

modeling. This conclusion is made just on two special examples of networks, there-

fore an extended simulation study with different blockmodel structures and larger net-

works should be performed.
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8.5 Conclusions

In previous sections numerous linear regression models and their generalizations were

established. We try to answer the question (the first research question on page 37), if

the changes in network characteristics and properties are able to predict the stability of

blockmodeling and to what extent. The results are far from simple.

First, we were tried to summarize the results from the Pearson correlation coefficients,

and therefore also from linear regression models, for all starting networks used in sim-

ulations. Table 8.30 presents results for two real networks and three simulated block-

model structures, which are in detailed presented in Sections 8.2 and 8.3. The Pearson

correlation coefficients between indices of changes in network characteristics and prop-

erties and two indices of blockmodeling stability (ARI and ErrB) are presented with

the following graphic signs. Correlation lower than 0.5 is marked with sign −, corre-

lation between 0.5 and 0.7 are denoted with sign ◦, and correlation coefficients higher

than 0.7 is presented with sign +.

Three obvious conclusions can be made. First, the best predictor of stability ob block-

modeling partitions (presented with ARI values) is percent of changed ties (p.changed).

In the simple linear model the percent of changed ties can explain at least 50% of vari-

ation of ARI irrespective of blockmodel structure.

Second, all indices, which were used as predictors, have less power to predict percent

of incorrectly identified block types (ErrB) compared to stability of partition (ARI) in

two blockmodels.

Third, as explained in Section 8.3.1, indices of network characteristics have less power

to predict stability of blockmodeling if the blockmodel structure is highly symmetric.

In case of structural equivalence, the blockmodel is stable for relatively high percent of

changed ties (Section 7.5.3.1). On the other hand, indices of network characteristics are

able to perceive the small changes in network structure. One possible solution, which

should be investigated further, is use of more universal models, which can take this
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Table 8.30: Summary of predictive powers for linear regression models for values of

ARI and ErrB
Blockmodel Symmetric Non-symmetric

Simulated Simulated

Real Simulated First Real Second

Index ARI ErrB ARI ErrB ARI ErrB ARI ErrB ARI ErrB

p.changed + ◦ + ◦ + ◦ + ◦ + ◦
Dens - - - - - - + ◦ - -

Rec ◦ - - - - - - - - -

D Mut - - - - - - ◦ - - -

D Asym ◦ - - - - ◦ ◦ - -

D Null ◦ - - - - - ◦ ◦ ◦ -

PP e ◦ - - - - - ◦ ◦ - -

CCout e ◦ - - - - - ◦ ◦ - -

CCin e ◦ - - - - - ◦ ◦ - -

Dall e ◦ - - - ◦ ◦ + ◦ ◦ ◦
Dout e ◦ - ◦ - ◦ ◦ + ◦ ◦ ◦
Din e ◦ - ◦ - ◦ ◦ + ◦ + ◦
B e - - - - - - - - - -

A e - - - - ◦ - + ◦ ◦ ◦
H e - - - - ◦ ◦ + ◦ ◦ -

PP cor - - - - ◦ ◦ ◦ ◦ ◦ ◦
CCout cor - - - - ◦ - ◦ - - -

CCin cor - - - - ◦ ◦ ◦ ◦ ◦ ◦
Dall cor - - - - + ◦ + ◦ + ◦
Dout cor - - - - ◦ ◦ ◦ - ◦ ◦
Din cor - - - - + ◦ + ◦ + ◦
B cor - - - - - - - - - -

A cor - - - - + ◦ + ◦ + ◦
H cor - - - - + ◦ + ◦ + ◦

attribute into account.

Two types of models or solution were used with p.changed ties as a predictor; the two-

(or more) piecewise regression model and generalized linear models with exponential

dependency. In future work, these two types of models can be fitted to the data with

indices of network characteristics as a predictor.

If we look closer to indices of network characteristics and their meaning, we can con-

clude that the best predictors are those indices which are calculated based on corre-

lation between two vectors of network properties from the whole and the measured
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network. One possible interpretation can be that the linear relationship between two

vectors of network properties (which is measured by correlation coefficient) has higher

impact to stability of blockmodeling than the magnitude (measured by distance) be-

tween two vectors. Another possible explanation why indices calculated with Eu-

clidean distance perform worse as predictors is that unstandardized vectors were used

in calculation of Euclidean distance between them. Faust and Romney (1985, 101) ar-

gued that ”Distance as a measure of similarity applied to nonstandardized variables

confounds information about the similarity in the patterns of values with information

about the differences in the mean and variance of each variable”.26

The best predictors of indices of blockmodeling stability are correlation coefficient be-

tween vectors of degree centrality based on all-degree and indegree, and correlation

between vectors of authority and hub weights.

Probably better question than the first research question on page 37 is to investigate

the impact of properties of measured network to the blockmodeling stability, because

in real research studies are the whole networks which represent the unobservable un-

derlying structure unknown. Therefore the differences between characteristics of the

whole and measured networks can not be measured or calculated. The results pre-

sented in Section 8.4 suggest that network density and number of mutual dyads are

the best predictors (when percent of changed ties is constant) for stability of block-

modeling. The conclusions unfortunately can not be generalized because of the small

number of starting network in the simulations. Therefore, further work on characteris-

tics of measured network and their impact on (indices of) network stability should be

done with larger range of starting blockmodel structures.

26Faust and Romney (1985) use the square of Euclidean distance as a measure of structural equiv-

alence, which was calculated for actors i and j as distance between row i and row j in sociomatrix. In

spite of the fact that Euclidean distance in our study was calculated on different vectors, their suggestion

should be taken into account.
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9 Conclusions

After a short overview of the dissertation, an evaluation of blockmodeling stability

on errors in research design is presented together with some recommendations. The

chapter concludes with some ideas for further research.

9.1 A short overview

The generalized blockmodeling is a popular and widely used technique inside the so-

cial network analysis. Another fact is that networks are measured with errors and there

was no adequate study about the impact of design errors on results of blockmodeling.

The original contribution of my dissertation is therefore a systematic research of differ-

ent types of errors on the stability of blockmodeling.

First, networks and their main characteristics, relations and generalized blockmodel-

ing together with different types of equivalence are presented in Chapters 2 and 3.

The discussion about evaluation of network stability is presented in Chapter 4. The

whole starting blockmodel and the measured blockmodel from network with intro-

duced errors have to be compared. Because the result of using a blockmodeling pro-

cedure is a partition (of actors) determining positions and image matrix with selected

block types, two indices for measuring the stability are needed. The first index, the Ad-

justed Rand Index, measures the agreement between both partitions, and the second

index compares block types in image matrices and their positions and is calculated as

the percent of incorrectly identified block types. The described indices can reach both

levels of the blockmodel; stability of macro structure is estimated with proportion of
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incorrectly identified block types, and the changes in the micro level of an actor are

evaluated with the Adjusted Rand Index.

The extensive part of the dissertation is the review of the literature on the errors in

the research design and their classification in Chapter 4. The boundary specification

problem, errors caused by design and errors caused by actors are three main cate-

gories of design errors. A questionnaire can be a large source of errors, especially with

specification of number of choices and recall method. The impact on the established

blockmodel also has the direction of question where the perceptions of giving or re-

ceiving of social support can be gathered. An important source of errors could be also

actors themselves. They could refuse to respond to the entire questionnaire or only on

the particular tie(s). For actor (and tie) non-response different possible treatment are

examined, such as the complete-case approach, reconstruction procedure and impu-

tations. The measurement errors occur where there is a discrepancy between the true

value of a concept and the observed (or measured) value of that concept. The defi-

nition of measurement error in the social network analysis is presented together with

main sources.

The design of simulation studies together with networks used in the studies is pre-

sented in Chapter 6, while the results of evaluation of blockmodling stability are pre-

sented in Chapters 7 and 8. The main conclusions from both chapters are presented

below.

9.2 Evaluation of stability of blockmodeling on design

errors

The evaluation of blockmodeling stability is quite different regarding the type of an

introduced error and type of selected equivalence in the generalized blockmodeling

process.

The consequences of introduced design errors and their strength depend on the em-
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ployed type of equivalence. First, we ascertained that the structural equivalence is

more stable compared to other types of equivalence. This is an expected result accord-

ing to the remark by Batagelj et al. (1992b, 67), who emphasized that ”although the

definition of structural equivalence is ’local’ it has ’global’ implications - structurally

equivalent units behave in the same way also to all other units. A position is defined in

terms of all other units in a network”. If the actors are structurally equivalent, a locally

changed tie has small impact on overall structure of the network. On the other hand,

regularly equivalent actors have the same or similar connection patterns to the differ-

ent neighbours. In that case a small amount of changed ties destroys the local structure

of the network and therefore the clusters of equivalent units. Despite these theoreti-

cal expectancies, the level of instability of blockmodeling based on regular equiva-

lence was quite surprising. The smallest change in the composition of network ties

(one changed tie) completely destroys the established blockmodel on both, micro and

macro level of the network. The destroyed position membership of an actor (com-

pletely changed partition) affects the micro level of the network, while the destroyed

blockmodel structure with changed and reorganized block types destroys the macro

level.

Different types of errors from the research design have different implications on the

resulting blockmodeling. First, we emphasized the findings about limitation of num-

ber of choices instead of free choice design. The limitation of number of choices may

destroy the blockmodel structure if the restriction is unrealistic or too far from the true

number of desired nominations. As pointed out by Newman (2010), the fixed choice

design is often selected only for practical purposes to reduce the work of the researcher.

We would like to emphasize that this is not the right reason for selection of fixed choice

questionnaire format which has high ability to destroy the underlying true structure of

the network. From blockmodeling point of view the fixed number of choices should

not be enforced. If there is a reasonable argumentation for use of fixed choice design,

the limitations should not be set too strict. For established blockmodel it is better that

questionnaire format forces the respondents to nominate more friends (than is the real

number) than make them impossible to list all their friends. Therefore, the blockmodel-
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ing is more instable to lower number of choices than to higher number of nominations

according to the real underlying structure.

The impact of direction of question on the established blockmodel structure was stud-

ied with real networks. The main conclusion is that both results of the blockmodeling

procedure, the position membership and the image matrix, depend on the method

used for gathering social network data. Therefore, further research should establish if

there is a common pattern in the blockmodels obtained with different questions for-

mats in data collection process. The confirmation of ties from the ’original’ network

from the ties from the ’reversed’ one could probably be used to find the most dense,

stable and cohesive subgroups of a network.

The most extensive studies with blockmodeling based on structural equivalence were

performed with actor non-response. The main conclusion is that the performance of

the non-response data treatments in social networks depends on the symmetry of the

networks. The symmetry of the network refers to reciprocity value and also to sym-

metry of the blockmodel structure. The best treatments for the symmetric networks

are reconstruction and combination of reconstruction and mode imputations. For the

non-symmetric network the best treatments are the imputations based on mode and

the complete-case approach. However, the use of complete-case approach is not advis-

able, because we lose information about the location of actor(s) in a position, because

non-respondents are deleted from the network. We also do not advise using the null tie

imputation, because its performance is always the worst. Therefore, the simple record-

ing of zeros instead of absent ties is the worst solution, although it is frequently used

in network data collection process.

The tie non-response study is the continuation of the actor non-response simulations.

The above conclusions that the selection of the best non-response treatment depends

on the symmetry of the network, also hold true in that case. Additional conclusion is

that imputations based on modes fares badly for core-periphery structures, while re-

construction works well for them.
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The main conclusion from the simulation of random measurment error is that the

blockmodeling based on structural equivalence is highly stable. The blockmodeling

procedure is a little bit more stable in terms of blockmodel structure than in terms of

position membership of actors. As described above, the blockmodels based on regular

or generalized equivalence are extremely sensitive to the minor changes in network

ties. One randomly changed tie could completely destroy both, position membership

and the blockmodel structure. We should emphasize that with our results the guide-

lines made by Doreian et al. (2005) are even more important. In the generalized block-

modeling prior knowledge of the researcher should be incorporated in prespecifed

blockmodels prior to blockmodeling analysis.

Another important question we try to answer in the dissertation is whether the rela-

tive changes in network characteristics and properties are able to predict the stability

of blockmodeling and to what extent. The results are far from simple, but the follow-

ing conclusions can still be drawn. The best predictor of stability of blockmodeling

partitions is percent of changed ties. All indices, which were used as predictors, have

more power to predict the position membership of the actors than percent of incor-

rectly identified block types. In real studies the real underlying structure (presented

with whole networks in our simulations) is unknown, which makes the comparison

between whole and measured network impossible. Therefore, the impact of properties

of measured network (alone) to the blockmodeling stability was investigated with two

real networks. The results (presented in Section 8.4) suggest that network density and

number of mutual dyads are the best predictors (when percent of changed ties is held

constant) for stability of blockmodeling. Due to the small number of starting network

in the simulations the conclusions unfortunately can not be generalized and therefore

further simulations are needed.
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9.3 Guidelines for researchers

Part of guidelines about actor non-response and preferable non-response data treat-

ments have already been published in Žnidaršič 2012. Based on the study and results

given in the previous sections the following recommendations for the researchers can

be given:

• During research design

– Correctly define network boundaries.

Exclusion of actors could changed the obtained blockmodel, but if the num-

ber of missing actors is low, the blockmodel could be correctly identified in

terms of positions and image matrix (results on the complete-case approach

in Section 7.3).

– Define the research question according to providing or receiving social

support.

Networks and consecutively established blockmodels could be quite differ-

ent because different concepts are measured (Section 7.2).

– Select free choice design instead of fixed choice design.

If limitation of number of actors is necessary, do not set the limit to strict

(Section 7).

• During data collection

– Report the missing ties by coding them as such, for example by NA, in the

matrix representation of the network.

Missing ties are too often recoded as 0 which is the worst solution when

analyzing blockmodels (results on the null tie imputations in Section 7.3).

– Never replace absent ties with 0s,

because the null tie imputation treatment was the worst treatment regarding

both micro (position membership) and macro level (block structure) of the

network (results on the null tie imputations in Section 7.3).

– Identify the item and/or actor non-response. Report the percentage of ac-

tor and/or item non-response together with the size of the network.
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• When choosing the type of blockmodel

– Structural equivalence is very stable up to 50% of non-respondents or 15%

of random measurement errors (Sections 7.3 and 7.5).

– Reqular and generalized types of equivalence are extremely unstable, be-

cause one changed tie could completely destroy the blockmodel structure

(Sections 7.3.5, 7.5.4 and 7.5.5).

• During data analysis (blockmodeling)

– Estimate the reciprocity of the fully observed network in order to decide

about the best non-response treatment.

– If the reciprocity is lower than 0.5 the complete-case approach or imputa-

tions based on mode should be used.

– If the reciprocity is higher than 0.5 the complete-case approach or one of

the reconstruction treatment is suggested.

– Do not use the complete-case approach if the aim of the study is to inves-

tigate the position of non-respondents of the network.

9.4 Ideas for future research

During the work on this dissertation several existing questions were left unanswered

or are just partially answered, and at the same time several new questions arose. The

majority of them is pointed out in the conclusions of the individual sections. The most

important open questions with outline of further research are presented here.

All simulations in this dissertation should be extended to larger networks. At the mo-

ment there is no (cmpletely) suitable solution in programs used in the simulations. The

simulations were performed in R package called blockmodeling developed by Žiberna

(2008) which is appropriate for generation of whole networks and introduction or er-

rors but it is a little bit slow in running the blockmodeling procedure. Its deficiency

is slow running of the blockmodeling algorithm with larger networks (and/or larger
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number of clusters). One of the solutions available now is the testing version of pack-

age adopted by Žiberna called testBlockmodelingTestC.

Another option would be to link together Pajek (Batagelj and Mrvar, 2010a,b) and R in

such a way that Pajek could be called from R for blockmodeling procedures, while the

generation of whole networks, introduction of errors, and the storage of data would

still run in R.

A broader set of different types of block patterns for structural equivalence should be

used. We could start from well constructed artificial networks of different numbers and

sizes of clusters with precisely determined block structure or patterns of block types in

the image matrices. Similarly as for networks based on regular equivalence (presented

in Section 6.2.4), the well known models such as the cohesive subgroups model and

core-periphery model, could be used for initial simulations.

