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Povzetek 

Metode nagnjenja (propensity score methods), katerih temelj je pristop na osnovi 

načrta zasnove Rubinovega modela vzročnosti (RCV), dandanes prevladujejo na 

področju vzročnega sklepanja z opazovalnimi podatki. Metode se obsežno 

uporabljajo na področju ekonomije, medicine, izobraževanja, politologije, 

psihologije, upravljanja in poslovanja. Cilj pristopa na osnovi načrta zasnove pri 

vzročnem sklepanju v opazovalnih študijah je popraviti opazovalno (neslučajno) 

zasnovo na način, da se le-ta približa slučajni zasnovi poskusa. Tako je slučajna 

zasnova poskusa temelj pristopa na osnovi načrta zasnove. 

V disertaciji razširimo uporabo metod nagnjenja tudi na opazovalne študije, kjer 

nam narava opazovanih podatkov ne dovoljuje zanesljive ocene vzročnih učinkov, 

zato lahko v teh primerih ocenjujemo le pogojne asociacije. Z aplikacijo na realnih 

podatkih pokažemo, da je uporaba pristopa na osnovi načrta zasnove (design-based 

approach) veliko bolj zanesljiv način ocenjevanja pogojnih asociacij (predvsem v 

primeru majhnih vzorcev), kot uporaba pristopa na osnovi modela (model-based 

approach) (t.i. regresijska analiza). 

Metode nagnjenja sestavljajo: (i) faza zasnove, ki izključuje uporabo podatkov izida 

in katere namen je uravnotežiti študijsko zasnovo glede na opazovane 

sospremenljivke (npr., odprava pristranskosti v opazovalnih študijah z namenom 

imitacije slučajne zasnove poskusa), in; (ii) faza analize, v kateri uporabimo podatke 

izida, z namenom ocene vzročnih učinkov ali pogojnih odvisnosti, izvedemo 

dodatna uravnavanja sospremenljik (covariate adjustments) in analizo občutljivosti 

(sensitivity analysis) ocen vzročnih učinkov. 

Razvoj metod nagnjenja je v zadnjih treh desetletjih postregel s smernicami za 

ocenjevanje vzročnih učinkov z velikimi vzorci opazovalnih podatkov. Vendar pa 

vprašanje, »kako velik« vzorec se zahteva, ostaja v večjem delu neodgovorjeno. Ker 

se tako v družboslovju, kot tudi v medicini pogosto srečujemo z majhnimi vzorci, 

ostaja raziskovanje minimalnih zahtev glede velikosti vzorca z namenom zanesljive 

ocene vzročnih učinkov zelo pomembno področje. Glede na objavljene raziskave o 

metodah nagnjenja z majhnimi vzorci, obravnavani vzorci manjši od 100 enot še 

niso bili dovolj raziskani. 

Doktorska disertacija tako proučuje minimalne zahteve glede velikosti vzorca, s 

katerimi še lahko zanesljivo ocenimo vzročne učinke. S tem namenom smo izvedli 

serijo simulacijskih študij, ki proučujejo različne velikosti majhnih obravnavanih 

vzorcev (vzorci manjši kot 100), različna razmerja med skupinama (t.j., med skupino 

enot, ki niso bile obravnavane – kontrolna skupina in med skupino enot, ki so bile 

obravnavane – obravnavana skupina), različne mehanizme izbire (selection  

  



 

 

 

  



 

 

mechanism) (t.j., raven začetnih neuravnoteženj v sospremenljivkah med 

obravnavano in kontrolno skupino), različno število opazovanih sospremenljivk in 

učinek različnih algoritmov usklajevanja (matching algorithm) (t.j., požrešen 

(greedy) in optimalen). Hkrati preučujemo tudi vlogo srednje velikih obravnavanih 

vzorcev (t.j., obravnavani vzorci v velikosti 200 in 500 enot) z namenom primerjave 

obnašanja majhnih v. srednje velikih vzorcev v metodah nagnjenja. 

Dve dodatni simulacijski študiji raziskujeta: (i) če različna korelacijska struktura 

(šibkejša v primerjavi z močnejšo) med opazovanimi sospremenljivkami in 

spremenljivko izida vpliva na študijo nagnjenja, in; (ii) če ima različen tip 

spremenljivke izida (dihotomna v. zvezna) drugačen vpliv na ocene vzročnih 

učinkov z majhnimi vzorci, kot s srednje velikimi vzorci. 

Rezultati simulacijskih študij kažejo, da je uspeh metod nagnjenja (t.j., uspešna 

odprava pristranskosti) z majhnimi obravnavanimi vzorci, primarno odvisen od 

zadostne velikosti skupine kontrolnih enot. Kakorkoli, zahtevana velikost vzorca 

kontrolnih enot je odvisna od: (i) velikosti obravnavane skupine; (ii) števila 

opazovanih sospremenljivk; in (iii) moči mehanizma izbire, ki je merjen z začetno 

neuravnoteženostjo opazovanih sospremenljivk med obravnavano in kontrolno 

skupino.  

Ugotovitve simulacijske študije kažejo, da so majhni obravnavani vzorci (tako 

majhni, kot je 8=
t
n ) enako uspešni pri odpravljanju pristranskosti iz opazovalnih 

študij, kot srednje veliki vzorci (t.j., 
t
n  od 200 ali 500), če je razmerje med 

skupinama le dovolj veliko in je mehanizem izbire strogo pogojno neodvisen 

(strongly ignorable). Seveda pa so standardne napake ocen vzročnih učinkov z 

majhnimi vzorci po pričakovanju veliko večje, kot v primeru srednje velikih vzorcev. 

Zato so ocene vzročnih učinkov z majhnimi vzorci veliko manj natančne, kot ocene 

vzročnih učinkov s srednje velikimi vzorci. 

Kakorkoli, velikost standardnih napak ocen vzročnih učinkov z majhnimi vzorci ni 

odvisna samo od velikosti celotnega vzorca, ampak tudi od števila opazovanih 

sospremenljivk in algoritma usklajevanja, ki je uporabljen pri odpravi pristranskosti 

v študiji nagnjenja. Po drugi strani pa število opazovanih sospremenljivk (t.j., 

30,20,15,10=p ) in algoritem usklajevanja nimata vpliva na velikost standardnih 

napak ocen vzročnih učinkov s srednje velikimi vzorci. 

Uporaba različnih algoritmov usklajevanja nima vpliva na minimalno zahtevano 

razmerje med skupinama v opazovalnih študijah s srednje velikimi vzorci, vendar pa 

ima vpliv v opazovalnih študijah z majhnimi vzorci (t.j., optimalni algoritem 

usklajevanja je v povprečju boljši – za odpravo pristranskosti v povprečju zahteva 

manjša razmerja med skupinama). Hkrati je študija nagnjenja v primeru uporabe 

optimalnega algoritma usklajevanja z majhnimi vzorci rezultirala v povprečju v 

malenkost manjših standardnih napakah vzorčnih učinkov, kar pa se ni izkazalo v 

primeru srednje velikih vzorcev. 

 



 

 

 

  



 

 

Aplikacija rezultatov simulacijske študije na realnih opazovalnih podatkih (Lalonde 

1986) dodatno potrjuje naše zaključke glede delovanja metod nagnjenja z majhnimi 

vzorci. Medtem, ko druga aplikacijska študija z realnimi opazovalnimi podatki 

(Luthar, et al. 2011) podaja primer študije, kjer raziskovalna vprašanja morda so 

vzročna, vendar pa zaradi narave opazovalnih podatkov ni mogoče zanesljivo 

oceniti vzorčnih učinkov. Tako lahko, glede na posebej zanimive sospremenljivke, 

ocenimo le pogojne asociacije med indikator spremenljivko in spremenljivko izida. 

Ta aplikacija je še posebej zanimiva, ker: (i) pokaže kako so lahko metode nagnjenja 

uporabljene z namenom ocenjevanja pogojnih asociacij, in; (ii) pokaže, zakaj je pri 

ocenjevanju pogojnih asociacij pristop na osnovi načrta zasnove veliko bolj zanesljiv 

v primerjavi s pristopom na osnovi modela (e.g., regresijska analiza) – še posebej, 

ko imamo opravka z majhnimi vzorci. 

Ključne besede: metode nagnjenja, vzročno sklepanje, Rubinov model vzorčnosti, 

opazovalne študije, pogojne asociacije, majhni in srednje veliki vzorci 

 

 

  



 

 

 

  



 

 

Abstract 

Propensity score methods, whose foundation is the design-based approach of the 

Rubin Causal Model, prevail today in the causal inference field for observational 

studies. The methods are largely applied in the fields of economics, medicine, 

education, political science, psychology, management and business. Such a design-

based approach for causal inference from observational studies aims to mend an 

observational (non-randomised) design so as to approximate a randomised 

experiment design and, in this sense, it strictly follows the rationale of 

experimental designs.  

We extend the use of propensity score methods also to observational designs 

where the nature of observed data does not allow us to estimate reliably causal 

effects; thus, we can only estimate conditional associations. We show, with an 

application, that the use of the design-based approach, particularly for small 

sample studies, is more trustworthy than model-based approaches (i.e., regression 

analyses), when estimating conditional associations.  

Propensity score methods consist of: (i) the design phase, which is outcome free 

and aims to balance a study design with respect to observed covariates (e.g. 

removes selection bias in observational designs in order to mimic randomised 

experiment designs when estimating causal effects), and; (ii) the analysis phase, 

which uses the outcome data in order to estimate causal effects or conditional 

associations, to perform additional covariate adjustments, and to carry out 

sensitivity analysis for obtained causal effect estimates. 

The development of propensity score methods over the past three decades has 

resulted in guidance on estimating causal effects from large observational data 

sets. However, the question of "how large" a data set should be, remains mostly 

unanswered. Because the social sciences and medical research often face relatively 

small samples, the investigation of minimum sample size requirements for reliably 

estimating causal effects from observational designs, remains a highly important 

topic. Based on the published research on propensity score methods with small 

samples, treated samples that consists of less than 100 units have not yet been 

sufficiently investigated.  