The existent simulations together with recommendations presented above should be

extended to other equivalence types and other blockmodel structures. The generalized

type of equivalence with its broad collection of suitable block types offers a broad set

of possible combination of block types in the image matrix. Therefore, the impact of

starting blockmodel structure in terms of generalized equivalence should be studied

in more systematic way.

The extreme instability of blockmodeling based on regular equivalence (Section 7.5.4)

demands special attention. First, extensive research on literature about theoretical fun-

damentals, definitions and properties should be examined. In addition, all usages of

regular equivalence should be studied where probably also the re-establishment of the

models will be necessary. Based on those findings the interpretation of instable results

of blockmodeling together with some recommendations will hopefully be possible.

The treatments of the actor (and tie) non-response should be extended to more com-

plex treatments. In ordinary surveys with missing data a great success is achieved with
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the use of EM algorithm or multiple imputations. Both approaches should be adopted

to the social networks data.

In case of tie non-response (short overview presented in Section 7.4) other than random

missing mechanisms should be used. In both types of non-response in social networks,

actor and tie non-response, characteristics of actors should be used in construction of

missing data. The patterns in non-response should reflect the real situation from social

data collection process.

Another important extension of present work could be study of errors with sign and

valued networks. The definition of error in binary social network that an error is a

missing or extra tie (Holland and Leinhardt, 1973), can be extended to valued net-

works, where error occurs when a wrong value (of strength tie) is recorded. Therefore,

beside the amount of introduced errors also the expanse or magnitude of the change

together with direction of the change should be controlled.
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methodology, 121–128. Faculty of Social Sciences, Ljubljana.

— — —. 1999. Evaluation of survey measurement instruments for measuring social

networks. Ph.D. thesis, Faculty of social sciences, University of Ljubljana.

— — —. 2001. Meta-analiza zanesljivosti anketnega merjenja socialne opore v popolnih
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Zemljič, Barbara, and Valentina Hlebec. 2001. Zanesljivost mer središčnosti in pomem-
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141, 145–147, 152–154, 156, 162,

163, 165, 167, 169, 172–174, 178–

182, 188, 190, 192, 194, 195, 197,

199, 202, 315

reconstruction plus mode imputa-

tion, 71, 124, 126, 129, 131, 133,

135, 137, 138, 140, 145, 147, 152–

154, 156, 162, 164, 169, 172, 176,

178–180, 183, 185, 188, 190, 192,

194, 202, 315

Pajek, 46, 198

partition, see blockmodel, partition, 79,

80, 82

question

direction of question, 56, 60

original question, 60

reversed question, 60

questionnaire, 52

recall, 52, 58–60, 74, 88, 89

recall method, 56, 59

reciprocity, 34, 35, 51, 94, 130, 143, 153,

154, 157, 159, 166, 170, 173, 182,

185, 188, 192, 195, 202, 240, 242,

248, 261, 265, 302–308, 315

recognition, 58–59, 74, 88, 89

recognition method, 56, 59

reconstruction, see non-response, treat-

ment

relation, 31, 32

rooster, see recognition

sampling

network sampling, 55, 56

scatterplot

’aggregated’, 243, 244, 249, 253, 255,

261, 269, 272, 273, 276, 277, 282–

284, 289, 290, 292, 295, 296, 298

social network analysis, 33

sociogram, 57, 72

sociomatrix, 32

tie, 55

absent, 201

added, 105
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changed, 104, 114, 203, 204, 243

cognitive, see tie, self-reported

deleted, 105

extra, 72

missing, 72, 123

observed, 73

percent of changed, 235, 242, 246,

249, 255, 260–262, 267, 269, 272,

278, 280, 284, 288, 291, 293, 297,

302–305, 307–309, 311, 316

self-reported, 73

unreported, 123

vertex, 31
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10 Stabilnost bločnega modeliranja

(razširjen povzetek)

Namen doktorske disertacije je raziskati, kako stabilni so postavljeni bločni modeli

oziroma bločno modeliranje na različne tipe napak v zasnovi raziskave. Različni av-

torji so preučevali vpliv posameznih napak na karakteristike omrežij (npr. gostota

omrežja, tranzitivnost ...), vendar pa do sedaj še ni bil raziskan njihov vpliv na po-

splošeno bločno modeliranje (Doreian in drugi, 2005).

V disertaciji so tako predstavljeni osnovni pojmi analize omrežij in posplošenega bločne-

ga modeliranja. Posebej sta predstavljena kazalnika, s katerima lahko primerjamo dva

bločna modela. Na podlagi obširnega pregleda literature s področja napak v zasnovi

raziskave smo sestavili shemo napak ter predstavili najpomembnejše izsledke predho-

dnih raziskav. Načrt raziskave oziroma simulacij smo dopolnili s pregledom upora-

bljenih omrežij. Stabilnost bločnih modelov je ocenjena na podlagi dveh vrst omrežij,

in sicer (realnih) omrežij iz literature in simuliranih omrežij. Na koncu smo poskušali

še oceniti, v kolikšni meri lahko spremembe v karakteristikah omrežja napovedo re-

zultat bločnega modeliranja.

10.1 Omrežja

Socialno omrežje je sestavljeno iz končne množice enot (ali akterjev) in relacije (ali re-

lacij) med njimi (Wasserman in Faust, 1998). Akterji v omrežju lahko predstavljajo

posameznike ali pa skupine enot, kot so formalne ali neformalne organizacije. Relacija

je v splošnem definirana kot posebna vrsta kontakta oziroma povezave med parom
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akterjev (Knoke in Yang, 2008, 7).

Omrežja lahko predstavimo z grafom, kjer točke predstavljajo akterje, povezave pa

rišemo s puščicami oziroma daljicami ter tako ločimo med usmerjenimi in neusmerje-

nimi povezavami. Poleg grafa lahko omrežje predstavimo tudi z matriko z n vrsticami

in stolpci, kjer element rij predstavlja obstoj in/ali moč povezave med akterjema i in j.

Znanih je več vrst omrežij. Glede na število različnih množic enot v omrežju delimo

le-ta na enovrstna, dvovrstna in večvrstna omrežja. Druga delitev se nanaša na upo-

rabljeno mersko lestvico za merjenje relacij, kjer ločimo binarna omrežja (povezava

obstaja ali ne), predznačena omrežja (povezava med enotami ima pozitivno ali nega-

tivno vrednost) in omrežja z vrednostmi na povezavah (vrednosti na povezavah so

vsaj intervalnega tipa). Omrežja delimo še na popolna, kjer opazujemo relacije vsake

enote z vsemi ostalimi enotami v omrežju, in egocentrična oziroma osebna omrežja,

kjer opazujemo izbrane enote (ege) in njegove povezave do drugih članov omrežja (al-

terjev).

V disertaciji smo se osredotočili na popolna enovrstna binarna omrežja. Vsa v diser-

taciji uporabljena omrežja lahko označimo kot majhna (nekaj 10 enot). Razlog za to je

računska zahtevnost implementiranih algoritmov bločnega modeliranja v programski

paket blockmodeling (Žiberna, 2008) v R-u.

Cilj analize socialnih omrežij je iz surovih relacijskih podatkov dobiti uporaben in eno-

staven opis sistema razmerij (Stork in Richards, 1992). Uporabna in popularna tehnika

za iskanje strukturnih vzorcev je posplošeno bločno modeliranje.

10.1.1 Lastnosti omrežij

V disertaciji smo na kratko predstavili lastnosti oz. karakteristike omrežij, ki smo jih

uporabili za preučevanje oziroma napovedovanje stabilnosti bločnega modela. Karak-

teristike omrežja so lahko podane za omrežje kot celoto (npr. gostota), lahko pa so

izračunane za vsakega akterja posebej (npr. mere središčnosti).
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Gostota omrežja je definirana kot vsota povezav v omrežju deljeno s številom vseh

možnih povezav v omrežju. Gostota tako opisuje splošni nivo povezanosti med akterji

v omrežju (Scott, 2000, 93).

Naslednji pristop proučevanja povezanosti je raziskovanje parov akterjev oz. diad

(Holland in Leinhardt, 1970; Wasserman in Faust, 1998). Ločimo asimetrične diade,

kjer obstaja ena izmed povezav med akterjema i in j (i → j ali j → i), ne pa obe hkrati.

Vzajemna diada obstaja, kadar obstajata tako povezava med akterjema i in j kot tudi

obratna povezava (v takem primeru rečemo, da je med akterjema neusmerjena pove-

zava). Prazno diado imamo v primeru, ko akterja nista povezana.

S pomočjo diad se definira recipročnost (Huisman, 2009), ki meri simetričnost omrežja

ter se izračuna kot dvakratnik vzajemnih diad deljeno z vsoto dvakratnika vzajemnih

ter asimetičnih diad.

Naslednja skupina mer so mere središčnosti (oz. centralnosti) in pomembnosti, s kate-

rimi iščemo najbolj ’središčne’ akterje v omrežju. Najpomembnejša delitev mer sredi-

ščnosti se nanaša glede na tip relacije v omrežjih (Batagelj, 1993), in sicer govorimo v

primeru usmerjenih povezav o merah pomembnosti, pri neusmerjenih omrežjih pa o

merah središčnosti.

Prva skupina so mere središčnosti in pomembnosti glede na stopnjo, kjer je akter naj-

bolj središčen v omrežju, če ima največ povezav do ostalih akterjev (Wasserman in

Faust, 1998). Relativna mera središčnosti glede na stopnjo je tako za posameznega ak-

terja definirana kot število povezav do ostalih akterjev v omrežju deljeno z n−, kjer je

n velikost omrežja. V primeru usmerjenih omrežij lahko koncept središčnosti glede na

stopnjo razširimo, in sicer merimo vpliv akterja, če upoštevamo le izhodne povezave.

V primeru upoštevanja vhodnih povezav pa merimo podporo akterju.

Pri izračunu mere središčnosti glede na dostopnost se upoštevajo razdalje posame-
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znega akterja do vseh ostalih akterjev. Tako so najbolj središčni tisti akterji v omrežju,

ki so blizu vsem ostalim akterjem (Freeman 197989; Wasserman in Faust, 1998). Pred-

nost mere je, da upošteva tudi posredne sosede akterja, hkrati pa to pomeni, da jo

lahko izračunamo le za krepko povezana omrežja. V primeru usmerjenih omrežij lahko

izračunamo dostopnost glede na izhodne povezave, torej, kako blizu so vsi ostali ak-

terji izbranemu akterju. V primeru vhodnih povezav pa lahko dostopnost interpreti-

ramo kot bližino izbranega akterja do vseh ostalih.

Ideja mere središčnosti glede na vmesnost je, da je akter središčen, če leži na veliko

najkrajših poteh med ostalimi akterji v omrežju (Wasserman in Faust, 1998).

Bližino izbranega akterja izračunamo kot delež akterjev v območju vpliva posame-

znega akterja deljeno s povprečno oddaljenostjo tega akterja od vseh drugih akterjev v

omrežju. Pri tem je območje vpliva posameznega akterja enako številu ali deležu vseh

akterjev, ki so s potjo povezani z izbranim akterjem (Freeman 197989; Wasserman in

Faust, 1998; de Nooy, 2005).

Zadnji dve uporabljeni meri sta opisi in kazala. Akter je dobro kazalo, če kaže na veliko

dobrih opisov ter je dober opis, če nanj kaže veliko dobrih kazal.

10.2 Bločno modeliranje

Namen bločnega modeliranja je razvrstitev akterjev omrežja v skupine (pozicije) in

hkrati razvrstitev povezav v bloke, ki so določeni s povezavami med enotami v sku-

pini (Wasserman in Faust, 1998; Doreian in drugi, 2005). Rezultat bločnega modeli-

ranja je kompaktna predstavitev omrežja, torej model, ki predstavlja bistveno (poeno-

stavljeno) strukturo omrežja, ki jo lahko tudi enostavneje interpretiramo. Bločni model

lahko predstavimo na dva načina: z bločnim grafom ali z bločno matriko. Enote v tej

poenostavljeni strukturi so skupine oziroma pozicije enakovrednih akterjev, medtem

ko povezave predstavljajo odnose med skupinami.
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Akterji znotraj skupine (in med skupinami) imajo enake oziroma zelo podobne vzorce

povezav glede na izbrano enakovrednost. Najbolj znani sta strukturna in regularna

enakovrednost:

i) Akterja sta strukturno enakovredna, če sta povezana do ostalih akterjev v omrežju

na enak način (Lorrain in White, 1971).

ii) Akterja sta regularno enakovredna, če sta povezana z ostalimi enakovrednimi

akterji na enak način (White in Reitz, 1983; Doreian in drugi, 2005).

Batagelj in drugi (1992b) so dokazali, da so za strukturno enakovrednost možni le štirje

idealni bloki: prazni, prazni blok s povezavami na diagonali, polni ter polni blok z

ničlami na diagonali. Izven diagonale sta možna le polni in prazni blok.

Za regularno enakovrednost obstajata le dva idealna bloka, in sicer prazni in regularni

(vsaj ena 1 je v vsaki vrstici in vsakem stolpcu bloka) blok (Batagelj in drugi, 1992a).

Koncept posplošene enakovrednosti so prvič predstavili Doreian in drugi leta 1994.

Posplošena enakovrednost tako dovoli tudi druge vzorce povezav in jo v bistvu lahko

definiramo z množico dovoljenih blokov. Poleg praznega, polnega in regularnega

bloka so tako dovoljeni še vrstično-dominantni, stolpično dominantni, vrstično-regula-

rni, stolpično-regularni, vrstično-funkcijski in stolpično funkcijski blok (predstavljeni

v Tabeli 3.2 na strani 31).

V bločnem modeliranju obstajata dva glavna pristopa: posredni in neposredni pristop

(Batagelj in drugi, 1992b). V posrednem pristopu se izračuna matrika različnosti med

akterji in tako problem modeliranja prevedemo na problem standardne analize po-

datkov (npr. razvrščanja). Pri neposrednem pristopu z optimizacijskim algoritmom

iščemo najboljšo razvrstitev z najmanjšo vrednostjo kriterijske funkcije, ki jo določimo

na podlagi izbrane enakovrednosti.

Posplošeno bločno modeliranje so obširno predstavili Doreian in drugi (2005) v knjigi

Generalized blockmodeling. Njegove tri glavne karakteristike in prednosti pred po-

srednim pristopom so (Doreian in drugi 2005, 25−26):
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i) v direktnem pristopu so uporabljeni osnovni omrežni podatki;

ii) uporabljen je širši nabor dovoljenih blokov;

iii) možna je tudi opredelitev položaja blokov v modelu, kar omogoča vključitev raz-

iskovalčevega znanja v model pred samim bločnim modeliranjem.

Kriterijska funkcija je definirana kot seštevek odstopanj med idealnimi in empiričnimi

bloki v bločnem modelu. Za vsak empirični blok izračunamo odstopanja od vseh do-

voljenih idealnih blokov. V bločnem modelu je tako empirični blok predstavljen z ide-

alnim blokom, ki najmanj odstopa od empiričnega. Vrednosti odstopanj posameznih

blokov se seštejejo in dobljeni seštevek predstavlja odstopanje omrežja od bločnega

modela. Kriterijsko funkcijo uporabimo v optimizacijskem algoritmu, kjer za več zače-

tnih razvrstitev iščemo najboljšo rešitev, torej tisto razvrstitev z minimalno vrednostjo

kriterijske funkcije.

Posplošeno bločno modeliranje je vključeno v program Pajek (Batagelj in Mrvar, 2010a,

b) ter v R-paket blockmodeling (Žiberna, 2008), ki smo ju uporabljali pri naših simula-

cijah, ter v nekatere druge pakete (npr. UCINET (Borgatti in drugi, 2002)).

V skladu s predstavljenimi enakovrednostmi, kjer je glavna prednost posplošene ena-

kovrednosti njena prilagodljivost, in opombo Batagelja in drugih (1992b), da čeprav je

definicija strukturne ekviavalentnosti lokalna, ima le-ta globalne učinke, smo postavili

prvo tezo: Strukturna enakovrednost daje bolj stabilne rezultate kot regularna (ali drugi po-

splošeni tipi) enakovrednosti.

Poleg ocene stabilnosti različnih enakovrednosti nas je zanimala še napovedna moč

različnih karakteristik omrežja na stabilnost dobljenih bločnih modelov. Tako smo po-

stavili prvo raziskovalno vprašanje: V kakšnem obsegu so (relativne) razlike v karakteristi-

kah omrežja (npr. gostota omrežja, recipročnost, število različnih tipov diad) ter korelacije in/ali

Evklidske razdalje med vektorjema z lastnostmi akterjev (npr. mere centralnosti) sposobne na-

povedati rezultat bločnega modeliranja (stabilnost, razvrstitev in tip bločnega modela).
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10.3 Napake v zasnovi raziskave

Najpogostejše tehnike zbiranja podatkov (če izvzamemo arhivske podatke) so ankete

in vprašalniki (Marsden, 2005; Wasserman in Faust, 1998). Vsaka metoda lahko vpliva

na prisotnost napak. Njihov vpliv je potrebno preiskati na dva načina: potrebno je ugo-

toviti, kako zmanjšati prisotnost posameznih napak ter določiti vpliv napak na rezul-

tate, ki jih dobimo z analizo omrežij. V disertaciji smo se osredotočili na drug problem,

in sicer smo poskušali določiti vpliv različnih napak v zasnovi raziskave na stabilnost

bločnih modelov. Tako smo postavili drugo raziskovalno vprašanje: Kako stabilno je

bločno modeliranje na različne količine in tipe napak?

Na podlagi pregleda literature smo napake v zasnovi raziskave najprej razdelili v tri

skupine (Slika 10.1): problem določitve mej omrežja, napake iz načrta vprašalnika ter

na napake, povzročene s strani akterjev.

Slika 10.1: Shema napak v zasnovi raziskave

10.3.1 Problem določitve mej omrežja

Problem določitve mej omrežja se nanaša na pravila za vključevanje akterjev v preuče-

vano omrežje (Laumann in drugi, 1989). Najbolj znana sta dva pristopa: realističen

pristop, kjer akterji v omrežju sami določijo meje le-tega oziroma njihovo skupno pri-

padnost omrežju, in nominalističen pristop, kjer meje omrežja določijo raziskovalci
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glede na nek kriterij, ki se lahko nanaša na akterja, relacijo ali aktivnost (oziroma kom-

binacijo teh treh faktorjev).

Doreian in Woodard (1994) sta ugotovila, da je tveganje za napačno določene meje še

posebej veliko pri analizah, ki upoštevajo oziroma definirajo položaj akterja glede na

vzorce povezav do vseh ostalih akterjev v omrežju. Predlagala sta uporabo k-jeder za

določitev mej omrežja.

Napačno določene meje omrežja se lahko pokažejo v eni izmed treh oblik: vključitev

akterjev, ki ne spadajo v omrežje, izključitev akterjev, ki spadajo v omrežje, ter kombi-

nacija neprave vključitve in izključitve akterjev.

10.3.2 Napake v zasnovi vprašalnika

Druga skupina napak se nanaša na zasnovo vprašalnika, razdelili pa smo jo na tri pod-

skupine: omejevanje oziroma neomejevanje števila izbir, spominska metoda ali prepo-

znavanje ter smer zastavljenega vprašanja.

Vprašalnik za zbiranje omrežnih podatkov lahko vključuje navodila o zahtevanem

številu izbir, torej številu akterjev, ki jih je potrebno imenovati. Pri omejevanju števila

izbir se lahko zgodi ena izmed treh možnosti (Holland in Leinhardt, 1973):

i) prava struktura je enaka zbranim omrežnim podatkom v sociogramu;

ii) v sociogramu je predstavljena le podmnožica prave strukture;

iii) prava struktura je podmnožica povezav v sociogramu.

Pomembno je poudariti, da neomejevanje števila izbir v vprašalniku sicer zagotavlja

bogatejše podatke, ne pomeni pa, da ni prisotnih nobenih napak. Le-te se lahko nanašajo

na različno razumevanje v vprašalniku uporabljenih pojmov, grafično oblikovanje vpra-

šalnika in tako naprej.

Druga podskupina napak iz zasnove vprašalnika zajema napake, ki nastanejo pri pri-

klicu akterjev (iz spomina) oziroma prepoznavanju (s seznama). Število prepoznanih
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akterjev je navadno večje kot število priklicanih po spominu, hkrati pa uporaba se-

znama poenostavi poročanje akterjev.

Pri velikem številu relacij, ki se uporabljajo pri zbiranju omrežnih podatkov, je po-

membna smer le-te (Stork in Richards, 1992; Ferligoj in Hlebec, 1999). Tako lahko

akterje sprašujemo o prejemanju oziroma nudenju socialne opore.

10.3.3 Napake, povzročene s strani akterjev

Tretjo skupino napak v zasnovi raziskave sestavljajo napake, povzročene s strani ak-

terjev: neodgovor akterja, neodgovor na povezavi in merske napake.

V primeru, da imamo v omrežju z n akterji m akterjev, ki zavrnejo sodelovanje, je sto-

pnja odgovorov akterjev (in stopnja odgovorov na relaciji) enaka 1 − m
n (Knoke and

Yang, 2008). Podatki med respondenti so popolni, medtem ko so podatki med respon-

denti in nerespondenti le delni in jih lahko uporabimo za nadomeščanje manjkajočih

vrednosti. V matrični predstavitvi omrežja se nerespondenti kažejo kot vrstice manj-

kajočih podatkov. Postopki za delo z manjkajočimi podatki zajemajo tri glavne pri-

stope: pristop popolnih podatkov, rekonstrukcija in imputacije.

Pristop popolnih podatkov upošteva le podatke med respondenti in čeprav imamo o

nerespondentih zbrane vhodne povezave, le-te zavrže. Poleg vrstice z nerespondenti

se zbrišejo tudi ustrezni stolpci in rezultat je manjše omrežje.

Pri rekonstrukciji upoštevamo delno zbrane podatke med respondenti in nerespon-

denti tako, da manjkajočo vrstico podatkov zamenjamo z ustreznim stolpcem ozi-

roma manjkajočo izhodno povezavo rij zamenjamo z vhodno povezavo rji (Stork in Ri-

chards, 1992; Huisman, 2009). Slabost rekonstrukcije je, da le-ta ni možna med dvema

nerespondentoma. V takem primeru so potrebne dodatne imputacije, v najenostav-

nejšem primeru se namesto povezav med nerespondenti vstavi 0.

Imputacije povezav v omrežjih nadomestijo manjkajoče povezave z ocenami in tako
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ustvarijo navidezno popolno omrežje. Manjkajoče povezave se lahko ocenijo s pov-

prečnim številom povezav v omrežju, kar pomeni, da se za redka omrežja z gostoto

manjšo ali enako 0,5, vstavi 0, za gosta omrežja pa 1. Druga možnost je ocena manj-

kajočih vrednosti na podlagi povprečja vhodnih povezav. V primeru binarnih omrežij

to pomeni, da se vstavi 1 (torej povezava) za akterje, ki so popularni glede na vhodne

povezave. Potrebna je izbira meje, in sicer: če je le-ta 0,5, se vstavi 1 (če je akterja zbralo

vsaj pol respondentov) in 0 v nasprotnem primeru. Opisane imputacije imenujemo

imputacije na podlagi modusa (vhodnih povezav). Imputacije na podlagi modusa se

lahko uporabijo tudi kot dodatne imputacije pri rekonstrukciji povezav med nerespon-

denti.

V analizah omrežij z nerespondenti se manjkajoče vrednosti vse prevečkrat zanemari

in kodira z 0, kot da gre za neobstoječe povezave. Tako smo tudi v naših simulacijah

zaradi primerjave uporabili tudi to možnost, in sicer smo namesto manjkajočih pove-

zav vstavili 0 (imputacije praznih povezav).

Problem nerespondentov je lahko rešen oziroma vsaj zmanjšan z uporabo primernih

tretmajev. Zato smo postavili drugo tezo: Stabilnost bločnega modeliranja omrežja z neod-

govori (glede na bločni model popolnega omrežja) je večja, če je uporabljena rekonstrukcija kot

pa vstavljanje brezpogojnih povprečij (na podlagi števila vhodnih povezav).

Neodgovori so lahko prisotni tudi le na posamezni povezavi oziroma povezavah. V

tem primeru akter sodeluje v raziskavi, vendar ne poda odgovora o povezavah do vseh

ostalih akterjev. Tudi v tem primeru lahko uporabimo podobne postopke, kot smo jih

opisali pri neodgovorih akterjev.

Tretja podskupina napak povzročenih s strani akterjev so merske napake. Prvo de-

finicijo merskih napak v omrežjih sta leta 1973 podala Holland in Leinhardt, in sicer

se merska napaka pojavi (ne glede na vzrok) kadar se zabeležen odgovor akterja ne

ujema s pravo prikrito strukturo. Natančneje; merska napaka se pojavi, če povezava

ni zabeležena v sociogramu, obstaja pa v pravi strukturi in obratno, če je povezava
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zabeležena v sociogramu, vendar v resnici ne obstaja.

10.4 Stabilnost bločnega modeliranja

Rezultat bločnega modeliranja sta razvrstitev akterjev v skupine in bločna matrika.

Stabilnost bločnega modeliranja na napake lahko tako definiramo oziroma merimo z

dvema kazalnikoma, kjer primerjamo originalni bločni model (’popolni bločni model’)

in bločni model dobljen iz omrežja z napakami (’izmerjeni bločni model’).

Prvi kazalnik, posplošeni Randov kazalnik (ARI, angl: Adjusted Rand Index), meri uje-

manje med obema razvrstitvama akterjev. Vrednost 1 pomeni, da sta razvrstitvi popol-

noma enaki, medtem ko vrednost 0 pomeni, da sta razvrstitvi dobljeni naključno.

Na podlagi obširnih simulacij, ki jih je predstavil Steinley (2004) smo se odločili, da

bomo bločni model označili kot stabilen glede na razvrstitev, če bodo vrednosti po-

splošenega Randovega kazalnika nad 0,8.

Drugi kazalnik, odstotek napačnih blokov (ErrB, angl: proportion of incorrect block types),

primerja originalno in izmerjeno bločno matriko oziroma natančneje: primerja tipe

blokov in njihov položaj. Vrednost 0 pomeni, da so vsi bloki v obeh bločnih matrikah

enaki in enako razvrščeni, medtem ko največja vrednost 1 pomeni, da se nobena dva

bloka (iz originalne in izmerjene bločne matrike) ne ujemata. Za sam bločni model (oz.

bločno matriko) pa bomo rekli, da je stabilen, če bo povprečen odstotek napačnih blo-

kov pod 0,2.

Primernost obeh kazalnikov potrjujeta obe osrednji ideji analize socialnih omrežij, kot

jih je podal Doreian (2008). Prva ideja pravi, da je struktura socialnega omrežja kot

celota pomembna pri skupinskem izidu na nivoju omrežja. Druga ideja pa pravi, da

je pozicija v omrežju pomemben izid na nivoju akterja. Če primerjamo to z rezultati

bločnega modeliranja, je torej bločna matrika pomembna na nivoju omrežja, razvrsti-

tev pa na nivoju akterja.
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10.5 Zasnova simulacij za oceno stabilnosti bločnega mo-

deliranja

10.5.1 Osnovna shema simulacij

Vse simulacije v disertaciji sledijo osnovni shemi s štirimi koraki:

1. Izbira popolnega omrežja iz literature oziroma generiranje omrežja glede na znani

model.

2. Postavitev bločnega modela popolnega omrežja27.

3. Naj nGen predstavlja število simulacij za dano kombinacijo tipa napake, količino

le-teh ter v nekaterih primerih še uporabo tretmajev za manjkajoče podatke. Za

i = 1 do i = nGen naredimo naslednje:

a) Konstrukcija omrežja z napakami - izmerjeno omrežje.

b) Postavitev bločnega modela izmerjenega omrežja.

c) Primerjamo rezultate bločnega modeliranja popolnega in izmerjenega omrežja

z obema kazalnikoma: posplošeni Randov kazalnik (ARI) in odstotek napačnih

blokov (ErrB).

4. Raziščemo vpliv napak v zasnovi raziskave glede na povprečne vrednosti obeh

kazalnikov.

10.5.2 Omrežja, uporabljena v simulacijah

V simulacijah smo uporabili dve vrsti omrežij: realna omrežja, znana iz literature, in

simulirana omrežja glede na znan začetni model. Pri simuliranih omrežjih smo tako

kot vhodne parametre potrebovali velikost omrežja s številom skupin akterjev oziroma

natančneje začetno razvrstitev akterjev, bločno matriko ter verjetnosti povezav v posa-

meznih blokih.

27Popolno omrežje je začetno znano omrežje (ali začetno omrežje v simulacijah).
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10.6 Ocena stabilnosti bločnega modeliranja glede na na-

pake v zasnovi raziskave

S simulacijo različnih tipov napak in količine napak smo poskušali odgovoriti na drugo

raziskovalno vprašanje o stabilnosti bločnega modeliranja.

10.6.1 Napake zaradi omejevanja števila izbir

Najprej smo poskušali oceniti stabilnost bločnega modeliranja v primeru, ko je name-

sto neomejenega števila izbir v zasnovi vprašalnika postavljena neka omejitev nomi-

nacij. Rezultati, dobljeni na podlagi simulacij z dvema začetnima realnima omrežjema,

kažejo, da lahko omejevanje števila izbir uniči bločno strukturo, če je omejitev posta-

vljena prestrogo oziroma predaleč od resničnega števila želenih nominacij posame-

znih akterjev. Kot je poudaril Newman (2010) so omejitve pogosto postavljene zaradi

praktičnih razlogov, da zmanjšajo delo raziskovalca. Radi bi poudarili, da to ni pravi

razlog za postavljanje omejitev števila izbir, prav tako pred njihovo uporabo svari več

drugih avtorjev (Holland in Leinhardt, 1973; Kossinets, 2006).

Glede na dobljene bločne modele s strukturno enakovrednostjo lahko zaključimo, da

omejevanje števila izbir ni priporočljivo. Če so omejitve potrebne še iz kakšnega dru-

gega razloga, le-teh ne smemo postaviti preveč strogo. Bolje je namreč, da akterje prisi-

limo, da nominirajo več prijateljev kot jih imajo v resnici, kot pa da jim onemogočimo,

da naštejejo vse svoje prijatelje.

10.6.2 Napake zaradi smeri vprašanja

Stabilnost bločnega modeliranja s strukturno enakovrednostjo glede na smer zastavlje-

nega vprašanja smo preverjali z dvema paroma realnih omrežij. V prvem primeru so

bili akterji člani študentske vlade, ki smo jih spraševali po relacijah ’vprašati za mne-

nje’ in ’biti vprašan za mnenje’. V drugem primeru so bili člani omrežja dijaki, ki so

odgovarjali na vprašanji o dajanju in prejemanju emocionalne opore.
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Ugotovili smo, da ima smer zastavljenega vprašanja velik vpliv na dobljeni bločni mo-

del. Tako razvrstitev akterjev kot bločna matrika sta odvisni od zastavljenega vprašanja.

Z nadaljnjimi raziskavami bi morali ugotoviti, ali obstaja kakšen skupen vzorec po-

vezav v bločnih modelih, dobljenimi iz omrežij zbranimi z originalnim in obrnjenim

vprašanjem. Omrežje, dobljeno s potrditvijo povezav iz obeh omrežij, bi bilo morda

lahko uporabljeno za iskanje najbolj stabilnih oziroma povezanih skupin akterjev.

10.6.3 Napake zaradi neodgovora akterja

Ocenjevanje stabilnosti bločnega modeliranja s strukturno enakovrednostjo na napake

zaradi neodgovorov akterjev smo izvedli na podlagi dveh realnih omrežij in treh obse-

žnih simulacij. V osnovno shemo simulacij smo vključili različne načine določanja

manjkajočih akterjev oziroma akterjev z neodgovori ter različne načine nadomeščanja

manjkajočih povezav.