The thesis thus investigates minimum sample size requirements that enable a 

reliable estimation of causal effects. We carry out a series of simulation studies 

examining a variety of small treated sample sizes (samples smaller than 100), group 

ratios (i.e., ratio between the samples of control and treated units), different 

selection mechanisms (i.e., the level of initial covariate imbalances between 

treated and control groups), different numbers of observed covariates, and the 

performance of different matching algorithms (i.e., greedy and optimal). We also 

examine performance of moderately large treated samples (i.e., samples consisting 

of 200 and 500 units) in order to compare the behaviour of small versus 

moderately large treated samples with propensity score methods. 



 

 

 

  



 

 

Two simulation study extensions are performed to investigate: (i) whether different 

correlation structures (weaker versus stronger) between the observed covariates 

and the outcome variable has an impact on propensity score studies; and (ii) 

whether different classes of the outcome variable (binary versus continuous) affect 

treatment effect estimates with small samples differently from larger samples.  

The simulation results show that the success of propensity score study (i.e., 

successful removal of selection bias) with small treated samples primarily depends 

on a sufficiently large pool of control units. However, the required size of a control 

group depends on: (i) the size of a treated group; (ii) the number of observed 

covariates; and (iii) the strength of the selection mechanism, measured by the 

initial imbalances in observed covariates between the treated and control groups.  

The simulation study’s findings demonstrate that small treated samples (as small as

8=
t
n ) perform as good as moderately large treated samples (i.e., 

t
n  of 200 or 

500) at removing selection bias from observational study designs as long as the 

group ratio is sufficiently large, and the treatment assignment mechanism is 

strongly ignorable. Of course, the treatment effect estimates derived from small 

treated samples are much less precise in comparison to those obtained by 

moderately large treated samples, due to much larger treatment effect standard 

errors in cases of small treated samples. 

However, the size of treatment effect standard errors in small sample studies does 

not depend only on the overall sample size but also on the number of observed 

covariates and the matching algorithm used in the propensity score study. On the 

other hand, the number of observed covariates (i.e., 30,20,15,10=p ) and the 

matching algorithm used has a negligible effect on the size of treatment effect 

standard errors in moderately large sample studies. 

The use of different matching algorithms has a negligible effect on the minimum 

required group ratio for removing selection bias from observational designs with 

moderately large samples, whereas a tiny effect with small samples (i.e., optimal 

matching algorithm on average performs slightly better – on average requiring 

smaller group ratios for removing selection bias). At the same time, the propensity 

score study with optimal matching algorithm for small samples resulted on average 

in slightly smaller treatment effect standard errors, which was not the case for 

moderately large samples. 

An application of the simulation study results with real observational data          

(LaLonde 1986) additionally supports our conclusions regarding the performance of 

propensity score methods with small samples. The second application of real 

observational data (Luthar, et al. 2011) provides an example of a study where 

research questions might be causal but due to the nature of observed data, we are 

not able to estimate, reliably, causal effects. Hence, only conditional associations 

between an indicator variable and an outcome variable, given a set of substantively 

interesting covariates, can be estimated. This application is particularly interesting  



 

 

  



 

 

because: (i) it shows the use of propensity score methods to estimate conditional 

associations, and; (ii) it shows why design-based approaches are much more 

trustworthy, in comparison to the model-based approaches (e.g., regression 

analysis), when estimating conditional associations, particularly in small sample 

studies. 

Keywords: propensity score method, causal inference, Rubin Causal model, 

observational studies, conditional associations, small and moderately large samples  
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Chapter 1 

Introduction 

During the last decades, the awareness that correlation does not imply causation 

has been stimulating some major methodological developments with causal 

inference for observational study designs. The statistical methods developed for 

causal inference with randomised experiments have been known not to be 

appropriate for the use with observational designs. Thus, it was long advised that 

within non-randomised settings we can only provide descriptions of observed 

associations (Cochran 1965) without being able to talk definitively about any causal 

quantities and hence to draw, trustworthy, causal conclusions.  

Under the definition of observational designs we classify non-experimental designs 

(i.e., surveys), study designs where treatment conditions are not randomly assigned 

to units (i.e., quasi-experimental designs (Shadish, et al. 2002)) and study designs 

where complete randomisation of treatment conditions fails due to missing data or 

noncompliance of the assigned treatment unit, i.e., broken randomised designs 

(Barnard, et al. 2003). The key difference between observational designs and 

randomised experiments is hence in the selection procedure, i.e., how treatments 

are assigned to units – what is the process that dictates to which units a treatment 

is applied and to which it is not applied. 

In randomised experiments, the process of assigning treatments to units is 

controlled by the experimenter. In this sense the experimenter tries to assure that 

units that receive different treatments1 are comparable (i.e., they share the same 

characteristics – in expectation, their covariate distributions are identical). This 

comparability is ensured by randomly assigning different treatments. In this way 

                                                           
1
 A unit to which a treatment is applied is denoted as a treated unit belonging to a treated group, 

whereas a unit to which treatment is not applied is denoted as a control unit and hence belongs to 
the control group. 
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observed, but also unobserved covariates, tend to be comparable between groups 

that receive different treatments (i.e., distributions of observed and unobserved 

covariates are on average the same for the treated and control groups). Hence, a 

study design is said to be statistically balanced with regard to covariate 

distributions between the two groups, whereas some possible imbalances in 

covariate distributions are only due to a chance rather than systematic selection 

procedures that potentially induce selection bias (Rosenbaum 2002, 21).  

In contrast, the assignment process in observational designs is only partially 

controlled by the investigator or not controlled at all. Hence, randomisation (i.e., 

randomly assigning different treatments) is not feasible, which typically results in 

incomparability of the units that receive different treatments (i.e., the distributions 

of observed covariates between the treated and control group are on average 

different - selection bias). Therefore, estimation of causal effects in such study 

designs requires a special approach – the selection bias has to be removed from a 

study design in order to estimate, unbiasedly, casual effects. There are different 

approaches for removing selection bias from a study design (i.e., design-based and 

model-based approaches (Section 1.3) and the development of these approaches 

has been motivated by the fact that most study designs are indeed observational 

because randomised experiments are not only expensive but often not even 

feasible due to ethical norms. 

To illustrate the aforesaid with an example; imagine that you would like to assess 

how harmful smoking is to health (i.e., what is the effect of smoking on health). 

Could you take a population of non-smokers and simply randomise them into two 

groups, i.e., a treatment group where you would require participants to start 

smoking and smoke for an extended period of time (e.g., 20 years or so) and a 

control group where people would not be allowed to smoke for the same period of 

time? It should surely be possible to create a control group, but it would be much 

harder to create a treatment group. Imagine if some people’s health in the 

treatment group would, after some time, be seriously threatened due to smoking, 
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and their doctors would advise them to stop smoking. Could you possibly demand 

them not to follow their doctor’s advice because otherwise your experiment would 

confront a noncompliance issue? Could you request them to keep on smoking so 

that you can investigate when and how they are going to die (i.e., would they 

develop a lung cancer or some other smoking related disease)? No! That would be 

highly unethical, and this is the reason why in so many situations randomised 

experiments are not realistic.  

Examples like this can be found in many fields of social (e.g., education, economics, 

and politics) and medical (e.g., epidemiology, immunology, pharmacology) 

sciences. Thus, being able to investigate causal effects in observational designs 

highly contributes to the well-being of society.  

1.1 Causality  

The idea of causality is very old and goes back to philosophers such as Plato, 

Aristotle, Hume, Mill and some others. According to Hulswit (2002) it was Plato 

who first formulated the principle of causality by stating: "everything that becomes 

or changes must do so owing to some cause; for nothing can come to be without a 

cause". These early philosophers thus look at the causality by trying to find the 

cause of an effect that is seen. 

In contrast, the statistical community looks at causality from a different angle: units 

are manipulated by a known intervention (i.e., the cause is known) and we try to 

estimate, unbiasedly, an effect caused by such an intervention. Thus, a cause is 

seen as an active intervention that is applied to some units at a particular point of 

time in order to investigate how differently these units behave in comparison to 

the behaviour of the units from which the intervention is withheld.  

Having that said, causal effects that we aim to estimate statistically are the effects 

caused by an intervention being posed to some of the units in a population. 

However, the units to which an intervention is applied have to be comparable to 
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the units to which the intervention is not applied. The way units, to which the 

intervention is applied, are affected is considered as an effect of the intervention 

and this effect is denoted as a treatment effect (i.e., an effect caused by applying 

specific treatment – intervention – to some of the units) that is, a causal effect. 

Both terms will be interchangeably used.  

1.1.1. Observational designs versus Randomised Experiments 

As mentioned previously, the main difference between observational designs and 

randomised experiments for estimating causal effects is in a selection procedure 

(i.e., how/based on which criteria a treatment status is assigned to units). 

Observational designs are characterised by self- or third-person selection 

procedures whereas randomised experiments are characterised by randomised 

selection procedures. The consequence of the non-randomised selection procedure 

is often selection bias (i.e., observed covariates of a treated and a control group are 

not effectively balanced). The bigger the imbalances between observed covariates 

of the treated and control groups, the higher the selection bias. A study design 

which is prone to different levels of selection bias, such as an observational design, 

can also be denoted as an unbalanced study design – a study design where treated 

and control groups are not comparable (i.e., their covariate distributions do not 

perfectly overlap – units in the groups do not share common characteristics). 

In randomised experiments, the selection procedure, which defines the assignment 

mechanism, is known (i.e., the probability structure for units to be selected in 

either group is controlled by the experimenter). Consequently, the assignment 

mechanism is unconfounded (i.e., there is no dependence between the assignment 

mechanism and the potential outcomes - units assigned to either treated or control 

group are independent of the unobserved potential outcomes (Rubin 1974; Rubin 

1978; Rubin 1990). Furthermore, the assignment mechanism is also probabilistic 

(i.e., each unit has a positive probability to be assigned to a treated or to a control 

group). An unconfounded and a probabilistic assignment mechanism is said to be 
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strongly ignorable (Rosenbaum and Rubin 1983a) and, thus, causal effects can be in 

general estimated without bias.  