Tako smo v osnovno shemo simulacij vključili tri različne načine generiranja manj-

kajočih podatkov, in sicer:

i) popolnoma naključno;

ii) na podlagi vhodne stopnje;

iii) na podlagi izhodne stopnje.

V primeru določanja nerespondentov glede na vhodno oziroma izhodno stopnjo, je

manjša vhodna oziroma izhodna stopnja pomenila večjo verjetnost, da je akter izbran

kot nerespondent. Huisman in Steglich (2008) pravita, da tak izbor respondentov od-

seva karakteristike realnih zbranih omrežij, kjer so popularni akterji (z visoko vhodno

stopnjo) bolj pripravljeni sodelovati v raziskavah, kot neaktivni akterji z nizko izho-

dno stopnjo. Costenbader in Valente (2003) tako ugotavljata, da akterji, ki odklonijo

sodelovanje oziroma so manjkajoči, prihajajo z obrobja omrežja.

Prvi način generiranja nerespondentov se ujema z Rubinovo klasifikacijo (1976) manj-

kajočih podatkov popolnoma nakljucno (angl. MCAR - missing completely at random),

saj akterji z neodgovori niso povezani z lastnostmi omrežja ali samih akterjev. Določanje
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nerespondentov na podlagi vhodne ali izhodne stopnje je nenakljucno (angl. NMAR -

not missing at random), saj je generiranje nerespondentov odvisno od omrežja oz. la-

stnosti akterjev v omrežju. Naključno generiranje manjkajočih podatkov (angl. MAR -

missing at random) ni bilo vključeno v naše simulacije. V tem primeru je določanje ne-

respondentov odvisno od njihovih lastnosti, in ne od manjkajočih povezav. Huisman

in Steglich (2008) sta na primer v svojih simulacijah uporabila podatke o porabi alko-

hola.

Za generiranjem manjkajočih akterjev smo v simulacijah uporabili še pet različnih po-

stopkov oziroma tretmajev za zmanjšanje vpliva neodgovorov: pristop popolnih po-

datkov, rekonstrukcijo, imputacije na podlagi modusa, kombinacijo rekonstrukcije in

imputacij na podlagi modusa ter imputacije prazne povezave. Za vsako omrežje je bil

postavljen bločni model, ki smo ga primerjali z začetnim znanim bločnim modelom.

Stabilnost bločnih modelov glede na različno število manjkajočih akterjev in postopke

za zmanjšanje vpliva neodgovorov smo ocenjevali s pomočjo povprečnih vrednosti

obeh predstavljenih kazalnikov. Kot smo zapisali pri definiciji obeh kazalnikov, pra-

vimo, da je bločni model stabilen glede na razvrstitev akterjev, če so povprečne vre-

dnosti prilagojenega Randovega kazalnika ARI nad 0,8. V primeru drugega kazalnika,

odstotka napačnih blokov (ErrB), pravimo, da je bločni model stabilen, če so vrednosti

kazalnika pod 0,2.

Poleg tega smo postavili še multiple regresijske modele, kjer smo vrednosti kazalni-

kov napovedovali s številom manjkajočih akterjev, postopkom za manjkajoče podatke

in načinom generiranja manjkajočih podatkov. Splošna ugotovitev je, da imajo odvisne

spremenljivke večjo napovedno moč v primeru kazalnika ARI, torej pri napovedova-

nju ujemanja razvrstitev, kot pri napovedovanju bločne strukture (kazalnik ErrB).

Glavna ugotovitev je, da je uspešnost posameznih postopkov za manjkajoče podatke

odvisna od simetrije omrežja. Simetrijo omrežja smo merili z recipročnostjo28 in s sime-

28Recipročnost (Huisman, 2009) je definirana kot: recipročnost = 2·M
2·M+A , kjer je M število medseboj-
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trijo bločnega modela. Tretmaji, ki so uspešni v primeru simetričnih omrežij, se slabo

obnašajo v primeru nesimetričnih omrežij in obratno. Za simetrična omrežja sta tako

najboljša tretmaja rekonstrukcija in kombinacija rekonstrukcije z imputacijami na pod-

lagi modusa za povezave med nerespondenti. Za nesimetrična omrežja sta najboljša

tretmaja imputacije na podlagi modusa in pristop popolnih podatkov.

Tako lahko našo tezo 2 le delno potrdimo. Stabilnost bločnega modeliranja je višja, če

uporabimo rekonstrukcijo v primerjavi z imputacijami na podlagi modusa le za sime-

trična omrežja. V nasprotnem primeru, torej pri nesimetričnih omrežjih, so imputacije

na podlagi modusa boljši tretma kot rekonstrukcija.

Imputacije praznih povezav so v vseh primerih najslabši možni tretma in zato odsve-

tujemo njihovo uporabo. V praksi to pomeni, da je najslabše, če namesto manjkajočih

podatkov v omrežje vstavimo kar 0. Čeprav se je pristop popolnih podatkov v simu-

lacijah izkazal kot uspešen tretma v primeru nesimetričnih omrežij, njegovo uporabo

odsvetujemo. Z odstranitvijo nerespondentov iz omrežja izgubimo namreč informa-

cijo o njihovem položaju glede na druge akterje.

Simulacija neodgovorov akterjev na podlagi vhodne in izhodne stopne ni pokazala bi-

stvenih razlik z naključno generiranimi nerespondenti. Razlog za to so najverjetneje

majhna začetna omrežja, kjer razlike med akterji niso bili zelo izrazite.

10.6.4 Napake zaradi neodgovora na povezavi

V nadaljevanju raziskovanja stabilnosti bločnega modeliranja z neodgovori smo se

osredotočili na neodgovore na povezavah. Podobno kot pri manjkajočih akterjih so

tudi manjkajoče povezave v raziskavah in analizah vse prevečkrat kodirane kot 0, kar

pomeni, da povezava ne obstaja. S simulacijami smo poskušali preveriti, ali je ta pre-

prost tretma manjkajočih povezav sprejemljiv ter kateri tretma najbolj zmanjša vpliv

manjkajočih povezav.

nih diad, A pa število asimetričnih diad.
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Stabilnost bločnega modeliranja na podlagi strukturne enakovrednosti v omrežjih z

manjkajočimi povezavami smo ocenjevali s simulacijami na štirih realnih omrežjih. Im-

putacije na podlagi modusa so najbolj primerne za omrežja z nizko recipročnostjo ter

niso primerne za strukture oblike jedro-periferija. Za omenjeno strukturo se je kot naj-

boljši tretma izkazala rekonstrukcija. Imputacije praznih povezav so, podobno kot pri

neodgovorih akterjev, najslabši možni tretma. To pomeni, da kodiranje manjkajočih

vrednosti z 0 ni sprejemljivo. Na splošno je stabilnost bločnega modeliranja z omrežji

z manjkajočimi povezavami višja pri odkrivanju strukture modela kot pri odkrivanju

položaja akterjev.

10.6.5 Slučajne merske napake

Kot smo že povedali, so merske napake v omrežju prisotne, če je zabeležena povezava,

ki v resnični strukturi ne obstaja in obratno, če povezava v omrežju ni zabeležena,

čeprav v resnici obstaja. Merske napake smo generirali naključno, kontrolirali smo

le količino simuliranih napak. Merske napake smo simulirali tako, da smo naključno

izbrane povezave spremenili, kar pomeni, da smo obstoječe povezave spremenili v

prazne (1 smo spremenili v 0) in obratno, iz neobstoječih povezav smo ustvarili pove-

zave (0 smo spremenili v 1).

Najprej smo ocenjevali stabilnost bločnega modeliranja s strukturno enakovrednostjo.

Glede na rezultate, dobljene z realnimi in simuliranimi omrežji, lahko rečemo, da je

bločno modeliranje s strukturno enakovrednostjo zelo stabilno. Če primerjamo stabil-

nost bločne strukture in razvrstitev akterjev, lahko zaključimo, da je bločna struktura

nekoliko bolj stabilna. V prikazanih primerih omrežij je tako do 20% merskih napak

še zagotavljalo sprejemljivo razvrstitev akterjev, medtem ko smo dobili sprejemljivo

strukturo modela v povprečju tudi pri omrežjih, ki so imela med 25% in 30% spreme-

njenih povezav. Torej, bločno modeliranje s strukturno enakovrednostjo (ne glede na

število skupin in simetričnost omrežja) je bolj stabilno na makro nivoju kot na mikro

nivoju omrežja.
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Simulacije s strukturno enakovrednostjo smo nato razširili še na regularno enakovre-

dnost. Omrežja smo generirali na podlagi znane razvrstitve akterjev in bločne matrike.

Verjetnost povezav v regularnih blokih smo najprej računali s pomočjo velikosti bloka.

Na ta način smo dobili regularne bloke, ki ravno zadoščajo temu kriteriju. Povprečne

gostote regularnih blokov so bile v različnih modelih tako med 0,2 in 0,4.

Ne glede na izbrani model (jedro-periferija ali povezane skupine) in število skupin so

se bločni modeli z regularno enakovrednostjo izkazali za ekstremno nestabilne. Do-

bljena razvrstitev izmerjenega bločnega modela je bila v vseh primerih nesprejemljiva

že za 2% spremenjenih povezav, v polovici predstavljenih začetnih omrežij pa že celo

pri samo 1% spremenjenih povezav. Struktura bločnega modela je bila v povprečju

sprejemljiva za največ 3% spremenjenih povezav.

Poskušali smo ugotoviti, zakaj je regularna enakovrednost tako zelo nestabilna in kaj

se zgodi z bločnim modelom, če zamenjamo npr. samo eno povezavo. Ugotovili smo,

da večkrat dobimo več enakovrednih razvrstitev (glede na vrednost kriterijske funk-

cije), med katerimi brez dodatnega znanja ne moremo izbrati najprimernejše. Med

enakovrednimi razvrstitvami je lahko katera izmed rešitev enaka originalni razvrstitvi,

druge pa se navadno povsem razlikujejo. Ker trenutno nimamo objektivnih kriterijev

za izbiro najprimernejše razvrstitve v takih primerih, moramo bločne modele z regu-

larno enakovrednostjo obravnavati še posebej previdno, obvezno pa moramo vključiti

dodatna znanja raziskovalcev.

Možno razlago nestabilnosti regularne enakovrednosti smo iskali tudi v nizki pov-

prečni gostoti regularnih blokov. Tako smo namesto izračunane verjetnosti povezav v

regularnih blokih to verjetnost povečali na 0,6 oziroma 0,8. V obeh primerih se regu-

larna enakovrednost izkaže za še bolj nestabilno, saj samo 1% spremenjenih povezav

poruši tako razvrstitev kot bločni model. Ena od možnih rešitev je uporaba strukturne

enakovrednosti, tudi če omrežje vsebuje vzorce povezav, ki ustrezajo definiciji regu-

larne enakovrednosti.
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Kljub nestabilnosti regularne enakovrednosti smo preverili, kako občutljiva je na mer-

ske napake posplošena enakovrednost, ki jo lahko definiramo z izborom blokov. Po-

skusili smo več različnih kombinacij dovoljenih idealnih blokov, vendar smo v vseh

primerih že z 1% spremenjenih povezav dobili povsem nesprejemljiv bločni model

glede na originalnega.

Tako smo našo tezo 1, da je strukturna enakovrednost bolj stabilna kot regularna ozi-

roma posplošena enakovrednost, potrdili. Nestabilni rezultati regularne enakovre-

dnosti zahtevajo natančnejši pregled definicije regularne enakovrednosti ter primerov

njene uporabe v literaturi in postavitev smernic za njeno uporabo in interpretacijo.

10.7 Vpliv razlik v karakteristikah omrežij na stabilnost

bločnega modeliranja

V nadaljevanju smo poskušali najti odgovor na prvo raziskovalno vprašanje, pri kate-

rem nas je zanimalo, v kakšnem obsegu so razlike v karakteristikah popolnega in iz-

merjenega omrežja ter korelacije in/ali Evklidske razdalje med vektorjema z lastnostmi

akterjev v obeh omrežjih sposobne napovedati rezultat bločnega modeliranja.

Glede na nestabilnost regularne in posplošene enakovrednosti smo v analizah vpliva

sprememb lastnosti omrežij uporabili le strukturno enakovrednost. Vsako izmerjeno

omrežje z naključno spremenjenimi povezavami smo primerjali s pravim, in sicer smo

primerjali tako bločna modela (s prej predstavljenima kazalnikoma ARI in ErrB) kot

karakteristike obeh omrežij. Tako smo izračunali relativno razliko v gostoti obeh omrežij,

recipročnosti, številu medsebojnih diad, številu asimetričnih diad in številu praznih

diad.

Precej karakteristik omrežja opišemo z vektorji, saj so mere podane na nivoju akterjev,

torej za vsakega člana omrežja posebej. V takih primerih smo izračunali Pearsonov

koeficient korelacije ter Evklidsko razdaljo med vektorjema popolnega in izmerjenega

omrežja. Vektorje smo primerjali na dva načina, saj obe izbrani meri različnosti raz-
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krivata različne vzorce med vektorjema (Ferligoj, 1989). Tako je npr. Pearsonov ko-

eficient korelacije med dvema vzporednima vektorjema 1. Lahko bi rekli, da imata

taka dva vektorja enak ’profil’, le da je vzporedno premaknjen. Razlike v vrednostih

obeh vektorjev pa lahko tudi v primeru vzporednih vektorjev zazna Evklidska raz-

dalja. Tako v popolnem kot v izmerjenem omrežju smo izračunali bližino,središčnost

glede na vhodno dostopnost, središčnost glede na izhodno dostopnost, središčnost

glede na izhodno stopnjo, središčnost glede na vhodno stopnjo, središčnost glede na

stopnjo, središčnost glede na vmesnost ter uteži kazal in vsebin.

V analizi smo tako raziskali multiple linearne regresijske modele ter, kjer so podatki

nakazovali eksponentno odvisnost, še posplošene linearne modele (GLM). Simulacije

smo, tako kot pri preučevanju vpliva merskih napak, izvedli na dveh realnih omrežjih

ter treh simuliranih modelih.

Najprej smo tako preučili Pearsonove koeficiente korelacije oziroma enostavne line-

arne regresijske modele med vsemi napovednimi spremenljivkami (odstotek spreme-

njenih povezav, relativne razlike med karakteristikami omrežja in korelacija oz. Ev-

klidska razdalja med vektorji z lastnostmi akterjev) in odvisnima kazalnikoma ujema-

nja obeh bločnih modelov (ARI in ErrB). Daleč največjo napovedno moč ima odstotek

spremenjenih povezav, saj lahko napove vsaj 50% variacije kazalnika ARI ne glede

na začetno strukturo modela. Vse napovedne spremenljivke imajo manjšo napovedno

moč pri napovedovanju bločne strukture (kazalnik ErrB) kot razvrstitve akterjev (ka-

zalnik ARI).

Relativne razlike v karakteristikah omrežja imajo manjšo napovedno moč, če je struk-

tura omrežja simetrična. Kot smo povedali že pri analizi merskih napak, je strukturna

enakovrednost zelo stabilna tudi za relativno visok odstotek spremenjenih povezav.

Na drugi strani so karakteristike omrežja in lastnosti akterjev bolj občutljive na majhne

spremembe v omrežju. Tako bi morali v nadaljnje raziskave vključiti bolj univerzalne

modele, ki bi lahko upoštevali to različno občutljivost neodvisnih in odvisnih spre-

menljivk.
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Če primerjamo napovedne spremenljivke izračunane s korelacijo in Evklidsko razdaljo

med ustreznima vektorjema lastnosti akterjev, lahko zaključimo, da imajo večjo napo-

vedno moč stabilnosti bločnega modela spremenljivke izračunane s korelacijo. Naj-

boljše spremenljivke so tako korelacijski koeficient med vektorji središčnosti glede na

vhodno in skupno stopnjo (vhodne in izhodne povezave) ter korelacije med vektor-

jema uteži kazal in vsebin. Prva možna razlaga je, da ima linearnost, ki jo izmerimo

s korelacijo med dvema vektorjema, večji vpliv na stabilnost bločnega modela. Odgo-

vor, zakaj spremenljivke, izračunane z Evklidsko razdaljo, pojasnijo manj variance, se

skriva najbrž v komentarju Fausta in Romneya (1985), ki pravita, da se z uporabo raz-

dalje kot mere podobnosti na nestandardiziranih spremenljivkah pomešajo informacije

o podobnosti v vzorcih z informacijami o razlikah povprečja in variance posamezne

spremenljivke.

Bolj podrobno smo raziskali odvisnost med odstotkom spremenjenih povezav in obema

kazalnikoma stabilnosti bločnega modeliranja. Linearnemu regresijskemu modelu smo

tako dodali še sestavljen regresijski model (angl. piecewise linear regression model) ter

posplošen linearen model z eksponentno odvisnostjo. V večini primerov se je za naj-

boljšega izkazal dvodelni regresijski model. Seveda bi dobili še boljše modele, če bi

glede na podatke izbrali tri- ali večdelni model, vendar je vprašanje, če so glede na

naravo podatkov takšni modeli smiselni.

V prvem raziskovalnem vprašanju smo se osredotočili na razlike med omrežjema in

njihovo zmožnostjo napovedati stabilnost bločnega modela. Najbrž bi bilo bolj smi-

selno vprašanje, ali lahko same karakteristike izmerjenega omrežja napovedo stabil-

nost bločnega modela, saj pravega začetnega omrežja (in tako tudi ne razlik med pra-

vim in izmerjenim omrežjem), ki prestavlja skrito temeljno strukturo, v resničnih raz-

iskavah ne poznamo. V tem primeru se kot najboljše napovedne spremenljivke za

stabilnost bločnega modeliranja izkažejo gostota omrežja in število medsebojnih diad

(če je odstotek spremenjenih povezav konstanten). Teh zaključkov zaradi majhnega

števila začetnih omrežij žal trenutno ne moremo posplošiti. Potrebne bi bile nadaljnje
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simulacije z večjim številom začetnih omrežij ter različno velikostjo in strukturo le-teh.

V disertaciji so sistematično predstavljene napake v zasnovi raziskav iz socialnih omre-

žij. Glavni doprinos disertacije k razvoju znanosti je obširna raziskava o vplivu po-

sameznih tipov napak na rezultate posplošenega bločnega modeliranja. Za namen

primerjanja bločnih modelov smo poiskali oziroma razvili dva kazalnika, ki primer-

jata bločna modela tako na individualnem mikro nivoju akterja, kot na makro nivoju

omrežja oziroma modela.

Najbolj podrobno je raziskana strukturna enakovrednost, ki se je izkazala tudi za naj-

stabilnejšo. Regularna enakovrednost in posplošena enakovrednost so se izkazale za

izjemno nestabilne, tako glede na razvrstitev kot strukturo bločnega modela.

Najbolj raziskan tip napak so neodgovori akterjev, ki so tudi zelo pogost vir napak v

dejanskih raziskavah. Na podlagi obsežnih simulacij smo podali priporočila za upo-

rabo različnih tretmajev za manjkajoče podatke zaradi neodgovorov. Izbira tretmaja

je odvisna od simetričnosti omrežja, in sicer tako od recipročnosti kot simetričnosti

samega modela. Pomembna ugotovitev je, da je (v praksi vse prevečkrat uporabljeno)

ignoriranje manjkajočih povezav, ki se kodirajo kar kot prazne, najslabša možna rešitev

za stabilnost bločnega modela oziroma za postavitev pravega modela. Podobne rezul-

tate in priporočila kot v primeru neodgovora akterja smo dobili tudi v primeru neod-

govorov na povezavi.

10.8 Ideje za nadaljnje raziskovanje

V disertaciji predstavljene simulacije bo v prihodnosti potrebno izvesti za večja omrežja.

Trenutno žal ne obstaja (povsem) zadovoljiva rešitev v programih, ki smo jih upo-

rabljali pri pripravi disertacije. Simulacije so bile narejene v programu R s paketom

blockmodeling (Žiberna, 2008), ki je primeren za generiranje začetnih omrežij in simu-

liranje napak, vendar je nekoliko počasen pri izvedbi bločnega modeliranja v primeru

večjih omrežij ter večjega števila skupin. Trenutno je ena izmed možnih rešitev delo s

testnim paketom testBlockmodelingTestC, ki ga je priredil Žiberna.
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Druga možnost bi bila povezava programa Pajek (Batagelj in Mrvar, 2010a,b) z R-om

na način, da bi v R-u lahko zagnali Pajka in bločno modeliranje, podatki oz. rezultati

pa bi se shranjevali v R-u.

V primeru strukturne enakovrednosti bi morali uporabiti širši nabor vzorcev posta-

vitve blokov. Poleg različnih tipov bločnih matrik bi morali obravnavati še različne

velikosti omrežij ter različno število skupin. Podobno kot pri regularni enakovredno-

sti bi lahko kot začetne modele vzeli modele s povezanimi skupinami oziroma modele,

ki predstavljajo jedro in periferijo.

Simulacije skupaj z napotki raziskovalcem bi bilo potrebno razširiti tudi na druge tipe

enakovrednosti. V primeru posplošene enakovrednosti imamo širok nabor blokov, ki

jih lahko kombiniramo na ogromno načinov, zato bi morale biti simulacije pripravljene

še posebej skrbno.

Možne postopke v primeru neodgovorov akterja ali neodgovora na povezavah bi bilo

potrebno razširiti na kompleksnejše tretmaje. V običajnih družboslovnih raziskavah

se pogosto uporablja EM algoritem in večkratne (multiple) imputacije, zato bi bilo po-

trebno preučiti možnost njihove implementacije v analizo omrežij.

V primeru neodgovorov na povezavah bi bilo potrebno uporabiti nenaključno gene-

riranje manjkajočih odgovorov. Prav tako bi morali uporabiti lastnosti akterjev pri

simuliranju manjkajočih podatkov.

Poleg večjih omrežij bo potrebno analizo napak v zasnovi raziskave razširiti tudi na

predznačena omrežja ter na omrežja z vrednostmi na povezavah. V tem primeru bo

potrebno poleg količine napak v omrežju nadzirati tudi moč oziroma razsežnost napak

skupaj s smerjo spremembe.
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10.9 Napotki raziskovalcem

Na podlagi rezultatov smo oblikovali osnovne smernice raziskovalcem, ki se nanašajo

tako na načrtovanje raziskave kot na analizo zbranih podatkov z bločnim modelira-

njem.

• Med pripravo raziskave

– Pravilno določite meje omrežij.

Izključitev akterjev iz omrežja lahko spremeni dobljeni bločni model. V

primeru, da je število manjkajočih akterjev majhno, lahko dobimo pravilen

bločni model glede na tip blokov in njihov položaj v bločni matriki (rezultati

dobljeni s pristopom popolnih podatkov v poglavju 7.3).

– Definicija raziskovalnega vprašanja glede na zagotavljanje ali prejemanje

socialne opore.

Omrežja ter posledično dobljeni bločni modeli se lahko precej razlikujejo,

ker merimo različne koncepte (poglavje 7.2).

– Izberite neomejeno število izbir namesto omejevanja izbir.

če je omejevanje števila akterjev nujno, naj meja ne bo postavljena prestrogo

(poglavje 7).

• Med zbiranjem podatkov

– Manjkajoče povezave naj bodo jasno zabeležene, na primer z NA, v ma-

tričnem prikazu omrežja.

Manjkajoče povezave so prepogosto označene z 0, kar je najslabša možnost

pri analizi omrežij z bločnim modeliranjem (rezultati o imputacijah (vsta-

vljanju) prazne povezave v poglavju 7.3).

– Nikoli ne nadomestite manjkajočih povezav z 0,

ker so imputacije praznih povezav najslabši možni postopek tako glede na

mikro nivo akterja (pozicija v omrežju) kot tudi glede na skupinski nivo

omrežja, podan z bločno strukturo (rezultati o imputacijah prazne povezave

v poglavju 7.3).
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– Ugotovite, ali v omrežju obstaja neodgovor aktera in/ali neodgovor na po-

vezavi. Poročajte o odstotku neodgovorov akterjev in/ali neodgovorov na

povezavah skupaj z velikostjo omrežja-

• Pri izbiri tipa bločnega modela

– Strukturna enakovrednost je zelo stabilna do 50% nerespondentov ali 15%

slučajnih merskih napak (poglavji 7.3 in 7.5).

– Regularna in posplošeni tipi enakovrednosti so izjemno nestabilni, ker

lahko ena spremenjena povezava popolnoma spremeni strukturo modela

(poglavja 7.3.5, 7.5.4 in 7.5.5).

• Med analizo podatkov (bločno modeliranje)

– Ocenite recipročnost popolnega omrežja z namenom izbire najboljšega po-

stopka za nadomeščanje manjkajočih podatkov zaradi neodgovorov.

– Če je recipročnost nižja kot 0,5, naj bo uporabljen pristop popolnih po-

datkov ali imputacije na osnovi modusa.

– Če je recipročnost višja kot 0,5, naj bo uporabljen pristop popolnih podat-

kov ali eden izmed obeh postopkov z rekonstrukcijo.

– Ne uporabite pristopa popolnih podatkov, če je namen raziskave ugoto-

viti pozicijo nerespondentov v omrežju.
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A All simple linear regressions with

data for actor non-response

Table A.1: Linear regression models for all combinations of whole networks, missing
data mechanism and treatments for ARI

Missing Estimate Std. Confid. interval t-test

Net mechanism Treatment β̂ Error 2.5% 97.5% β0 t value Pr(<|t|)
boy-girl random NTI -0.117 0.002840 -0.122 -0.111 -0.040 -27.009 0.000
liking RE -0.014 0.001659 -0.017 -0.011 -0.040 15.662 1.000
ties MO -0.030 0.002540 -0.034 -0.025 -0.040 4.134 1.000
network REMO -0.009 0.001393 -0.012 -0.007 -0.040 22.026 1.000

CC -0.008 0.001451 -0.011 -0.005 -0.040 22.226 1.000
based on NTI -0.112 0.002571 -0.117 -0.107 -0.040 -27.956 0.000
outdegree RE -0.004 0.000777 -0.005 -0.002 -0.040 46.638 1.000

MO -0.129 0.003753 -0.137 -0.122 -0.040 -23.831 0.000
REMO -0.002 0.000445 -0.003 -0.001 -0.040 85.952 1.000
CC -0.008 0.001480 -0.011 -0.005 -0.040 21.420 1.000

based on NTI -0.112 0.002571 -0.117 -0.107 -0.040 -27.956 0.000
indegree RE -0.004 0.000777 -0.005 -0.002 -0.040 46.638 1.000

MO -0.131 0.003061 -0.137 -0.125 -0.040 -29.594 0.000
REMO -0.002 0.000445 -0.003 -0.001 -0.040 85.952 1.000
CC -0.003 0.000795 -0.005 -0.002 -0.040 46.241 1.000

note random NTI -0.131 0.001859 -0.134 -0.127 -0.033 -52.354 0.000
borrowing RE -0.109 0.001884 -0.113 -0.105 -0.033 -40.134 0.000
network MO -0.084 0.001711 -0.088 -0.081 -0.033 -29.901 0.000

REMO -0.077 0.001934 -0.081 -0.074 -0.033 -22.794 0.000
CC -0.050 0.002377 -0.055 -0.045 -0.033 -6.945 0.000

based on NTI -0.133 0.001583 -0.136 -0.130 -0.033 -63.204 0.000
outdegree RE -0.106 0.001904 -0.110 -0.103 -0.033 -38.358 0.000

MO -0.072 0.001861 -0.076 -0.069 -0.033 -20.904 0.000
REMO -0.063 0.002228 -0.067 -0.058 -0.033 -13.153 0.000
CC -0.042 0.002214 -0.046 -0.037 -0.033 -3.818 0.000

based on NTI -0.133 0.001583 -0.136 -0.130 -0.033 -63.204 0.000
indegree RE -0.097 0.001996 -0.101 -0.093 -0.033 -31.725 0.000

MO -0.072 0.001861 -0.076 -0.069 -0.033 -20.904 0.000
REMO -0.079 0.002532 -0.084 -0.074 -0.033 -18.173 0.000
CC -0.083 0.001806 -0.086 -0.079 -0.033 -27.260 0.000

completely random NTI -0.117 0.000371 -0.117 -0.116 -0.040 -206.382 0.000
symmetric RE -0.024 0.000245 -0.025 -0.024 -0.040 65.264 1.000
network MO -0.141 0.000436 -0.141 -0.140 -0.040 -230.605 0.000

REMO -0.033 0.000287 -0.034 -0.032 -0.040 24.548 1.000
CC -0.045 0.000343 -0.045 -0.044 -0.040 -13.515 0.000

based on NTI -0.117 0.000384 -0.118 -0.116 -0.040 -200.176 0.000
outdegree RE -0.021 0.000244 -0.021 -0.020 -0.040 78.671 1.000

MO -0.139 0.000439 -0.139 -0.138 -0.040 -224.567 0.000
REMO -0.033 0.000302 -0.034 -0.033 -0.040 22.233 1.000

continued on next page
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continued from previous page
Missing Estimate Std. Confid. interval t-test

Net mechanism Treatment β̂ Error 2.5% 97.5% β0 t value Pr(<|t|)
CC -0.044 0.000338 -0.045 -0.044 -0.040 -12.598 0.000

based on NTI -0.114 0.000355 -0.115 -0.113 -0.040 -208.364 0.000
indegree RE -0.026 0.000245 -0.026 -0.025 -0.040 58.645 1.000

MO -0.135 0.000431 -0.135 -0.134 -0.040 -219.660 0.000
REMO -0.033 0.000277 -0.033 -0.032 -0.040 27.026 1.000
CC -0.097 0.000457 -0.098 -0.096 -0.040 -125.367 0.000

second random NTI -0.099 0.000111 -0.100 -0.099 -0.033 -597.382 0.000
non-symmetric RE -0.097 0.000154 -0.098 -0.097 -0.033 -416.152 0.000
blockmodel MO -0.101 0.000147 -0.101 -0.101 -0.033 -460.084 0.000
structure REMO -0.092 0.000159 -0.092 -0.092 -0.033 -368.923 0.000

CC -0.015 0.000120 -0.016 -0.015 -0.033 150.012 1.000
based on NTI -0.057 0.000136 -0.058 -0.057 -0.033 -177.420 0.000
outdegree RE -0.083 0.000132 -0.083 -0.082 -0.033 -374.175 0.000

MO -0.114 0.000126 -0.114 -0.113 -0.033 -638.696 0.000
REMO -0.091 0.000133 -0.091 -0.091 -0.033 -433.321 0.000
CC -0.037 0.000151 -0.037 -0.036 -0.033 -22.648 0.000

based on NTI -0.090 0.000096 -0.090 -0.089 -0.033 -587.444 0.000
indegree RE -0.069 0.000158 -0.069 -0.068 -0.033 -222.891 0.000

MO -0.097 0.000125 -0.097 -0.096 -0.033 -505.026 0.000
REMO -0.063 0.000152 -0.064 -0.063 -0.033 -196.877 0.000
CC -0.028 0.000120 -0.028 -0.028 -0.033 45.593 1.000

second random NTI -0.092 0.000113 -0.093 -0.092 -0.033 -521.772 0.000
non-symmetric RE -0.096 0.000115 -0.096 -0.095 -0.033 -540.395 0.000
blockmodel MO -0.049 0.000107 -0.049 -0.048 -0.033 -142.646 0.000
structure REMO -0.071 0.000160 -0.071 -0.071 -0.033 -236.210 0.000

CC -0.027 0.000146 -0.027 -0.027 -0.033 43.080 1.000
based on NTI -0.080 0.000119 -0.080 -0.080 -0.033 -390.861 0.000
outdegree RE -0.085 0.000125 -0.086 -0.085 -0.033 -415.715 0.000