On the other hand, non-randomised assignment mechanisms are generally 

unknown or only partly known. Thus, in order to obtain unbiased estimates of 

treatment effects, where by “unbiased” we mean unbiased or approximately 

unbiased, we are required to posit an assignment mechanism or redesign an 

existing non-randomised assignment mechanism2 in a way to mimic a randomised 

assignment mechanism. However, this can be done only if all the relevant 

covariates are observed3 because the treatment status of units assigned either to 

the treated or control group is then independent of the unobserved potential 

outcomes. If each unit also has a positive probability of being treated or untreated 

(i.e., in the control condition), the assignment mechanism also becomes ignorable. 

Because it is impossible to test whether all the relevant covariates are observed, 

almost all estimates of treatment effects in observational designs are based on a 

strong ignorability assumption (i.e., we assume that all the relevant covariates are 

observed). Hence, sensitivity analysis of obtained treatment effect estimates 

should always be performed to assess how conclusions would change when the 

strong ignorability assumption is not met. 

By posing or redesigning a non-randomised assignment mechanism to approximate 

a randomised one under unconfoundedness we are balancing an observational 

study design (i.e., removing selection bias), hence, unbiased estimates of treatment 

effects can be obtained. Once a balanced design is obtained, we may proceed with 

methods used for estimating causal effects of randomised experiments because 

our observational design, due to the redesigned assignment mechanism, closely 

approximates a randomised experiment design. However, redesigning non-

randomised assignment mechanisms to well-approximate randomised assignment 

                                                           
2
 A well modelled assignment mechanism is a crucial part for estimating unbiased causal effects. The 

fundamental tool for redesigning a non-randomised assignment mechanism to approximate closely 
a randomised assignment mechanism is a propenstiy score. The redesign process is presented in 
Chapter 2. 
3
 Selection of relavant covariates, often called baseline covariates, is described in Section 2.3.2. 
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mechanisms might sometimes also affect the structure of our sample (i.e., the 

sample after the redesign phase might not correctly represent the original 

population of interest). Thus, we should be cautious about causal claims we are 

making. The process of redesigning a non-randomised assignment mechanism to 

approximate an assignment mechanism of randomised experiments is presented in 

Chapter 2. 

1.1.2. Causal Inference Notation 

Causal inference is the process of drawing a conclusion about an effect that is 

caused as a consequence of some intervention being applied. Before proceeding 

with the causal inference, causal questions should always be clearly and precisely 

defined. The reason for doing it so is twofold. First, a precisely defined causal 

question will give us an idea whether the nature of collected data, or the data that 

we attempt to collect, will enable us to estimate, unbiasedly, causal effects and 

provide an answer to our causal question. When the intervention cannot be 

precisely defined (as described in Section 2.1), we should not proceed with the 

estimation of causal effects but rather accept the fact that causal effects cannot be 

estimated. Hence, we can only estimate associations conditional on the 

substantively interesting covariates4. Second, based on the defined causal question 

an appropriate causal quantity is selected for estimation.  

Two common causal quantities are: (i) average treatment effect - ATE, and; (ii) 

average treatment effect on the treated - ATT. The main difference between those 

two causal quantities is the population for which we aim to derive causal claims. 

ATE is the average treatment effect for the overall population whereas ATT is the 

average treatment effect for the subpopulation of those units to which the 

treatment is applied. The choice of the estimated causal quantity depends on the 

nature of the field in which we are aiming to derive causal claims and should thus 

reflect our causal question.  

                                                           
4
 Which variables comprise the substantivelly interesting covariates is up to the investigator to 

define and defend as interesting, and surely depends upon the context. 
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A typical example for estimating ATT is an effect of smoking on health because we 

are interested only in estimating the effect for the subpopulation of people who 

smoke. It would not be ethical to force non-smokers to smoke; thus, in cases like 

this, estimating ATE would not be a reasonable choice because such estimation 

would heavily rely on extrapolating our estimates to the subpopulation of non-

smokers.  

The notation that we are using for estimating causal effects from observational 

designs is the following: 

tn  sample size of the treated group 

cn  sample size of the control group 

)1(Y  the potential outcome of the treated group 

)0(Y  the potential outcome of the control group 

X  observed covariates, also called baseline covariates 

W  treatment indicator indicating whether a unit received the treatment ( 1=W ) 

or whether thee treatment was withheld from a unit ( 0=W ) 

τ  treatment effect 
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1.2 Developments of Causal Inference for 

Observational designs 

The development of formal causal inference methods for observational designs 

started seriously being considered only in the late 1970’s and the early 1980’s with 

the work of Rubin (1974; 1977; 1978; 1980), Rosenbaum and Rubin (1983a), 

Holland and Rubin (1988), Angrist, Imbens and Rubin (1996) and Rosenbaum 

(2002). The foundation of their work is based on the randomised experiment 

framework and it is, thus, a continuation of ideas of the work of Neyman (1923), 

Fisher (1925), Kempthorne (1952), Cochran and Cox (1957) and Cox (1958). 

The foundation follows Neyman’s (1923) notation of potential outcomes that he 

developed in the field of experiments where the causal inference aims to provide 

an answer to the question: what would the outcome of the treated group have 

been if it had not been treated and vice versa. The causal effect is then defined as 

the difference between both hypothetical obtained outcomes: 

)0()1( YY −=τ . 

In 1974 Rubin extended Neyman’s notation of potential outcomes also to 

observational designs in his paper on “Estimating causal effects of treatments in 

randomized and non-randomized studies”. Further on Rubin (1975; 1978) also 

formally incorporated the information of an assignment mechanism in the 

potential outcomes notation. This extension of the potential outcomes notation 

later became known as the potential outcomes framework (Morgan and Winship 

2007) – the foundation for causal inference in observational study designs.  

Due to Rubin’s large contribution, this framework is often referred to as Rubin’s 

model for causal inference (Holland 1986; Rubin and Imbens 2008) or simply the 

Rubin Causal Model (RCM) which is also the foundation of propensity score 

methods – the most widely applied class of methods for estimating causal effects in 

observational designs in the last decades. 
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1.3 Role of Propensity Score Methods in Causal 

Inference  

We distinguish between two common approaches for causal inference in 

observational designs: (i) the standard model-based approach, sometimes based on 

ordinary-least-squares; and (ii) the design-based approaches based on Neyman 

(1923), Fisher (1925) or Rubin Causal Model - the foundation of propensity score 

methods. The main difference between the approaches is in how they remove 

selection bias from an observational design.  

The model-based approach (i.e., ordinary-least-squares or structural-equation-

modelling) requires the outcome variable, Y , in the process of removing selection 

bias from a design. Hence, the removal of selection bias and the estimation of 

treatment effects is done simultaneously by modelling the outcome variable (i.e., 

regressing the outcome variable, Y , on all the observed covariates, X , and on the 

treatment indicator, W ). This approach thus relies on a very strong assumption: 

The assumption of a correctly specified outcome model through which selection 

bias is removed.  

The model-based approach in observational designs is problematic from three 

perspectives: (i) in cases of severely imbalanced designs, such an approach heavily 

relies on extrapolation (King and Zeng 2007; Ho, et al. 2007); (ii) in cases of a 

misspecified outcome model, causal estimates are generally biased (Dehejia and 

Wahba 1999; Dehejia and Wahba 2002) but because it is impossible to test 

whether the model is correctly specified, we essentially must assume that it is 

correctly specified based on substantial knowledge we have about the field in 

which we are estimating causal quantities; (iii) because the removal of selection 

bias and estimation of treatment effects occur simultaneously in this model-based 

approach (due to modelling the outcome variable), chances exist that the outcome 

model might be manipulated in a  direction to produce estimates of causal 

quantities the researcher would like to obtain; hence, such results are less 

objective and less trustworthy.  
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However, using the model-based approach is not wrong as long as we know how to 

specify our model correctly or at least objectively. Because we never know the 

correct model and because it is impossible to assess how objectively we specified 

it, the model-based approach may not be very trustworthy within observational 

data settings. Hence, we do not recommend it to be used with observational 

designs, particularly in cases of largely unbalanced designs, unless it is 

implemented very cautiously. 

On the other hand, in the design-based approach of the Rubin Causal Model (RCM), 

the selection bias is removed without the outcome variable in sight (i.e., the 

outcome variable should be literally removed from the data set until the study 

design is fixed – until the selection bias, due to observed covariates, is removed) 

(Rubin 2007). In this sense, this design-based approach of the RCM strictly follows 

the rational of experimental designs (i.e., when designing a randomised experiment 

we do not have the outcome data, Y , available because we measure Y  only after 

the study design is fixed) and this safeguards against possible manipulations of 

treatment effect estimates in a direction a researcher might want to see.  

Although the design-based approach does not model the outcome variable in order 

to remove selection bias, the approach does consist of some modelling when using 

propensity score methods5. We are required to model the assignment mechanism 

(described in Chapter 2) in order to mend an observational assignment mechanism 

to mimic an assignment mechanism of a randomised experiment design. Such 

modelling requires information on observed covariates, X , and the treatment 

assignment, W , and relies on the strong ignorability assumption (i.e., all the 

relevant covariates are observed/measured). The modelling in the design-based 

approach is thus used solely in the design phase (i.e., the process of redesigning or 

posing the unknown or partly known assignment mechanism of an observational 

design in a way to well approximate a randomised assignment mechanism). 

However, model misspecifications in the design phase will not bias causal effect 

                                                           
5
 There are methods which follow the design-based framework and do not require any modelling 

(e.g., multivariate matching). 



25 
 

estimates for most of the covariate adjustment methods used within the 

framework of the propensity score methods (Drake 1993; Waernbaum 2010). 