MO -0.064 0.000101 -0.064 -0.064 -0.033 -302.589 0.000
REMO -0.073 0.000151 -0.074 -0.073 -0.033 -264.612 0.000
CC -0.038 0.000155 -0.038 -0.038 -0.033 -30.004 0.000

based on NTI -0.094 0.000113 -0.094 -0.093 -0.033 -532.565 0.000
indegree RE -0.091 0.000121 -0.091 -0.091 -0.033 -476.149 0.000

MO -0.042 0.000112 -0.043 -0.042 -0.033 -81.454 0.000
REMO -0.090 0.000125 -0.090 -0.089 -0.033 -449.112 0.000
CC -0.019 0.000123 -0.019 -0.019 -0.033 116.039 1.000

367



Table A.2: Linear regression models for all combinations of whole networks, missing
data mechanism and treatments for ErrB

Missing Estimate Std. Confid. interval t-test

Net mechanism Treatment β̂ Error 2.5% 97.5% β0 t value Pr(>|t|)
boy-girl random NTI 0.058 0.000859 0.057 0.060 0.040 21.493 0.000
liking RE 0.015 0.001207 0.012 0.017 0.040 -21.122 1.000
ties MO 0.029 0.001660 0.025 0.032 0.040 -6.853 1.000
network REMO 0.012 0.001144 0.010 0.014 0.040 -24.495 1.000

CC 0.006 0.000917 0.004 0.008 0.040 -36.984 1.000
based on NTI 0.057 0.000869 0.055 0.059 0.040 19.802 0.000
outdegree RE 0.009 0.001026 0.007 0.011 0.040 -30.426 1.000

MO 0.087 0.001926 0.083 0.091 0.040 24.443 0.000
REMO 0.008 0.000981 0.006 0.010 0.040 -33.028 1.000
CC 0.007 0.001022 0.005 0.009 0.040 -31.874 1.000

based on NTI 0.057 0.000869 0.055 0.059 0.040 19.802 0.000
indegree RE 0.009 0.001026 0.007 0.011 0.040 -30.426 1.000

MO 0.091 0.001483 0.088 0.094 0.040 34.263 0.000
REMO 0.008 0.000981 0.006 0.010 0.040 -33.028 1.000
CC 0.004 0.000705 0.003 0.006 0.040 -50.779 1.000

note random NTI 0.045 0.001177 0.043 0.047 0.033 9.961 0.000
borrowing RE 0.038 0.001053 0.036 0.040 0.033 4.519 0.000
network MO 0.030 0.001293 0.027 0.032 0.033 -2.885 0.998

REMO 0.030 0.001114 0.028 0.033 0.033 -2.584 0.995
CC 0.031 0.001268 0.028 0.033 0.033 -1.949 0.974

based on NTI 0.045 0.001209 0.043 0.047 0.033 9.573 0.000
outdegree RE 0.038 0.001088 0.036 0.040 0.033 4.182 0.000

MO 0.028 0.001255 0.026 0.030 0.033 -4.256 1.000
REMO 0.028 0.001178 0.026 0.031 0.033 -4.215 1.000
CC 0.029 0.001232 0.026 0.031 0.033 -3.918 1.000

based on NTI 0.045 0.001209 0.043 0.047 0.033 9.573 0.000
indegree RE 0.030 0.000992 0.028 0.032 0.033 -3.172 0.999

MO 0.028 0.001255 0.026 0.030 0.033 -4.256 1.000
REMO 0.030 0.001145 0.028 0.032 0.033 -2.786 0.997
CC 0.029 0.001208 0.027 0.031 0.033 -3.606 1.000

completely random NTI 0.067 0.000196 0.066 0.067 0.040 135.647 0.000
symmetric RE 0.017 0.000155 0.016 0.017 0.040 -150.167 1.000
network MO 0.091 0.000208 0.090 0.091 0.040 243.624 0.000

REMO 0.018 0.000164 0.017 0.018 0.040 -137.074 1.000
CC 0.063 0.000282 0.063 0.064 0.040 82.453 0.000

based on NTI 0.068 0.000201 0.068 0.069 0.040 140.169 0.000
outdegree RE 0.015 0.000166 0.015 0.015 0.040 -149.593 1.000

MO 0.089 0.000204 0.089 0.089 0.040 239.882 0.000
REMO 0.017 0.000177 0.017 0.018 0.040 -127.601 1.000
CC 0.063 0.000278 0.063 0.064 0.040 83.301 0.000

based on NTI 0.063 0.000174 0.063 0.064 0.040 133.586 0.000
indegree RE 0.019 0.000152 0.019 0.019 0.040 -138.948 1.000

MO 0.092 0.000204 0.091 0.092 0.040 253.571 0.000
REMO 0.020 0.000166 0.019 0.020 0.040 -122.564 1.000
CC 0.071 0.000252 0.070 0.071 0.040 121.168 0.000

first random NTI 0.029 0.000038 0.029 0.029 0.033 -111.914 1.000
non-symmetric RE 0.034 0.000067 0.034 0.034 0.033 7.721 0.000
blockmodel MO 0.034 0.000084 0.034 0.034 0.033 8.480 0.000
structure REMO 0.025 0.000077 0.024 0.025 0.033 -113.008 1.000

CC 0.015 0.000076 0.015 0.015 0.033 -240.053 1.000
based on NTI 0.033 0.000035 0.033 0.033 0.033 -5.061 1.000
outdegree RE 0.030 0.000065 0.030 0.030 0.033 -53.889 1.000

MO 0.055 0.000071 0.054 0.055 0.033 297.916 0.000
REMO 0.030 0.000082 0.030 0.030 0.033 -37.399 1.000
CC 0.045 0.000100 0.044 0.045 0.033 113.154 0.000

based on NTI 0.031 0.000037 0.031 0.031 0.033 -58.096 1.000
indegree RE 0.028 0.000067 0.028 0.029 0.033 -73.423 1.000

MO 0.051 0.000073 0.051 0.051 0.033 238.261 0.000

continued on next page
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continued from previous page
Missing Estimate Std. Confid. interval t-test

Net mechanism Treatment β̂ Error 2.5% 97.5% β0 t value Pr(>|t|)
REMO 0.024 0.000066 0.024 0.024 0.033 -142.352 1.000
CC 0.040 0.000099 0.040 0.040 0.033 68.653 0.000

second random NTI 0.040 0.000068 0.040 0.040 0.033 92.506 0.000
non-symmetric RE 0.042 0.000072 0.042 0.042 0.033 118.016 0.000
blockmodel MO 0.030 0.000084 0.030 0.030 0.033 -35.824 1.000
structure REMO 0.035 0.000081 0.035 0.035 0.033 17.734 0.000

CC 0.031 0.000084 0.031 0.031 0.033 -24.514 1.000
based on NTI 0.041 0.000070 0.041 0.041 0.033 106.320 0.000
outdegree RE 0.042 0.000072 0.042 0.042 0.033 121.001 0.000

MO 0.039 0.000092 0.039 0.039 0.033 60.678 0.000
REMO 0.039 0.000084 0.039 0.039 0.033 67.437 0.000
CC 0.040 0.000090 0.040 0.040 0.033 75.730 0.000

based on NTI 0.039 0.000078 0.039 0.039 0.033 75.873 0.000
indegree RE 0.037 0.000077 0.037 0.037 0.033 48.146 0.000

MO 0.028 0.000083 0.028 0.028 0.033 -63.880 1.000
REMO 0.037 0.000079 0.037 0.037 0.033 47.743 0.000
CC 0.029 0.000079 0.028 0.029 0.033 -59.738 1.000
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Table B.1: Pearson correlation coefficients between indices of network properties and indices of stability of blockmodels for the

boy-girl liking ties network

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

1 ARI 1.00 -0.82 -0.77 -0.48 -0.56 -0.33 -0.64 -0.62 -0.56 -0.57 -0.57 -0.57 -0.59 -0.59 0.37 -0.46 -0.45 0.21 0.18 0.21 0.48 0.41 0.45 0.09 0.45 0.42

2 ErrB -0.82 1.00 0.58 0.35 0.44 0.27 0.49 0.47 0.42 0.42 0.42 0.41 0.44 0.44 -0.27 0.34 0.32 -0.14 -0.12 -0.15 -0.33 -0.28 -0.33 -0.06 -0.33 -0.30

3 p.changed -0.77 0.58 1.00 0.72 0.74 0.37 0.87 0.88 0.85 0.85 0.85 0.78 0.79 0.80 -0.57 0.67 0.65 -0.31 -0.30 -0.33 -0.70 -0.63 -0.70 -0.14 -0.66 -0.64

4 Dens -0.48 0.35 0.72 1.00 0.32 -0.15 0.64 0.89 0.91 0.92 0.92 0.91 0.82 0.82 -0.58 0.47 0.45 -0.21 -0.21 -0.22 -0.48 -0.44 -0.48 -0.09 -0.49 -0.48

5 Rec -0.56 0.44 0.74 0.32 1.00 0.79 0.92 0.70 0.53 0.52 0.52 0.37 0.47 0.48 -0.37 0.61 0.58 -0.24 -0.22 -0.26 -0.56 -0.50 -0.54 -0.10 -0.58 -0.56

6 D Mut -0.33 0.27 0.37 -0.15 0.79 1.00 0.55 0.23 0.07 0.06 0.06 -0.02 0.09 0.11 -0.07 0.35 0.33 -0.12 -0.09 -0.14 -0.31 -0.28 -0.29 -0.05 -0.31 -0.29

7 D Asymm -0.64 0.49 0.87 0.64 0.92 0.55 1.00 0.92 0.78 0.77 0.77 0.65 0.70 0.70 -0.53 0.66 0.63 -0.27 -0.25 -0.29 -0.62 -0.56 -0.61 -0.12 -0.65 -0.62

8 D Null -0.62 0.47 0.88 0.89 0.70 0.23 0.92 1.00 0.94 0.93 0.93 0.85 0.83 0.83 -0.61 0.63 0.60 -0.27 -0.26 -0.29 -0.61 -0.55 -0.60 -0.12 -0.63 -0.61

9 PP e -0.56 0.42 0.85 0.91 0.53 0.07 0.78 0.94 1.00 0.94 1.00 0.88 0.79 0.88 -0.62 0.66 0.60 -0.33 -0.28 -0.35 -0.62 -0.56 -0.64 -0.12 -0.65 -0.62

10 CCout e -0.57 0.42 0.85 0.92 0.52 0.06 0.77 0.93 0.94 1.00 0.93 0.90 0.91 0.80 -0.61 0.60 0.63 -0.26 -0.34 -0.29 -0.62 -0.61 -0.59 -0.13 -0.61 -0.62

11 CCin e -0.57 0.42 0.85 0.92 0.52 0.06 0.77 0.93 1.00 0.93 1.00 0.90 0.80 0.90 -0.62 0.65 0.58 -0.34 -0.27 -0.36 -0.62 -0.55 -0.65 -0.13 -0.63 -0.61

12 Dall e -0.57 0.41 0.78 0.91 0.37 -0.02 0.65 0.85 0.88 0.90 0.90 1.00 0.89 0.89 -0.52 0.54 0.53 -0.27 -0.26 -0.28 -0.62 -0.51 -0.56 -0.15 -0.52 -0.51

13 Dout e -0.59 0.44 0.79 0.82 0.47 0.09 0.70 0.83 0.79 0.91 0.80 0.89 1.00 0.76 -0.49 0.52 0.60 -0.22 -0.35 -0.24 -0.60 -0.62 -0.53 -0.15 -0.53 -0.56

14 Din e -0.59 0.44 0.80 0.82 0.48 0.11 0.70 0.83 0.88 0.80 0.90 0.89 0.76 1.00 -0.50 0.62 0.50 -0.38 -0.22 -0.40 -0.63 -0.48 -0.71 -0.16 -0.57 -0.51

15 B e 0.37 -0.27 -0.57 -0.58 -0.37 -0.07 -0.53 -0.61 -0.62 -0.61 -0.62 -0.52 -0.49 -0.50 1.00 -0.39 -0.38 0.06 0.05 0.06 0.39 0.37 0.40 -0.07 0.41 0.41

16 A e -0.46 0.34 0.67 0.47 0.61 0.35 0.66 0.63 0.66 0.60 0.65 0.54 0.52 0.62 -0.39 1.00 0.79 -0.41 -0.20 -0.41 -0.71 -0.53 -0.66 -0.07 -0.86 -0.73

17 H e -0.45 0.32 0.65 0.45 0.58 0.33 0.63 0.60 0.60 0.63 0.58 0.53 0.60 0.50 -0.38 0.79 1.00 -0.19 -0.38 -0.21 -0.70 -0.66 -0.52 -0.06 -0.74 -0.84

18 PP cor 0.21 -0.14 -0.31 -0.21 -0.24 -0.12 -0.27 -0.27 -0.33 -0.26 -0.34 -0.27 -0.22 -0.38 0.06 -0.41 -0.19 1.00 -0.04 0.98 0.40 0.14 0.68 0.22 0.37 0.18

19 CCout cor 0.18 -0.12 -0.30 -0.21 -0.22 -0.09 -0.25 -0.26 -0.28 -0.34 -0.27 -0.26 -0.35 -0.22 0.05 -0.20 -0.38 -0.04 1.00 0.01 0.34 0.71 0.19 0.25 0.20 0.34

20 CCin cor 0.21 -0.15 -0.33 -0.22 -0.26 -0.14 -0.29 -0.29 -0.35 -0.29 -0.36 -0.28 -0.24 -0.40 0.06 -0.41 -0.21 0.98 0.01 1.00 0.43 0.18 0.73 0.25 0.36 0.20

21 Dall cor 0.48 -0.33 -0.70 -0.48 -0.56 -0.31 -0.62 -0.61 -0.62 -0.62 -0.62 -0.62 -0.60 -0.63 0.39 -0.71 -0.70 0.40 0.34 0.43 1.00 0.66 0.72 0.33 0.66 0.65

22 Dout cor 0.41 -0.28 -0.63 -0.44 -0.50 -0.28 -0.56 -0.55 -0.56 -0.61 -0.55 -0.51 -0.62 -0.48 0.37 -0.53 -0.66 0.14 0.71 0.18 0.66 1.00 0.47 0.23 0.51 0.62

23 Din cor 0.45 -0.33 -0.70 -0.48 -0.54 -0.29 -0.61 -0.60 -0.64 -0.59 -0.65 -0.56 -0.53 -0.71 0.40 -0.66 -0.52 0.68 0.19 0.73 0.72 0.47 1.00 0.22 0.61 0.51

24 B cor 0.09 -0.06 -0.14 -0.09 -0.10 -0.05 -0.12 -0.12 -0.12 -0.13 -0.13 -0.15 -0.15 -0.16 -0.07 -0.07 -0.06 0.22 0.25 0.25 0.33 0.23 0.22 1.00 0.05 0.04

25 A cor 0.45 -0.33 -0.66 -0.49 -0.58 -0.31 -0.65 -0.63 -0.65 -0.61 -0.63 -0.52 -0.53 -0.57 0.41 -0.86 -0.74 0.37 0.20 0.36 0.66 0.51 0.61 0.05 1.00 0.74

26 H cor 0.42 -0.30 -0.64 -0.48 -0.56 -0.29 -0.62 -0.61 -0.62 -0.62 -0.61 -0.51 -0.56 -0.51 0.41 -0.73 -0.84 0.18 0.34 0.20 0.65 0.62 0.51 0.04 0.74 1.00
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Table B.2: Pearson correlation coefficients between indices of network properties and indices of stability of blockmodeling for the

note borrowing network

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

1 ARI 1.00 -0.72 -0.85 -0.75 -0.10 -0.51 -0.67 -0.76 -0.79 -0.79 -0.79 -0.74 -0.74 -0.79 -0.46 -0.83 -0.73 0.67 0.54 0.67 0.74 0.57 0.74 0.46 0.76 0.74

2 ErrB -0.72 1.00 0.70 0.64 0.04 0.47 0.55 0.64 0.66 0.66 0.66 0.67 0.66 0.68 0.34 0.68 0.57 -0.57 -0.39 -0.57 -0.61 -0.42 -0.62 -0.33 -0.63 -0.56