Furthermore, according to Dehejia and Wahba (1999; 2002) and Zhao (2004), a 

misspecification of the outcome model when using a model-based approach will 

result in much more biased causal effect estimates than those obtained by using 

the design-based approach where the model for the assignment mechanism is 

misspecified. Based on these findings, the design-based approach is not more 

appropriate only because it follows the rational of randomised experiments, but it 

can also be seen as more trustworthy approach for investigating causal effects in 

observational design. Thus, it is not surprising to see that propensity score 

methods, whose foundation is the design-based approach of the Rubin Causal 

Model, prevail today in the causal inference field of observational studies.  

Thus, with developments of propensity score methods for estimating causal effects 

from observational designs, the loud mantra “correlation does not reveal 

causation” slowly became better heard. In the last decade, more and more 

published articles written by statisticians are greatly encouraging researchers to 

unglue from various correlation/regression methods and to start applying the 

methods founded on the design-based approach, such as propensity score 

methods, when estimating causal effects from observational designs. 

More and more researchers are today indeed using propensity score methods 

when estimating causal effects within observational design. Figure 1.1 shows an 

exponential growth of the number of published articles in the Web of Science 

(Thomson Corporation 2012) with the keywords: “propensity score”, “causal 

effect” and/or “treatment effect”. Altogether, since 1983 until November 2012, 

there are 1,324 published articles which include the aforementioned keywords.  
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Figure 1.1: Number of published articles with keywords: “propensity score”, “causal 
effect” and/or “treatment effect” 

 

Source: Web of Science ®, Databases=SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-

SSH, BKCI-S, BKCI-SSH, CCR-EXPANDED, IC. 

Furthermore, Table 1.1 presents fields of science, according to the Web of Science 

Categories, where most of the articles are published. As we can see, propensity 

score methods are largely applied in the fields of economics, public environmental 

occupational health, cardiology, social and health science, pharmacology, 

psychiatry, medicine in general, education, political science, psychology, 

management and business.  

 

0

50

100

150

200

1
9
8
3

1
9
8
4

1
9
8
5

1
9
8
6

1
9
8
7

1
9
8
8

1
9
8
9

1
9
9
0

1
9
9
1

1
9
9
2

1
9
9
3

1
9
9
4

1
9
9
5

1
9
9
6

1
9
9
7

1
9
9
8

1
9
9
9

2
0
0
0

2
0
0
1

2
0
0
2

2
0
0
3

2
0
0
4

2
0
0
5

2
0
0
6

2
0
0
7

2
0
0
8

2
0
0
9

2
0
1
0

2
0
1
1

2
0
1
2

Year

N
u
m
b
e
r 
o
f 
p
u
b
li
s
h
e
d
 a
rt
ic
le
s



27 
 

Table 1.1: Number of published articles with keywords: “propensity score”, “causal 

effect” and “treatment effect” by the field – Web of Science Categories 

Field: Web of Science Categories 
Record 

Count 

% of 

1324 

ECONOMICS  267 20,17% 

STATISTICS PROBABILITY  172 12,99% 

PUBLIC ENVIRONMENTAL OCCUPATIONAL HEALTH  137 10,35% 

CARDIAC CARDIOVASCULAR SYSTEMS  117 8,84% 

SOCIAL SCIENCES MATHEMATICAL METHODS  96 7,25% 

HEALTH CARE SCIENCES SERVICES  93 7,02% 

MATHEMATICAL COMPUTATIONAL BIOLOGY  85 6,42% 

PHARMACOLOGY PHARMACY  84 6,34% 

HEALTH POLICY SERVICES  79 5,97% 

PSYCHIATRY  65 4,91% 

MEDICINE GENERAL INTERNAL  59 4,46% 

MEDICAL INFORMATICS  57 4,31% 

MEDICINE RESEARCH EXPERIMENTAL  55 4,15% 

ONCOLOGY  53 4,00% 

SURGERY  48 3,63% 

RESPIRATORY SYSTEM  45 3,40% 

MATHEMATICS INTERDISCIPLINARY APPLICATIONS  43 3,25% 

EDUCATION EDUCATIONAL RESEARCH  37 2,80% 

CLINICAL NEUROLOGY  34 2,57% 

UROLOGY NEPHROLOGY  29 2,19% 

SOCIOLOGY  27 2,04% 

PERIPHERAL VASCULAR DISEASE  26 1,96% 

BUSINESS FINANCE  24 1,81% 

POLITICAL SCIENCE  24 1,81% 

CRITICAL CARE MEDICINE  22 1,66% 

AGRICULTURAL ECONOMICS POLICY  20 1,51% 

BIOLOGY  20 1,51% 

PSYCHOLOGY CLINICAL  20 1,51% 

SOCIAL SCIENCES INTERDISCIPLINARY  18 1,36% 

ENVIRONMENTAL STUDIES  17 1,28% 

MANAGEMENT  17 1,28% 

NEUROSCIENCES  17 1,28% 

PLANNING DEVELOPMENT  17 1,28% 

PSYCHOLOGY MULTIDISCIPLINARY  17 1,28% 

PSYCHOLOGY DEVELOPMENTAL  14 1,06% 

Source: Web of Science ®, Databases=SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-

SSH, BKCI-S, BKCI-SSH, CCR-EXPANDED, IC. 
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Nevertheless, even though propensity score methods were primarily developed for 

estimating causal effects of observational designs, we extend their framework also 

to studies when the nature of collected data does not allow us to estimate causal 

effects (as briefly explained in Section 1.1.3 and with a more detailed description in 

Section 2.1); hence, only associations between variables conditional on the 

substantively interesting covariates can be estimated. The second real data 

application in Chapter 6 reveals why the use of design-based approaches, also 

when estimating conditional associations, is more trustworthy than the use of 

model-based approaches, particularly in studies consisting of small samples. 

1.4 Thesis Objectives 

Propensity score methods for estimating causal effects of observational designs 

have been known to work well with large samples, and according to Rubin (1997) 

the methods in general perform better with large samples. However, Rubin does 

not provide any particular insight on “how large” samples should be.  

Because the social sciences and medical studies often face relatively small samples 

(e.g., the number of students in classrooms, number of schools, or number of 

patients with a rare disease), an investigation of minimum sample size 

requirements for estimating unbiased causal effects from observational designs 

remains a highly important topic.  

Based on the published research on propensity score methods, treated samples 

that consists of less than 100 units have not yet been sufficiently investigated. 

Thus, this thesis aims to illuminate the role of sample size (i.e., small versus 

moderately large samples) when estimating causal effects of observational designs 

when using propensity score methods. 
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This thesis predominately focuses on examining how well propensity score 

methods perform with small samples in comparison to moderately large samples. 

The investigation is based on findings of the limited past research regarding small 

samples in propensity score methods and on an extensive simulation study which 

examines performance of the methods when applied to data sets with different 

sample sizes.  

Furthermore, the simulation study investigates the influence that the number of 

observed covariates has, in combination with different sample sizes and different 

levels of initial imbalances, on the performance of propensity score methods. The 

simulation study also examines the performance of two of the most widely used 

matching algorithms (i.e., greedy versus optimal), different classes of an outcome 

variable (i.e., continuous versus binary) and different correlation structure between 

the outcome variable and covariates (i.e., weaker versus stronger).  

In addition, the simulation study investigates the performance of propensity score 

methods when implemented with true versus estimated propensity scores to study 

the behaviour of the methods with different sample sizes in perfect (i.e., 

theoretical but unrealistic) versus real world scenarios when true propensity scores 

are unknown. 

The findings of the simulation study results, with regard to small sample sizes, are 

furthermore applied to real observational data (Chapter 6 – Real Data Set 1), for 

which causal effect estimate of a randomised experiment exists, in order to 

evaluate how reliable our simulation results are for practise. 

Apart from investigating small sample properties, in propensity score methods for 

estimating causal effects of observational designs this thesis offers two other 

scientific contributions. The first contribution is in developing a precise definition of 

propensity score methods for estimating causal effects that will help to clarify 

confusing literature based on which, the methods have often been misused. 
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With the second contribution we extend the definition of the use of propensity 

score methods also to observational studies where the nature of observed data 

does not allow estimation of causal effects; thus, only associations conditional on 

the substantively interesting covariates can be estimated. We provide an 

application of such a study (Chapter 6 – Real Data Set 2) and show that the use of 

propensity score methods, in comparison to regression methods, when estimating 

conditional associations appears to be a more trustworthy approach, particularly 

when dealing with small samples. 

1.5 Plan of Thesis 

Chapter 2 provides a definition of propensity score methods, introduces estimation 

of conditional association within the methods, presents the foundation of the 

methods – the Rubin Causal Model, describes design and analytic phase of 

propensity score methods and lists available software for estimating causal effects 

or conditional associations with propensity score methods. Chapter 3 studies the 

role of sample size for causal inference with propensity score methods by 

reviewing past research on small samples within propensity score methods, and by 

providing theoretical and past research findings to address which factors should be 

examined in our simulation study. Chapter 4 presents our simulation study design, 

the investigated factors and procedures for the analysis of our simulated data. 

Chapter 5 presents results. Chapter 6 presents two applications. The first 

application evaluates how reliable are our simulation results of small samples for 

practise. The second application provides an example of real data where, due to 

the nature of data, causal effects cannot be estimated. Thus, the framework of 

propensity score methods is used for estimating conditional associations. Chapter 7 

concludes with a discussion of our results and recommendations for future 

research.   
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Chapter 2 

Propensity Score Methods 

This Chapter provides the definition of propensity score methods, presents the 

foundation of the methods, and describes tools to be used within the framework of 

propensity score methods for: causal inference in observational designs and 

conditional associations from observed data. We complete this chapter by listing 

available software to be used with propensity score methods. 

2.1 Definition and Usage 

Propensity score methods are founded on the design-based approach and their 

implementation consists of two important parts: (i) design phase where we 

balance a study design with respect to observed covariates. The design phase is 

“outcome free” (i.e., the outcome of our interest is out of sight) and consists of 

balancing tools and balance assessment tools, and; (ii) analysis phase where we 

use the outcome data to estimate desired quantities, perform additional statistical 

adjustments and sensitivity analysis. 