3 p.changed -0.85 0.70 1.00 0.91 0.07 0.65 0.80 0.92 0.95 0.94 0.95 0.91 0.90 0.93 0.55 0.93 0.79 -0.80 -0.60 -0.80 -0.85 -0.68 -0.86 -0.54 -0.86 -0.80

4 Dens -0.75 0.64 0.91 1.00 -0.05 0.78 0.78 0.97 0.94 0.96 0.94 0.96 0.95 0.92 0.50 0.85 0.69 -0.70 -0.55 -0.70 -0.75 -0.60 -0.75 -0.50 -0.76 -0.72

5 Rec -0.10 0.04 0.07 -0.05 1.00 -0.22 0.37 0.11 0.03 -0.00 0.03 -0.05 -0.03 -0.01 0.15 0.06 0.12 -0.06 -0.11 -0.06 -0.06 -0.15 -0.05 -0.14 -0.05 -0.11

6 D Mut -0.51 0.47 0.65 0.78 -0.22 1.00 0.28 0.62 0.69 0.72 0.69 0.79 0.77 0.73 0.32 0.60 0.45 -0.50 -0.37 -0.51 -0.53 -0.39 -0.55 -0.31 -0.55 -0.48

7 D Asymm -0.67 0.55 0.80 0.78 0.37 0.28 1.00 0.91 0.78 0.78 0.78 0.73 0.73 0.73 0.50 0.74 0.65 -0.60 -0.50 -0.60 -0.67 -0.58 -0.64 -0.50 -0.65 -0.67

8 D Null -0.76 0.64 0.92 0.97 0.11 0.62 0.91 1.00 0.93 0.95 0.93 0.92 0.92 0.90 0.53 0.85 0.71 -0.70 -0.56 -0.70 -0.76 -0.63 -0.75 -0.53 -0.76 -0.74

9 PP e -0.79 0.66 0.95 0.94 0.03 0.69 0.78 0.93 1.00 0.97 1.00 0.91 0.88 0.93 0.56 0.91 0.73 -0.83 -0.63 -0.83 -0.81 -0.65 -0.84 -0.56 -0.82 -0.76

10 CCout e -0.79 0.66 0.94 0.96 -0.00 0.72 0.78 0.95 0.97 1.00 0.97 0.92 0.93 0.91 0.57 0.88 0.72 -0.72 -0.66 -0.72 -0.77 -0.66 -0.77 -0.57 -0.78 -0.76

11 CCin e -0.79 0.66 0.95 0.94 0.03 0.69 0.78 0.93 1.00 0.97 1.00 0.91 0.88 0.93 0.56 0.91 0.73 -0.83 -0.63 -0.83 -0.81 -0.65 -0.84 -0.56 -0.82 -0.76

12 Dall e -0.74 0.67 0.91 0.96 -0.05 0.79 0.73 0.92 0.91 0.92 0.91 1.00 0.96 0.96 0.48 0.86 0.68 -0.75 -0.49 -0.75 -0.85 -0.58 -0.82 -0.47 -0.81 -0.69

13 Dout e -0.74 0.66 0.90 0.95 -0.03 0.77 0.73 0.92 0.88 0.93 0.88 0.96 1.00 0.91 0.48 0.83 0.72 -0.69 -0.52 -0.69 -0.78 -0.63 -0.75 -0.47 -0.76 -0.71

14 Din e -0.79 0.68 0.93 0.92 -0.01 0.73 0.73 0.90 0.93 0.91 0.93 0.96 0.91 1.00 0.48 0.94 0.70 -0.86 -0.52 -0.86 -0.86 -0.58 -0.93 -0.48 -0.91 -0.71

15 B e -0.46 0.34 0.55 0.50 0.15 0.32 0.50 0.53 0.56 0.57 0.56 0.48 0.48 0.48 1.00 0.51 0.46 -0.45 -0.63 -0.45 -0.50 -0.48 -0.44 -0.92 -0.44 -0.48

16 A e -0.83 0.68 0.93 0.85 0.06 0.60 0.74 0.85 0.91 0.88 0.91 0.86 0.83 0.94 0.51 1.00 0.80 -0.85 -0.57 -0.85 -0.87 -0.62 -0.93 -0.51 -0.96 -0.80

17 H e -0.73 0.57 0.79 0.69 0.12 0.45 0.65 0.71 0.73 0.72 0.73 0.68 0.72 0.70 0.46 0.80 1.00 -0.61 -0.48 -0.61 -0.72 -0.64 -0.66 -0.45 -0.73 -0.90

18 PP cor 0.67 -0.57 -0.80 -0.70 -0.06 -0.50 -0.60 -0.70 -0.83 -0.72 -0.83 -0.75 -0.69 -0.86 -0.45 -0.85 -0.61 1.00 0.47 1.00 0.80 0.50 0.92 0.44 0.86 0.60

19 CCout cor 0.54 -0.39 -0.60 -0.55 -0.11 -0.37 -0.50 -0.56 -0.63 -0.66 -0.63 -0.49 -0.52 -0.52 -0.63 -0.57 -0.48 0.47 1.00 0.47 0.46 0.63 0.48 0.62 0.48 0.52

20 CCin cor 0.67 -0.57 -0.80 -0.70 -0.06 -0.51 -0.60 -0.70 -0.83 -0.72 -0.83 -0.75 -0.69 -0.86 -0.45 -0.85 -0.61 1.00 0.47 1.00 0.80 0.50 0.92 0.44 0.86 0.60

21 Dall cor 0.74 -0.61 -0.85 -0.75 -0.06 -0.53 -0.67 -0.76 -0.81 -0.77 -0.81 -0.85 -0.78 -0.86 -0.50 -0.87 -0.72 0.80 0.46 0.80 1.00 0.61 0.87 0.49 0.85 0.69

22 Dout cor 0.57 -0.42 -0.68 -0.60 -0.15 -0.39 -0.58 -0.63 -0.65 -0.66 -0.65 -0.58 -0.63 -0.58 -0.48 -0.62 -0.64 0.50 0.63 0.50 0.61 1.00 0.53 0.48 0.54 0.66

23 Din cor 0.74 -0.62 -0.86 -0.75 -0.05 -0.55 -0.64 -0.75 -0.84 -0.77 -0.84 -0.82 -0.75 -0.93 -0.44 -0.93 -0.66 0.92 0.48 0.92 0.87 0.53 1.00 0.44 0.96 0.65

24 B cor 0.46 -0.33 -0.54 -0.50 -0.14 -0.31 -0.50 -0.53 -0.56 -0.57 -0.56 -0.47 -0.47 -0.48 -0.92 -0.51 -0.45 0.44 0.62 0.44 0.49 0.48 0.44 1.00 0.43 0.48

25 A cor 0.76 -0.63 -0.86 -0.76 -0.05 -0.55 -0.65 -0.76 -0.82 -0.78 -0.82 -0.81 -0.76 -0.91 -0.44 -0.96 -0.73 0.86 0.48 0.86 0.85 0.54 0.96 0.43 1.00 0.70

26 H cor 0.74 -0.56 -0.80 -0.72 -0.11 -0.48 -0.67 -0.74 -0.76 -0.76 -0.76 -0.69 -0.71 -0.71 -0.48 -0.80 -0.90 0.60 0.52 0.60 0.69 0.66 0.65 0.48 0.70 1.00
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Table B.3: Pearson correlation coefficients between indices of network properties and indices of stability of blockmodeling for the

completely symmetric blockmodel structure

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

1 ARI 1.00 -0.80 -0.71 -0.27 -0.34 -0.29 -0.03 -0.38 -0.18 -0.25 -0.26 -0.48 -0.53 -0.52 0.09 -0.05 -0.05 0.23 0.24 0.24 0.29 0.29 0.28 0.23 0.30 0.30

2 ErrB -0.80 1.00 0.52 0.20 0.27 0.23 0.02 0.28 0.14 0.20 0.20 0.35 0.39 0.39 -0.05 0.05 0.05 -0.18 -0.18 -0.18 -0.22 -0.21 -0.21 -0.17 -0.23 -0.22

3 p.changed -0.71 0.52 1.00 0.40 0.62 0.52 0.27 0.66 0.41 0.47 0.48 0.68 0.73 0.72 -0.04 0.21 0.21 -0.49 -0.51 -0.50 -0.59 -0.58 -0.57 -0.44 -0.57 -0.58

4 Dens -0.27 0.20 0.40 1.00 0.18 0.01 0.08 0.54 0.73 0.78 0.78 0.77 0.58 0.59 0.04 0.37 0.37 -0.22 -0.22 -0.22 -0.23 -0.22 -0.22 -0.22 -0.26 -0.27

5 Rec -0.34 0.27 0.62 0.18 1.00 0.81 0.51 0.58 0.41 0.39 0.40 0.29 0.37 0.38 0.14 0.37 0.37 -0.38 -0.40 -0.39 -0.46 -0.44 -0.43 -0.35 -0.44 -0.46

6 D Mut -0.29 0.23 0.52 0.01 0.81 1.00 0.36 0.27 0.10 0.10 0.11 0.20 0.29 0.29 0.07 0.15 0.15 -0.28 -0.29 -0.28 -0.36 -0.35 -0.34 -0.25 -0.33 -0.33

7 D Asym -0.03 0.02 0.27 0.08 0.51 0.36 1.00 0.42 0.39 0.29 0.31 0.10 0.12 0.12 0.16 0.40 0.40 -0.25 -0.26 -0.25 -0.29 -0.29 -0.27 -0.22 -0.25 -0.27

8 D Null -0.38 0.28 0.66 0.54 0.58 0.27 0.42 1.00 0.59 0.60 0.62 0.55 0.54 0.55 0.01 0.31 0.31 -0.37 -0.39 -0.38 -0.44 -0.42 -0.41 -0.35 -0.44 -0.45

9 PP e -0.18 0.14 0.41 0.73 0.41 0.10 0.39 0.59 1.00 0.89 0.98 0.59 0.43 0.55 0.22 0.72 0.69 -0.39 -0.35 -0.39 -0.34 -0.32 -0.35 -0.34 -0.38 -0.37

10 CCout e -0.25 0.20 0.47 0.78 0.39 0.10 0.29 0.60 0.89 1.00 0.88 0.67 0.64 0.50 0.21 0.59 0.63 -0.34 -0.43 -0.34 -0.36 -0.40 -0.31 -0.35 -0.36 -0.42

11 CCin e -0.26 0.20 0.48 0.78 0.40 0.11 0.31 0.62 0.98 0.88 1.00 0.67 0.50 0.66 0.21 0.64 0.60 -0.42 -0.36 -0.43 -0.37 -0.34 -0.40 -0.36 -0.41 -0.39

12 Dall e -0.48 0.35 0.68 0.77 0.29 0.20 0.10 0.55 0.59 0.67 0.67 1.00 0.81 0.81 0.00 0.26 0.26 -0.36 -0.38 -0.37 -0.51 -0.43 -0.42 -0.36 -0.41 -0.42

13 Dout e -0.53 0.39 0.73 0.58 0.37 0.29 0.12 0.54 0.43 0.64 0.50 0.81 1.00 0.64 -0.01 0.19 0.27 -0.35 -0.50 -0.35 -0.49 -0.59 -0.40 -0.36 -0.42 -0.54

14 Din e -0.52 0.39 0.72 0.59 0.38 0.29 0.12 0.55 0.55 0.50 0.66 0.81 0.64 1.00 -0.01 0.28 0.19 -0.48 -0.35 -0.49 -0.49 -0.40 -0.57 -0.35 -0.53 -0.42

15 B e 0.09 -0.05 -0.04 0.04 0.14 0.07 0.16 0.01 0.22 0.21 0.21 0.00 -0.01 -0.01 1.00 0.35 0.35 -0.25 -0.26 -0.25 -0.16 -0.12 -0.11 -0.37 -0.09 -0.11

16 A e -0.05 0.05 0.21 0.37 0.37 0.15 0.40 0.31 0.72 0.59 0.64 0.26 0.19 0.28 0.35 1.00 0.93 -0.35 -0.29 -0.35 -0.30 -0.25 -0.30 -0.31 -0.35 -0.32

17 H e -0.05 0.05 0.21 0.37 0.37 0.15 0.40 0.31 0.69 0.63 0.60 0.26 0.27 0.19 0.35 0.93 1.00 -0.30 -0.35 -0.30 -0.30 -0.31 -0.25 -0.31 -0.30 -0.38

18 PP cor 0.23 -0.18 -0.49 -0.22 -0.38 -0.28 -0.25 -0.37 -0.39 -0.34 -0.42 -0.36 -0.35 -0.48 -0.25 -0.35 -0.30 1.00 0.45 0.99 0.52 0.41 0.82 0.50 0.62 0.41

19 CCout cor 0.24 -0.18 -0.51 -0.22 -0.40 -0.29 -0.26 -0.39 -0.35 -0.43 -0.36 -0.38 -0.50 -0.35 -0.26 -0.29 -0.35 0.45 1.00 0.45 0.56 0.84 0.41 0.51 0.40 0.64

20 CCin cor 0.24 -0.18 -0.50 -0.22 -0.39 -0.28 -0.25 -0.38 -0.39 -0.34 -0.43 -0.37 -0.35 -0.49 -0.25 -0.35 -0.30 0.99 0.45 1.00 0.53 0.41 0.83 0.50 0.63 0.41

21 Dall cor 0.29 -0.22 -0.59 -0.23 -0.46 -0.36 -0.29 -0.44 -0.34 -0.36 -0.37 -0.51 -0.49 -0.49 -0.16 -0.30 -0.30 0.52 0.56 0.53 1.00 0.64 0.62 0.59 0.53 0.56

22 Dout cor 0.29 -0.21 -0.58 -0.22 -0.44 -0.35 -0.29 -0.42 -0.32 -0.40 -0.34 -0.43 -0.59 -0.40 -0.12 -0.25 -0.31 0.41 0.84 0.41 0.64 1.00 0.45 0.44 0.45 0.74

23 Din cor 0.28 -0.21 -0.57 -0.22 -0.43 -0.34 -0.27 -0.41 -0.35 -0.31 -0.40 -0.42 -0.40 -0.57 -0.11 -0.30 -0.25 0.82 0.41 0.83 0.62 0.45 1.00 0.43 0.73 0.45

24 B cor 0.23 -0.17 -0.44 -0.22 -0.35 -0.25 -0.22 -0.35 -0.34 -0.35 -0.36 -0.36 -0.36 -0.35 -0.37 -0.31 -0.31 0.50 0.51 0.50 0.59 0.44 0.43 1.00 0.35 0.38

25 A cor 0.30 -0.23 -0.57 -0.26 -0.44 -0.33 -0.25 -0.44 -0.38 -0.36 -0.41 -0.41 -0.42 -0.53 -0.09 -0.35 -0.30 0.62 0.40 0.63 0.53 0.45 0.73 0.35 1.00 0.60

26 H cor 0.30 -0.22 -0.58 -0.27 -0.46 -0.33 -0.27 -0.45 -0.37 -0.42 -0.39 -0.42 -0.54 -0.42 -0.11 -0.32 -0.38 0.41 0.64 0.41 0.56 0.74 0.45 0.38 0.60 1.00
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Table B.4: Pearson correlation coefficients between indices of network properties and indices of stability of blockmodels for the

first non-symmetric blockmodel structure

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

1 ARI 1.00 -0.80 -0.83 -0.37 -0.30 -0.34 -0.29 -0.41 -0.23 -0.25 -0.27 -0.69 -0.69 -0.70 0.08 -0.64 -0.70 0.69 0.65 0.69 0.76 0.71 0.74 0.32 0.76 0.76

2 ErrB -0.80 1.00 0.68 0.25 0.24 0.25 0.25 0.33 0.15 0.20 0.18 0.56 0.59 0.53 -0.09 0.45 0.55 -0.58 -0.49 -0.58 -0.64 -0.54 -0.63 -0.26 -0.66 -0.60