Although propensity score methods were primarily developed for estimating causal 

effects from observational designs, we extend the use of their framework also to 

observational studies which hope to deal with causal research questions, but the 

nature of their data does not allow us to estimate causal effects. Hence, the 

framework of propensity score methods can be used for estimating associations 

conditional on the substantively interesting covariates. To illustrate such a nature 

of observed data, we provide first a definition of what is causal, and based on this 

definition, we derive the definition for conditional association.  
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When estimating the causal effect of treatment versus control, we must be able to 

define (1) an intervention that could have been applied to all “treated” units that 

would convert them to “control” units (e.g., instead of medical pill, we would give 

them placebo pill), and (2) a similar intervention that could have been applied to all 

“control” units that would convert them into “treated” units (e.g., instead of 

placebo pill we would give a medical pill). All such real or hypothetical versions of 

(1) and (2) must lead to the same potential outcome of each “treated” unit, )1(Y , 

and of each “control” unit, )0(Y , in order for the following two assumptions to be 

satisfied: (i) treatment applied to one unit does not affect the outcome of the other 

units – no interference between units (Cox, The Planning of Experiments 1958); and 

(ii) there is only one type of treatment or control available for each unit6. All 

measurements that are made, or at least determined, before either of 

interventions (i.e., (1) or (2)) is “assigned” to each unit, are baseline covariates, and 

all measurements that are determined after the intervention is “assigned” is an 

outcome variable. 

When the nature of our observed data does not allow us to formulate convincingly 

the intervention as described above, we cannot estimate causal effects of 

“treatment” versus “control”. Thus, we should aim for estimating conditional 

associations between a binary variable Z  and another variable Y  given a fixed 

value of the conditioned variables X , which is a vector of covariates selected by 

the investigator as substantively interesting. An example of such observed data is 

an estimation of the effect of minority status on students’ educational attainment – 

whether they attend college. We have two groups of students (e.g., white and 

black) and we cannot convert black students into white or vice versa. Thus, only 

conditional associations can be estimated. 

 

                                                           
6 The above described assumptions constitute in the Stable Unit Treatment Value Assumption 

(SUTVA) (Rubin 1980; Rubin 1990) (Section 2.2). 
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The main aim of the design phase when estimating causal effects of observational 

designs is to remove successfully selection bias from a study design. Study designs 

where selection bias is present are called unbalanced designs due to covariate 

imbalances between groups that receive different treatments (e.g., a group of units 

to which treatment is applied ( 1=W ) – a treated group, and a group of units to 

which treatment is not applied ( 0=W ) – a control group). The level of selection 

bias can thus be viewed as a level of covariate imbalance between treated and 

control group. 

On the other hand, the main aim of the design phase when estimating conditional 

associations from observed data is to effectively control for the substantively 

interesting covariates without using the outcome data (i.e., the outcome of our 

interest, Y ). Conditioning on X  means finding sets of units with 1=Z  and sets of 

units with 0=Z  with the identical values of X  or sets of 1=Z  units with the 

same distribution of X  values as a set of 0=Z  units. The definition can be 

loosened further by adding “under explicitly stated assumptions” such as all we 

care about is that the two sets of units should have the same average X  values for 

each variable in Z . The more the distributions of X  in the 1=Z  units and in the 

0=Z  units are similar, without the need for any explicitly stated assumptions, the 

more X  has been successfully controlled in the comparison. In this sense, we are 

balancing our study design based on X  but because the selection procedure did 

not take place in such a study, the imbalances due to conditioning on X  should 

not be viewed as due to selection bias. 

For the sake of clarity, we present propensity score methods with the terminology 

and notation used when estimating causal effects. The binary variable Z  when 

estimating conditional associations plays a similar role as the treatment indicator 

W when estimating causal effects, in the sense that both Z and W are indicators 

specifying to which group a unit belongs. Although, the W indicates to which unit 

a treatment is applied and to which it is not, the Z indicates which units belong to 

arbitrarily created group 1 and which to arbitrarily created group 2, where the 
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names of those groups can be of any kind (e.g., black and white group when 

comparing populations of black and white people). At the same time, we are using 

the term “removal of selection bias” when presenting propensity score methods, 

although such a term should never be used when estimating conditional 

associations because there is no selection process in the observed data from which 

conditional associations are estimated. The term “removal of selection bias” can 

thus be viewed as removal of covariate imbalances between group 1 and group 2 

when estimating conditional associations.  

2.2 Rubin Causal Model and Potential Outcomes  

The formal use of the potential outcomes approach was introduced by Neyman 

(1923), but the notation was used only in the context of randomised experiments. 

Half a century later Rubin (1974) extended Neyman’s potential outcome approach 

to non-randomised studies and, with this approach, defined causal effect at the 

unit level for randomised and non-randomised studies. Such a causal effect 

definition does not include information about an assignment mechanism (i.e., how 

units are assigned to treatment or control group – whether a unit selection is 

random or non-random). Thus, there is no difference in causal effect definition 

between randomised and non-randomised studies.  

Incorporating the information of an assignment mechanism in the potential 

outcomes approach makes the estimation of causal effects between randomised 

and non-randomised designs distinctive. Such incorporation was done by Rubin 

(1975; 1978) and ever since the assignment mechanism has been formulated in 

general mathematical terms using the potential outcomes framework. This was a 

large contribution to the development of causal inference within observational 

study designs. Due to this contribution and Rubin’s other work related to the causal 

inference within observational study designs, the potential outcomes framework is 

often referred to as Rubin’s model for causal inference (Holland 1986) or simply the 

Rubin Causal Model. 
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The Rubin Causal Model consists of two essential parts. Part one addresses causal 

effects by defining units, treatments and potential outcomes, whereas part two 

addresses the assignment mechanism (Rubin 2008). A unit is defined as a physical 

object (e.g., student, patient) at a particular place and point in time, and a 

treatment is an intervention that can be imposed or withheld from that unit at a 

particular place and point in time. If the treatment is imposed, such a unit is 

denoted as a treated unit with a treatment indicator, 1=W , and if the treatment is 

not imposed, such a unit is denoted as a control unit with a treatment indicator, 

0=W . Each of these units has its own value of some outcome measure, Y  (e.g., 

income, health status, test score).  

Thus, in the potential outcomes framework for a dichotomous treatment variable, 

each unit has a pair of potential outcomes: the potential treatment outcome )1(iY , 

which we would observe if treatment is applied, and the potential control outcome 

)0(iY , which we would observe under the control condition (i.e., if the treatment is 

not applied).  

By using the simple potential outcomes notation described above, we accept the 

following two assumptions: (i) treatment applied to one unit does not affect the 

outcome of the other units – no interference between units (Cox, The Planning of 

Experiments 1958); and (ii) there is only one type of treatment or control available 

for each unit – for example, if we are testing whether aspirin removes headache 

then each person will have only one aspirin pill available or not. 

The above assumptions constitute the Stable Unit Treatment Value Assumption 

(SUTVA) (Rubin 1980) (Rubin 1990). SUTVA is an untestable assumption even in the 

controlled randomised experiments and according to Rubin (1991), it can be 

replaced with some other assumptions.  
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Under SUTVA, the average causal effect is then defined as the difference between 

the average potential treatment outcomes and average potential control outcomes 

over all units: 

[ ] [ ])0()1( YEYE −=τ  

Because we can never observe both potential outcomes at the same time (i.e., 

each unit can only be exposed to one condition but never to both conditions 

simultaneously) causal inference is, at its core, a missing data problem – the 

fundamental problem of causal inference (Holland 1986; Rubin 1978).  

If observed and missing outcomes are defined as: 
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we can define potential outcomes in terms of observed and missing outcomes: 
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The second part of the Rubin Causal Model is the assignment mechanism denoted 

as the conditional probability of being treated given the observed covariates, X , 

and potential outcomes, )1(Y and )0(Y  (Rubin 1975): 

[ ])0(),1(,|Pr YYXW . 
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In order to obtain unbiased estimates of treatment effects, usually the assignment 

mechanism is required to be unconfounded and probabilistic. In an unconfounded 

assignment mechanism, the selection probabilities do not depend on the potential 

outcomes (Rubin, 1978),  

[ ] ( )XWYYXW |Pr)0(),1(,|Pr = , 

and a probabilistic assignment mechanism assures that each unit has a positive 

probability of being assigned to either the treatment or control condition,  

[ ] 1)0(),1(,|Pr0 << YYXWi . 

An assignment mechanism that is unconfounded and probabilistic is said to be 

strongly ignorable (Rosenbaum and Rubin 1983a). A treatment effect estimated 

under such an assignment mechanism can be unbiasedly estimated.  

Randomised experiment designs are unconfounded and probabilistic due to an 

effective (i.e., perfectly implemented) randomisation process. Thus, randomised 

experiment designs are known to have observed all covariates that are 

simultaneously related to treatment assignment, W , and the outcome variable, Y . 

Due to an effective randomisation process, the distribution of observed and 

unobserved covariates between the treated and control group are, in expectation, 

balanced.  

In contrast, observational designs that lack the randomised selection process 

typically result in unbalanced covariate distributions and, consequently, in selection 

bias (due to a confounded assignment mechanism of an observational design). By 

measuring all the observed covariates7 we can unconfound8 an observational 

assignment mechanism and thus remove selection bias from a study design. Such 

                                                           
7
 A variable selection for observed covariates that are required in the proces of unconfounding the 

assignment mechanism is described in Section 2.3.2. 
8
 By unconfounding an assignment mechanism of an observational design we mean to redesign the 

assignment mechanism of an observational design in a way to mimic an unconfounded assignment 
mechanism of randomised experiments, i.e., by posing an assignment mechanism that is 
unconfounded.  
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an unconfounded observational assignment mechanism hence closely 

approximates an assignment mechanism of randomised experiments, thus, 

unbiased treatment effect estimates can be obtained. 

2.3 Design phase  

The design phase of propensity score methods consist of balancing tools and 

balance assessment tools. The balancing tools consist of methods and techniques 

used to either remove selection bias9 from a study design when estimating causal 

effects or to balance a study design based on the substantively interesting10 

covariates when estimating conditional associations. In both cases the aim is to 

obtain a balanced design with respect to observed covariates. The balance 

assessment tools are used to assess the obtained covariate balance and should be 

used during the design phase of propensity score methods. 

The main element of the balancing tools is the propensity score (Rosenbaum and 

Rubin 1983a), which is a balancing score and thus an essential ingredient in the 

process of balancing a study design (i.e., removing selection bias from a study 

design when estimating casual effects or removing covariate imbalances between 

two groups of our interest when estimating conditional associations) (Section 

2.3.1). 

In randomised experiment designs, the propensity score is a known function (i.e., 

an accepted specification for the propensity score exists), whereas in observational 

designs the propensity score function is mostly unknown (i.e., there is no accepted 

specification for the propensity score) (Rosenbaum and Rubin 1983a). Thus, 

observational designs require an estimation of propensity scores from the 

                                                           
9 Selection bias is removed by unconfounding a confounded assignment mechanism of an 

observational design; hence, an assignment mechanism which closely approximates an assignment 
mechanism of a randomised experiment (i.e., an unconfounded and probabilistic assignment 
mechanism) is obtained. 
10

 The selection of the substantivelly interesting covariates is up to the investigator to define and 
defend as interesting, and surely depends upon the context. 
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observed data (i.e., observed covariates and the treatment indicator, W , when 

estimating causal effects or observed covariates and the binary variable, Z , when 

estimating conditional associations). 

The estimation of propensity scores requires thoughtful selection of variables that 

serve as baseline covariates11 for which we attempt to balance treatment and 

control group when estimating causal effects (Section 2.3.2) or selection of the 

substantively interesting covariates for which we attempt to balance two groups of 

our interest when estimating conditional associations.  

We would like to notify the reader again that, for the sake of clarity, the 

terminology and notation of propensity score methods in the following sections is 

for estimating causal effects and should not be mistaken with the terminology and 

notation that should be used when estimating conditional associations (as 

explained in Section 2.1).  

There are assumptions in the propensity score methods framework that have to be 

met for being able to estimate, unbiasedly, causal effects, but are not required for 

successful estimation of conditional associations. The reader will be informed 

whenever the requirements of the methods when estimating causal effects can be 

loosened for the estimation of conditional associations.  

Again, terms such as: selection bias, treatment indicator - W , treated or control 

group and baseline covariates (as defined in Section 2.3.2) are used only when 

estimating causal effects and can be replaced by terms such as: covariate 

imbalance between two groups, group indicator (i.e., to which group a unit belongs 

- Z ), group 1 or group 2 (or any other name, which depends upon the context of 

the observed data) and substantively interesting covariates (as defined in the 

footnote of Section 2.3). 

                                                           
11 The baseline covariates are the covariates that are observed before treatment is applied to any of 

the units, thus, often they are called simply as observed covariates, because by definition all 
covariates are pre-treatment. 
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2.3.1 Propensity Score 

The term propensity score was coined by Rosenbaum and Rubin in 1983 in the 

paper: The Central Role of the Propensity Score in Observational Studies for Causal 

Effect. This is a highly cited paper with thousands of citations. The propensity score 

has two important uses: (i) addressing the dimensionality problem in studies with 

many covariates; and (ii) the core element in the process of balancing a study 

design (i.e., removing selection bias when estimating causal effects or removing 

covariate imbalances when estimating conditional associations). 

To balance designs in studies with many covariates can often be difficult, if not 

even an impossible task. The propensity score can address the dimensionality 

problem and can make balancing possible regardless of the number of observed 

covariates. The propensity score, as such, integrates information about the 

observed covariates and summarises it to a single value on the interval between 0 

and 1 for each unit. The numerous observed covariates are thus reduced to a single 

covariate – the propensity score. 

Such a transformation is crucial for studies with high dimensional covariate 

structure when aiming to remove covariate imbalances between two groups of 

units. In some special cases, where the number of observed covariates is low and 

the class of observed covariates is primarily continuous, the originally observed 

covariates together with the Mahalanobis distance could replace the role of 

propensity score in removing covariate imbalances between two groups of units. 

The reason why the propensity score is characterised as the core element in the 

process of removing covariate imbalances between two groups of units (i.e., 

balancing a study design) derives from propensity score definition where the 

propensity score, )(Xe , is defined as a balancing score, )(Xb  – a function of the 

observed covariates, X , where the conditional distribution of observed covariates 

given the balancing score is the same for the units in both groups (i.e., ( 1=W ) and 

( 0=W ) when estimating causal effects and ( 1=Z ) and ( 0=Z ) when estimating 
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conditional associations). This relation can be mathematically shown by using (or 

abusing) the Dawid’s (1979) notation: 

)(| XbWX ⊥ . 

If treatment indicator, W , is strongly ignorable given observed covariates, X , then 

the difference between the average potential treatment outcomes and average 

potential control outcomes at each value of a balancing score is an unbiased 

estimate of the treatment effect at that value.  

On the other hand, the strong ignorability assumption is not required for the group 

indicator, Z , because when estimating conditional associations we do not deal 

with the missing data problem, thus, estimation of conditional associations has 

nothing to do with potential outcomes. 

The propensity score adjustment methods, such as matching and subclassification 

on a balancing score, in general produce unbiased estimates of the average 

treatment effect (Rosenbaum and Rubin 1983a). If the propensity score is not only 

a balancing score but it also correctly presents probabilities for a unit to be 

selected in either treated or control group, then also weighting on the inverse of a 

balancing score can produce unbiased estimates of treatment effects. 

When estimating causal effects, the propensity score, )(Xe , is defined as the 

conditional probability of being treated, 1=W , given the observed covariates: 

)|1()( XWprXe == .  

Rosenbaum and Rubin (1983a) showed that the propensity score is a balancing 

score because the conditional distribution of observed covariates given the 

propensity score is the same for treated ( 1=W ) and control ( 0=W ) units. This is 

the critical property of a balancing score because if the treatment assignment is 

unconfounded given the full set of observed covariates, then it is also 

unconfounded conditioning only on a balancing score (Rosenbaum and Rubin 

1983a). Accordingly, treated and control units with (approximately) the same 
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propensity score have (approximately) identical covariate distributions in 

expectation. The average treatment effect (ATE) can thus be defined as the 

difference in conditional expectations of treatment and control group’s outcomes 

at X , averaging all values of X : 

{ } { }),0|(),1|( XWYEEXWYEE =−==τ , 

where the inner expectations refer to the expected potential outcomes at a given 

value of observed covariates, X , and the outer expectations average the expected 

potential outcomes across the distribution of observed covariates in the 

population. 

Because 
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we obtain the average treatment effect as the difference between the average 

potential treatment outcomes and average potential control outcomes: 

[ ] [ ])0()1( YEYE −=τ . 
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The same can be shown also for the treatment effect on the treated (ATT) but then 

the outer expectations do not average the expected potential outcomes across the 

distribution of all the observed covariates but only across the distribution of 

observed covariates for the treated group (i.e., the group of units to which 

treatment is applied). 

In observational designs, true propensity scores are unknown and thus, we are 

required to estimate them from observed data, X  and  W . The main aim is not to 

obtain the best propensity score estimates in terms of minimising the difference 

between the true and the estimated propensity scores, but to obtain propensity 

score estimates that create balance on the observed covariates between treated 

and control groups. Thus, often we would prefer to use estimated propensity 

scores instead of true propensity scores (true propensity scores are known in 

randomised experiments) (Rubin and Thomas 1992a) because it is not necessary 

that true propensity scores, which are population propensity scores, would balance 

our sample equally well as they would balance the population.  

It is needless to say that, in real world examples of observational designs, 

estimated propensity scores are the only choice we have. However, how preferable 

an estimated propensity score is in case we could choose between estimated or 

true propensity scores mainly depends on: (i) the propensity score adjustment 

method used for removing selection bias, and; (ii) the size of selection bias (i.e., the 

level of covariate imbalance between the treated and control group) – in general 

the use of estimated propensity scores will remove more selection bias (Rubin and 

Thomas 1996). 

The use of true propensity scores is preferable in cases of heavily unbalanced 

designs (i.e., large selection bias), and in cases where propensity score weighting 

adjustment method is used in order to avoid a possibility of misspecifying 

propensity score model (a misspecified propensity score model can highly bias 

causal estimates even if the covariate balance based on poorly estimated 

propensity scores is obtained (Waernbaum 2010)). 
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On the other hand, estimated propensity scores are preferable for cases where 

propensity score matching adjustment method is used to obtain well-matched 

samples because the matching approach can account for random imbalances 

between covariate distributions in a similar way as those that would arise from 

randomised experiments (Hirano et al. 2003; Rubin and Thomas 1992b; Rubin and 

Thomas 1996; Rubin and Thomas 2000). 

2.3.2 Propensity Score Model Specification and Selection of 

Covariates (Variable Selection) 

 In order to balance an observational design (i.e., removing covariate imbalances 

between two groups of units), we must first select observed covariates based on 

which a propensity score model is specified and propensity scores estimated. There 

are no fundamental rules for selecting covariates when estimating conditional 

associations. The investigator selects covariates that he/she defines and defends as 

substantively interesting and that surely depends upon the topic of a study. Having 

that said, no matter how we specify the propensity score model, when estimating 

conditional associations, it will be correctly specified as long as obtained propensity 

score estimates are balancing scores. 

On the other hand, when estimating causal effects, the correct specification of the 

propensity score model matters fundamentally because highly misspecified 

propensity score models (i.e., modelling propensity scores with only demographic 

variables) can bias causal effect estimates. The within-study-comparison of Cook et 

al. (2008) showed that propensity score models that include only demographic 

variables have failed on a regular basis to reproduce causal effect estimates of 

experiments. 