3 p.changed -0.83 0.68 1.00 0.46 0.43 0.43 0.49 0.55 0.40 0.43 0.44 0.84 0.85 0.82 -0.03 0.72 0.82 -0.79 -0.71 -0.79 -0.84 -0.76 -0.82 -0.49 -0.83 -0.81

4 Dens -0.37 0.25 0.46 1.00 0.18 0.63 0.24 0.68 0.54 0.43 0.61 0.71 0.41 0.67 0.08 0.69 0.45 -0.29 -0.50 -0.29 -0.35 -0.50 -0.26 -0.18 -0.27 -0.48

5 Rec -0.30 0.24 0.43 0.18 1.00 0.67 0.65 0.24 0.16 0.18 0.17 0.39 0.40 0.35 0.04 0.28 0.33 -0.32 -0.28 -0.32 -0.33 -0.29 -0.32 -0.26 -0.34 -0.30

6 D Mut -0.34 0.25 0.43 0.63 0.67 1.00 0.26 0.31 0.24 0.17 0.30 0.57 0.40 0.54 0.05 0.48 0.32 -0.29 -0.39 -0.29 -0.33 -0.40 -0.28 -0.19 -0.29 -0.40

7 D Asym -0.29 0.25 0.49 0.24 0.65 0.26 1.00 0.55 0.36 0.40 0.36 0.48 0.49 0.39 0.06 0.34 0.46 -0.36 -0.26 -0.36 -0.35 -0.27 -0.37 -0.32 -0.38 -0.30

8 D Null -0.41 0.33 0.55 0.68 0.24 0.31 0.55 1.00 0.53 0.50 0.57 0.65 0.50 0.59 0.04 0.58 0.54 -0.37 -0.43 -0.37 -0.42 -0.45 -0.37 -0.28 -0.39 -0.46

9 PP e -0.23 0.15 0.40 0.54 0.16 0.24 0.36 0.53 1.00 0.93 0.99 0.50 0.41 0.50 0.19 0.56 0.56 -0.33 -0.28 -0.33 -0.27 -0.28 -0.28 -0.33 -0.26 -0.27

10 CCout e -0.25 0.20 0.43 0.43 0.18 0.17 0.40 0.50 0.93 1.00 0.88 0.49 0.54 0.40 0.15 0.42 0.63 -0.31 -0.27 -0.31 -0.31 -0.26 -0.30 -0.37 -0.29 -0.27

11 CCin e -0.27 0.18 0.44 0.61 0.17 0.30 0.36 0.57 0.99 0.88 1.00 0.56 0.43 0.57 0.19 0.63 0.58 -0.36 -0.35 -0.36 -0.31 -0.34 -0.30 -0.33 -0.29 -0.33

12 Dall e -0.69 0.56 0.84 0.71 0.39 0.57 0.48 0.65 0.50 0.49 0.56 1.00 0.82 0.88 0.04 0.80 0.78 -0.67 -0.68 -0.67 -0.83 -0.72 -0.70 -0.42 -0.72 -0.75

13 Dout e -0.69 0.59 0.85 0.41 0.40 0.40 0.49 0.50 0.41 0.54 0.43 0.82 1.00 0.65 -0.03 0.52 0.87 -0.66 -0.67 -0.66 -0.76 -0.72 -0.70 -0.45 -0.71 -0.74

14 Din e -0.70 0.53 0.82 0.67 0.35 0.54 0.39 0.59 0.50 0.40 0.57 0.88 0.65 1.00 0.06 0.92 0.68 -0.75 -0.67 -0.75 -0.74 -0.70 -0.77 -0.37 -0.75 -0.73

15 B e 0.08 -0.09 -0.03 0.08 0.04 0.05 0.06 0.04 0.19 0.15 0.19 0.04 -0.03 0.06 1.00 0.12 0.04 -0.02 -0.06 -0.02 0.04 0.00 0.07 -0.39 0.08 0.02

16 A e -0.64 0.45 0.72 0.69 0.28 0.48 0.34 0.58 0.56 0.42 0.63 0.80 0.52 0.92 0.12 1.00 0.69 -0.62 -0.67 -0.62 -0.67 -0.70 -0.62 -0.30 -0.65 -0.72

17 H e -0.70 0.55 0.82 0.45 0.33 0.32 0.46 0.54 0.56 0.63 0.58 0.78 0.87 0.68 0.04 0.69 1.00 -0.62 -0.71 -0.62 -0.75 -0.77 -0.65 -0.40 -0.67 -0.83

18 PP cor 0.69 -0.58 -0.79 -0.29 -0.32 -0.29 -0.36 -0.37 -0.33 -0.31 -0.36 -0.67 -0.66 -0.75 -0.02 -0.62 -0.62 1.00 0.50 1.00 0.75 0.54 0.95 0.46 0.89 0.59

19 CCout cor 0.65 -0.49 -0.71 -0.50 -0.28 -0.39 -0.26 -0.43 -0.28 -0.27 -0.35 -0.68 -0.67 -0.67 -0.06 -0.67 -0.71 0.50 1.00 0.50 0.68 0.95 0.49 0.32 0.52 0.87

20 CCin cor 0.69 -0.58 -0.79 -0.29 -0.32 -0.29 -0.36 -0.37 -0.33 -0.31 -0.36 -0.67 -0.66 -0.75 -0.02 -0.62 -0.62 1.00 0.50 1.00 0.76 0.54 0.95 0.46 0.89 0.59

21 Dall cor 0.76 -0.64 -0.84 -0.35 -0.33 -0.33 -0.35 -0.42 -0.27 -0.31 -0.31 -0.83 -0.76 -0.74 0.04 -0.67 -0.75 0.75 0.68 0.76 1.00 0.73 0.81 0.44 0.84 0.79

22 Dout cor 0.71 -0.54 -0.76 -0.50 -0.29 -0.40 -0.27 -0.45 -0.28 -0.26 -0.34 -0.72 -0.72 -0.70 0.00 -0.70 -0.77 0.54 0.95 0.54 0.73 1.00 0.54 0.30 0.57 0.93

23 Din cor 0.74 -0.63 -0.82 -0.26 -0.32 -0.28 -0.37 -0.37 -0.28 -0.30 -0.30 -0.70 -0.70 -0.77 0.07 -0.62 -0.65 0.95 0.49 0.95 0.81 0.54 1.00 0.42 0.96 0.62

24 B cor 0.32 -0.26 -0.49 -0.18 -0.26 -0.19 -0.32 -0.28 -0.33 -0.37 -0.33 -0.42 -0.45 -0.37 -0.39 -0.30 -0.40 0.46 0.32 0.46 0.44 0.30 0.42 1.00 0.39 0.30

25 A cor 0.76 -0.66 -0.83 -0.27 -0.34 -0.29 -0.38 -0.39 -0.26 -0.29 -0.29 -0.72 -0.71 -0.75 0.08 -0.65 -0.67 0.89 0.52 0.89 0.84 0.57 0.96 0.39 1.00 0.66

26 H cor 0.76 -0.60 -0.81 -0.48 -0.30 -0.40 -0.30 -0.46 -0.27 -0.27 -0.33 -0.75 -0.74 -0.73 0.02 -0.72 -0.83 0.59 0.87 0.59 0.79 0.93 0.62 0.30 0.66 1.00

374



Table B.5: Pearson correlation coefficients between indices of network properties and indices of stability of blockmodels for the

second non-symmetric blockmodel structure

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

1 ARI 1.00 -0.76 -0.84 -0.41 -0.25 -0.37 -0.28 -0.56 -0.24 -0.31 -0.25 -0.64 -0.65 -0.73 0.07 -0.69 -0.64 0.69 0.49 0.69 0.77 0.59 0.78 0.40 0.79 0.76

2 ErrB -0.76 1.00 0.66 0.31 0.18 0.28 0.21 0.47 0.15 0.21 0.16 0.51 0.53 0.57 -0.07 0.51 0.47 -0.53 -0.37 -0.53 -0.61 -0.45 -0.60 -0.31 -0.61 -0.60

3 p.changed -0.84 0.66 1.00 0.57 0.29 0.46 0.44 0.73 0.43 0.49 0.44 0.81 0.80 0.89 0.03 0.84 0.76 -0.77 -0.65 -0.77 -0.84 -0.76 -0.83 -0.54 -0.83 -0.84

4 Dens -0.41 0.31 0.57 1.00 0.41 0.82 0.72 0.84 0.86 0.93 0.87 0.87 0.84 0.73 0.18 0.79 0.68 -0.39 -0.42 -0.39 -0.44 -0.47 -0.42 -0.34 -0.42 -0.44

5 Rec -0.25 0.18 0.29 0.41 1.00 0.74 0.11 0.25 0.31 0.37 0.31 0.37 0.41 0.31 0.09 0.31 0.31 -0.23 -0.19 -0.23 -0.24 -0.21 -0.24 -0.19 -0.24 -0.21

6 D Mut -0.37 0.28 0.46 0.82 0.74 1.00 0.29 0.55 0.65 0.74 0.65 0.72 0.73 0.58 0.09 0.61 0.53 -0.33 -0.29 -0.33 -0.37 -0.34 -0.37 -0.25 -0.37 -0.35

7 D Asym -0.28 0.21 0.44 0.72 0.11 0.29 1.00 0.76 0.70 0.71 0.71 0.64 0.58 0.55 0.19 0.63 0.56 -0.28 -0.38 -0.28 -0.33 -0.41 -0.29 -0.29 -0.30 -0.36

8 D Null -0.56 0.47 0.73 0.84 0.25 0.55 0.76 1.00 0.64 0.70 0.64 0.86 0.83 0.78 0.12 0.77 0.67 -0.51 -0.51 -0.51 -0.57 -0.58 -0.54 -0.42 -0.55 -0.59

9 PP e -0.24 0.15 0.43 0.86 0.31 0.65 0.70 0.64 1.00 0.96 1.00 0.72 0.66 0.64 0.27 0.73 0.60 -0.29 -0.36 -0.30 -0.31 -0.39 -0.28 -0.31 -0.27 -0.30

10 CCout e -0.31 0.21 0.49 0.93 0.37 0.74 0.71 0.70 0.96 1.00 0.96 0.79 0.76 0.68 0.21 0.76 0.67 -0.29 -0.41 -0.29 -0.36 -0.45 -0.31 -0.32 -0.32 -0.37

11 CCin e -0.25 0.16 0.44 0.87 0.31 0.65 0.71 0.64 1.00 0.96 1.00 0.73 0.66 0.65 0.27 0.73 0.61 -0.30 -0.37 -0.30 -0.31 -0.40 -0.29 -0.32 -0.28 -0.31

12 Dall e -0.64 0.51 0.81 0.87 0.37 0.72 0.64 0.86 0.72 0.79 0.73 1.00 0.93 0.92 0.07 0.91 0.77 -0.62 -0.53 -0.62 -0.75 -0.62 -0.68 -0.46 -0.68 -0.66

13 Dout e -0.65 0.53 0.80 0.84 0.41 0.73 0.58 0.83 0.66 0.76 0.66 0.93 1.00 0.84 0.06 0.83 0.83 -0.57 -0.61 -0.57 -0.69 -0.72 -0.63 -0.44 -0.64 -0.73

14 Din e -0.73 0.57 0.89 0.73 0.31 0.58 0.55 0.78 0.64 0.68 0.65 0.92 0.84 1.00 0.06 0.95 0.74 -0.75 -0.56 -0.75 -0.79 -0.65 -0.82 -0.49 -0.81 -0.72

15 B e 0.07 -0.07 0.03 0.18 0.09 0.09 0.19 0.12 0.27 0.21 0.27 0.07 0.06 0.06 1.00 0.10 0.09 -0.06 -0.27 -0.06 -0.01 -0.15 0.03 -0.44 0.04 0.01

16 A e -0.69 0.51 0.84 0.79 0.31 0.61 0.63 0.77 0.73 0.76 0.73 0.91 0.83 0.95 0.10 1.00 0.83 -0.71 -0.55 -0.71 -0.75 -0.64 -0.78 -0.46 -0.79 -0.70

17 H e -0.64 0.47 0.76 0.68 0.31 0.53 0.56 0.67 0.60 0.67 0.61 0.77 0.83 0.74 0.09 0.83 1.00 -0.57 -0.63 -0.57 -0.67 -0.76 -0.61 -0.40 -0.64 -0.83

18 PP cor 0.69 -0.53 -0.77 -0.39 -0.23 -0.33 -0.28 -0.51 -0.29 -0.29 -0.30 -0.62 -0.57 -0.75 -0.06 -0.71 -0.57 1.00 0.48 1.00 0.78 0.55 0.90 0.49 0.88 0.63

19 CCout cor 0.49 -0.37 -0.65 -0.42 -0.19 -0.29 -0.38 -0.51 -0.36 -0.41 -0.37 -0.53 -0.61 -0.56 -0.27 -0.55 -0.63 0.48 1.00 0.48 0.54 0.87 0.47 0.54 0.48 0.68

20 CCin cor 0.69 -0.53 -0.77 -0.39 -0.23 -0.33 -0.28 -0.51 -0.30 -0.29 -0.30 -0.62 -0.57 -0.75 -0.06 -0.71 -0.57 1.00 0.48 1.00 0.79 0.55 0.91 0.49 0.88 0.63

21 Dall cor 0.77 -0.61 -0.84 -0.44 -0.24 -0.37 -0.33 -0.57 -0.31 -0.36 -0.31 -0.75 -0.69 -0.79 -0.01 -0.75 -0.67 0.78 0.54 0.79 1.00 0.64 0.87 0.55 0.86 0.74

22 Dout cor 0.59 -0.45 -0.76 -0.47 -0.21 -0.34 -0.41 -0.58 -0.39 -0.45 -0.40 -0.62 -0.72 -0.65 -0.15 -0.64 -0.76 0.55 0.87 0.55 0.64 1.00 0.57 0.49 0.58 0.84

23 Din cor 0.78 -0.60 -0.83 -0.42 -0.24 -0.37 -0.29 -0.54 -0.28 -0.31 -0.29 -0.68 -0.63 -0.82 0.03 -0.78 -0.61 0.90 0.47 0.91 0.87 0.57 1.00 0.46 0.98 0.69

24 B cor 0.40 -0.31 -0.54 -0.34 -0.19 -0.25 -0.29 -0.42 -0.31 -0.32 -0.32 -0.46 -0.44 -0.49 -0.44 -0.46 -0.40 0.49 0.54 0.49 0.55 0.49 0.46 1.00 0.43 0.41

25 A cor 0.79 -0.61 -0.83 -0.42 -0.24 -0.37 -0.30 -0.55 -0.27 -0.32 -0.28 -0.68 -0.64 -0.81 0.04 -0.79 -0.64 0.88 0.48 0.88 0.86 0.58 0.98 0.43 1.00 0.72

26 H cor 0.76 -0.60 -0.84 -0.44 -0.21 -0.35 -0.36 -0.59 -0.30 -0.37 -0.31 -0.66 -0.73 -0.72 0.01 -0.70 -0.83 0.63 0.68 0.63 0.74 0.84 0.69 0.41 0.72 1.00
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C Piecewise regression models with

p.changed ties as a predictor
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(a) Mean of the Adjusted Rand Index, mARI
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Figure C.1: The residual errors plots for determining the break in piecewice regression

models for boy-girl liking ties network
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Figure C.2: The residual errors plots for determining the break in piecewice regression

models for ErrB for the note borrowing network

0 10 20 30 40

0.
21

8
0.

22
0

0.
22

2
0.

22
4

0.
22

6

Percent of changed ties

T
he

 r
es

id
ua

l s
ta

nd
ar

d 
er

ro
r

(a) Mean of the Adjusted Rand Index, ARI

0 10 20 30 40

0.
13

15
0.

13
20

0.
13

25
0.

13
30

0.
13

35
0.

13
40

0.
13

45
0.

13
50

Percent of changed ties

T
he

 r
es

id
ua

l s
ta

nd
ar

d 
er

ro
r
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Figure C.3: The residual errors plots for determining the break in piecewice regression

models for the first non-symmetric blockmodel structure
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Figure C.4: The residual errors plots for determining the break in piecewice regression

models for the second non-symmetric blockmodel structure
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