Thus, we should be cautious about which observed covariates are included in the 

propensity score model. Observed covariates can be classified as: (i) covariates that 

are simultaneously related to both, the outcome and the treatment indicator; (ii) 

covariates that are related only to the outcome variable and not to the treatment 
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indicator; and (iii) covariates that are related only to the treatment indicator, but 

not to the outcome variable except via its influence on the treatment (i.e., 

instrumental variable).  

Only covariates that are simultaneously related to both – the outcome variable and 

the treatment indicator – are accountable for removing selection bias. Covariates 

that are only related to the treatment indicator should be included in the 

propensity score model only if the functional form of the model is correctly 

specified, otherwise inclusion of such an instrumental variable decreases precision 

of treatment effect estimates.  

Rubin and Thomas (1996) suggest that all the covariates, that are simultaneously 

related to both the outcome and the treatment (i.e., treatment indicator, W ) 

should be included in the propensity score model even if a covariate is only slightly 

related to the outcome variable. Rubin (1997) further claims that excluding such a 

variable from the propensity score model could result in a more biased treatment 

effect estimate in comparison to the level of lost efficiency (precision of treatment 

effect estimates) when we would include such a variable in the propensity score 

model. 

Based on the work of Rubin and Thomas (1996), Rubin (1997), Brookhart et al. 

(2006) and Austin et al. (2007) the best covariates to be included in the propensity 

score model are those that are simultaneously related to the outcome variable and 

to the treatment indicator. However, Brookhart et al.’s expansion of the simulation 

study to small samples contradicts Rubin’s (1997) conclusion regarding the 

inclusion of covariates that are only weakly related to the outcome variable but 

simultaneously related to the treatment indicator. Brookhart et al. findings show 

that inclusion of such a covariate results in a decrease of precision of the estimated 

treatment effect, while removing only a tiny amount of bias. More research should 

be done in this area before we could conclude about the role of variable selection 

for modelling propensity scores with small samples. 
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Once we successfully select observed covariates for modelling propensity scores, 

we should start by first setting up a simple model based on substantive knowledge 

of the problem we are addressing. For example, if a political orientation and 

residence location are two of our observed covariates, which we include in the 

propensity score model, and if based on our substantive knowledge, there are 

fundamental differences in political orientation between different locations, we 

should consider including an interaction term of those two covariates in our 

propensity score model.  

The estimation of propensity scores can then be performed by using either 

binomial regression methods (e.g., a linear probability model, logistic or probit 

regression) or other classification methods (e.g., classification trees, boosted 

regression, random forest: Mccaffrey et al. 2004; Siroky 2009; Westreichab et al. 

2010).  

It is often advisable to transform propensity scores, which are in fact estimated 

probabilities, to the logit scale and thus use linearised propensity scores (Rubin and 

Thomas 1992a; Rubin 2001), 

l� = log � ��	
��
���	
��

�. 

In this sense those linearised propensity scores are nearly linear in the original 

covariates and their squares and products (which is important for cases where we 

include interaction terms or squares of covariates in the propensity score model).  

Rubin (2001) lists three reasons for such a transformation: (i) the linear propensity 

score (i.e., propensity score logit) assesses the efficiency of linear modelling 

adjustments more adequately in comparison to estimated probabilities; (ii) 

propensity score logit tends to be more normally distributed (i.e., similar variances 

and more symmetry) because they are weighted averages; and (iii) propensity 

score logit is more related to the benchmarks in the literature on covariate 

adjustments which are based on linearity and normality assumptions.  
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Once we obtain propensity score estimates, we use different propensity score 

adjustment methods (Section 2.3.3) to adjust for covariate imbalances between the 

treated and control groups. The obtained balance is then assessed with different 

balance assessment tools (Section 2.4). In case balance is not achieved (i.e., 

substantial covariate imbalances between the two groups of units still exist), we 

should respecify the propensity score model, repeat the balancing procedure (i.e., 

apply the propensity score adjustment methods) and assess the balance again.  

We should iterate back and forth between the step of specifying the propensity 

score model, adjusting for covariate imbalances and assessing the obtained balance 

until selection bias is removed (i.e., until our design is balanced). Only once the 

study design is successfully balanced (with respect to observed covariates), should 

the outcome data be examined and causal quantities or conditional associations be 

estimated. 

Even though our main aim, when specifying propensity score model, is to specify it 

in a way that enables us to obtain a balanced design based on the observed 

covariates (i.e., remove covariate imbalances and obtain comparable groups), the 

treatment effect estimators can be sensitive to the specification of the propensity 

score model. Yet, the level of sensitivity of treatment effects estimators to the 

correct specification of the propensity score model largely depends on the 

adjustment method used in removing selection bias.  

The three main propensity score adjustment methods are: (i) matching on 

propensity score – propensity score matching; (ii) using propensity scores to create 

stratas/subclasses within which we then can use other adjustment methods – 

propensity score subclassification/stratification; and (iii) weighting by the inverse of 

the propensity score (i.e., Horvitz-Thompson weighting methods) – propensity 

score weighting.  
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Waernbaum (2010; 2011) compared the impacts of a misspecified propensity score 

model when removing selection bias with propensity score matching and 

propensity score weighting. His findings are that after obtaining a supposedly 

balanced design with both adjustment methods, the design obtained with 

propensity score weighting resulted in biased estimates of treatment effects, 

whereas this was not the case with the design obtained using propensity score 

matching. The same criticism regarding propensity score weighting can be found in 

earlier research (Kang and Schafer 2007; Schafer and Kang 2008; Stuart 2010).  

As long as covariate balance is achieved (i.e., differences in covariate distributions 

between treated and control groups are eliminated – selection bias is removed), 

the correct specification of the propensity score model, with propensity score 

matching or propensity score subclassification, will likely matter less than in cases 

when we use propensity score weighting. 

2.3.3 Balancing tools 

The balancing tools consist of propensity score adjustment methods with which we 

adjust for covariate imbalances in observational designs when estimating causal 

effects or conditional associations. Once a balanced design, with respect to 

observed covariates, is obtained, an unbiased or approximately unbiased treatment 

effects can be estimated only under SUTVA (as defined in Section 2.2) and under 

the assumption that the treatment assignment is strongly ignorable (i.e., treatment 

assignment, W , and the potential outcomes, )0(Y  and )1(Y , are conditionally 

independent given the observed covariates, X :  

)|Pr())1(),0(,|Pr( XWYYXW = . 

On the other hand, we can reliably estimate conditional associations without 

having to consider any of these assumptions. This section describes adjustment 

methods that can be used in the propensity score methods framework for 
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balancing a study design when aiming to estimate either conditional associations or 

causal effects. 

PROPENSITY SCORE MATCHING 

Matching is one of the most widely applied adjustment methods for balancing 

observational designs, and it has been used as an adjustment method even before 

the development of propensity scores (Cochran and Rubin 1973). However, the 

method relies on having a moderately large pool of control units.  

Furthermore, propensity score matching is most appropriate for causal inference 

settings where our aim is in estimating average treatment effects on a treated (i.e., 

when we are estimating treatment effects on the subpopulation of treated units 

only) versus population average treatment effect. Nevertheless, in the same way 

we can also estimate an effect on untreated (i.e., we take the subpopulation of 

control units). Combining these two effects can then also provide us with an 

average treatment effect (i.e., population average treatment effect) by taking the 

weighted average of both estimates where the weights are defined by the number 

of treated and control units. 

The key idea of this method is to find matched pairs of treated and control units 

that are comparable (i.e., units that share the same covariate values – covariate 

distributions of the treated and control group are overlapping). The units from each 

group are matched based on their values of their estimated propensity scores (i.e., 

a treated and a control unit that have approximately the same values of the 

estimated propensity score create a matched pair).  

There are different ways of how units can be matched. Propensity score matching 

can be done with or without replacement (i.e., the unit that was already matched 

can be used to be matched again) and we can also match more control units to one 

treated unit (k-to-one matching) or vice versa.  
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The main drawback when matching without replacement is a decrease in efficiency 

since we would only use the control units which would provide close matches with 

treated units while the rest of the control units would be discarded. In contrast, 

matching with replacement enables us to obtain closer matched pairs and hence 

more balanced designs.  

The k-to-one matching (in case we have more control units than treated units) 

results in less balanced matched pairs but with an increase in efficiency in 

comparison to one-to-one matching, which discards all the unmatched control 

units and thus obtains better matched pairs, while facing a decrease in efficiency.  

The three main matching approaches proposed by Rosenbaum and Rubin (1985) 

are: (i) nearest neighbour matching on the estimated propensity score - greedy 

matching; (ii) Mahalanobis metric matching including the propensity score; and (iii) 

nearest available Mahalanobis metric matching with callipers defined by the 

propensity score. Apart from those three there, is also an optimal pair matching 

(Rosenbaum 1989; Rosenbaum 1991) which creates not only well-matched groups 

but also well-matched pairs within a group, a genetic matching (Diamond and 

Sekhon in press), and full optimal matching (Rosenbaum 1986).  

The main difference between the nearest neighbour and optimal matching is that 

optimal matching is based on some optimality criterion of the whole matched 

sample, whereas the nearest neighbour matching is not. To illustrate in the case of 

one-to-one matching without replacement, nearest neighbour matching 

consecutively takes each treated unit (treated units are ordered in decreasing 

order of estimated propensity score) and matches it to the control unit based on 

the minimal difference in their propensity score values. Once the match is found, 

those two units are removed from the pools and we proceed with matching the 

next treated unit to a control counterpart. In this sense, on average we obtain well-

matched groups but not necessarily also well-matched pairs within a group.  
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On the other hand, optimal matching looks back at the units that were matched 

and re-matches them in a way that, in addition to obtaining well-matched groups, 

we obtain well-matched pairs within the group. From this perspective, optimal 

matching should give us better matched pairs which could result in more 

comparable groups. However, to the best of our knowledge, no research 

comparing these two matching approaches has been done except Gu and 

Rosenbaum (1993), whose findings show that the optimal matching in comparison 

to the greedy matching can produce closer matched pairs, but does not have an 

effect on producing better balance of the matched samples. Optimal full matching 

is an advanced version of the optimal pair matching where treated units can be 

matched to many control units or vice versa (Hansen 2004; Rosenbaum 1991; 

Stuart and Green 2008). According to Gu and Rosenbaum (1993), optimal full 

matching can frequently perform better than optimal matching alone, but we are 

not aware of a convincing example. 

The genetic matching proposed by Diamond and Sekhon in 2005 (Diamon and 

Sekhon in press)  is a generalization of propensity score and Mahalanobis distance 

matching, and it is based on a genetic algorithm (Sekhon and Mebane 1998; 

Mebane and Sekhon 1998). Genetic matching does not depend on the estimated 

propensity score; however, its inclusion does improve it. The algorithm has been 

used in different applications with large data sets: (Gilligan and Sergenti 2008; 

Gordon and Huber 2007; Henderson and Chatfield 2009; Herron and Wand 2007; 

Morgan and Harding 2006; Raessler and Rubin 2005; Sekhon and Grieve 2011) and 

it appears that it can be superior to other matching methods (e.g., greedy or 

optimal matching) in obtaining a good balance between treated and control groups 

(i.e., in obtaining comparable groups), when it is computationally feasible.  
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One of the most important factors within propensity score matching is the group 

ratio,  

tc nnR = , 

indicating the number of control units per treated unit, where cn  denotes the 

sample of control units and cn  denotes the sample size of treated units. The group 

ratio plays a crucial role in propensity score matching because it defines the size of 

the pool of control units that can be matched to treated units. As mentioned 

earlier, the success of matching heavily relies on having a moderately large pool of 

control units in comparison to the pool of treated units. The bigger the pool of 

control units, the easier it is to find close matches of treated and control units, 

where a close match is defined with regard to the difference in the observed 

covariates or the estimated propensity score. For samples with a large group ratio, 

say 10>R , we are more likely to find close matches for each treated unit than for 

samples with a smaller group ratio.  

Another important factor with propensity score matching tells us how many 

control units are matched to one treated unit –m . If we combine both factors (i.e., 

R  and m ) into one formula, we obtain the so-called matching ratio, mR  (Rubin 

1996). Generally, a bigger matching ratio with one-to-one matching (i.e., 1=m ) 

delivers the best matched pairs because closer matches of treated and control 

units can be found thus, removing the most of selection bias (Rosenbaum and 

Rubin 1983a).  

On the other hand, in cases of k-to-one matching ( km = ) the group ratio has to be 

increased in order to achieve the same bias reduction as with one-to-one matching 

(e.g., two-to-one matching, 2=m , requires the group ratio to double) (Rubin 

1996). Even though one-to-one matching creates better balance, we are facing a 

loss in precision because all control units that have not been matched are 

discarded from future analysis. Thus, there is always a trade-off between the level 

of removed selection bias and the loss in precision.  
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Another approach that can be also used with propensity score matching is caliper 

matching. Caliper matching gives a restriction to how close a treated and control 

unit have to be with regard to their propensity score values so that such a possible 

match is considered a close match. For example, if the absolute difference between 

propensity score values of the treated and control units is bigger than 0.1 standard 

deviations of propensity scores but the caliper is set to 0.1 standard deviations, 

such a possible match would not be considered a match. The use of calipers thus 

enables us to get closer matches, but on the other hand, because of discarding 

units which do not result in close enough matches, it results in decreased efficiency 

of estimated treatment effects, and changes the target population by discarding 

some treated units. 

That is, because we are discarding units (treated and control) that do not satisfy 

the caliper criteria, the structure of our sample changes and it might not reflect the 

target population of interest anymore. As a consequence, we should be careful 

with causal statements we are making because the treatment effect estimates 

might be affected (Crump, et al. 2009). The use of calipers is popular in the 

presence of a strong selection procedure, when the initial covariate imbalances are 

big (i.e., study design is heavily unbalanced – the selection bias is large) as in cases 

where only limited numbers of treated and control units in a sample share a 

common support (i.e., covariate distributions of the treated and control group are 

overlapping). 

PROPENSITY SCORE SUBCLASSIFICATION (STRATIFICATION) 

Subclassification has been used for adjusting imbalances in designs before the 

development of propensity score methods (Cochran 1968; Cochran and Rubin 

1973; Rubin 2006, 7-29). Such simple subclassification faces a major challenge 

when the number of observed covariates increases because then the number of 

subclasses grows substantially. For example, if there are ten observed covariates, 

and each has only two categories, then that would require from us to create 

1024210 =  subclasses. Creating that many subclasses would result in most of the 
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subclasses not containing both treated and control units. Thus, in order to avoid 

this problem, we can subclassify on the propensity score  

Propensity score subclassification is thus the second main adjustment method. 

Here control and treated units are divided into subclasses based on the values of 

the propensity score (Rosenbaum and Rubin 1983a; Rosenbaum and Rubin 1984; 

Rosenbaum and Rubin 1985). Subclasses should not only be homogenous, but it is 

also usually desired that subclasses are about the same size. It is common to use 

five or six subclasses (Rubin 2006); however, with large data sets, we can consider 

ten or more subclasses as well (Lunceford and Davidian 2004; Rubin and Waterman 

2006).  

The research conducted before the development of the propensity score methods 

investigated the required number of subclasses by using only one observed 

covariate of a continuous variable. Cochran (1968) showed that using only five 

subclasses, at least 90% of the initial bias usually can be removed. Cochran and 

Rubin (1973) showed that usually in order to remove 80%, 90% and 95% of the 

initial bias, three, five and ten classes need to be created, respectively.  

To proceed with propensity score subclassification, we must first obtain propensity 

score estimates, )(ˆ Xe , and then form K  subclasses based on the sample 

quantiles of the propensity scores where jth sample quantile, jq̂ , Kj ,,1K= , is 

created according to the proportion of ji qe ˆˆ ≤ and it is approximately Kj / , 0ˆ
0 =q , 

and 1ˆ =Kq  (Lunceford and Davidian 2004).  

PROPENSITY SCORE WEIGHTENING 

The propensity score weighting adjustment method also called Inverse-Propensity 

Weighting (IPW) (Horvitz and Thompson 1952) uses the inverse of the estimated 

propensity score as a weight where )(ˆ/1 Xe  is the weight applied to a treated unit 

and ))(ˆ1/(1 Xe−  is the weight applied to a control unit (Czajka, et al. 1992; Imbens 

2000). 
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The propensity score weighting requires the most cautious of all the main three 

propensity score adjustment methods. Beside the strong ignorability assumption 

and SUTVA, the weighting approach requires also for the propensity score model to 

be nearly correctly specified in order to obtain unbiased or approximately unbiased 

estimates of treatment effects.  

Schafer and Kang (2008) also showed that weighting as an adjustment method 

often can be poor. It appears to be, in general, much less efficient than any other 

adjustment methods and quite sensitive to misspecification of the propensity score 

model. The misspecification of the estimated propensity score model can result in 

highly biased estimates of treatment effects when the propensity score weighting 

design is applied (Kang and Schafer 2007; Stuart 2010; Waernbaum 2010). Even if 

we manage to balance our design using the estimated propensity score, but due to 

the misspecified propensity score model, estimated propensity scores do not 

accurately reflect the selection probabilities, the treatment effect estimates 

obtained by using weighting approach can be badly biased.  

Hirano and Imbens (2001) used propensity score weighting in combination with 

regression adjustment and obtained stable results. Yet, Waernbaum (2011) showed 

with his simulation study that in cases of misspecified propensity score models, 

propensity score matching still performs better than the combination of the 

propensity score weighting and additional regression adjustment. 

2.3.4 Balance assessment tools 

Balance assessment tools are used to assess how well distributional forms of the 

covariate distributions in the treated and control group (or any other two 

arbitrarily created groups in conditional association studies) overlap. However, 

besides the overlap assessment, we should also assess the common support issue, 

defined as the area where covariate distributions of both groups overlap in 

geometric terms.  
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Figure 2.1 provides three illustrations of different overlap and common support 

levels. Figure A shows an example of a good overlap and a good common support. 

Figure B shows a lack of the overlap but a good common support. Figure C shows a 

lack of the overlap combined with the lack of common support; thus, we should 

discard the units for which covariate distributions do not share a common support 

in order to avoid extrapolations when balancing a study design. Figure D shows no 

overlap and no common support either. 

Figure 2.1: Illustrations for different levels of overlap and common support 

 

 

 

 

 

 

 

 

 

 

 

 

There are two main types of tools to be used for assessing covariate balance: 

quantitative and graphical tools. These tools should be used before and during the 

design phase of propensity score methods. The design phase is completed only 
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distributions for the treated and control group (or any other two arbitrarily created 

groups when estimating conditional associations).  

Assessing covariate imbalances before proceeding with the design phase is 

important for two reasons. First, it is important to learn whether covariate 

distributions overlap. If covariate distributions do not overlap, then consequently 

there may be no common support for the two covariate distributions. In this case 

we should not proceed with the propensity score study, because treatment effects 

can only be estimated by heavily relying on extrapolations. 

Second, if there is overlap, but we lack a common support (in covariate 

distributions for the two groups) for some of the units in the sample (as in Figure 

2.1 - C), we should discard those units in the design phase to avoid undesired 

extrapolations and consequently possibly biased treatment effect estimates 

(Heckman et al. 1997; Dehejia and Wahba 1999).  

QUANTITATIVE TOOLS 

Some of the most used quantitative tools for assessing covariate balance are: (i) 

standardised difference in covariates, or logits of propensity score means, between 

treated and control groups (Rosenbaum and Rubin 1985); (ii) the difference in the 

means of the propensity score logit between the two groups (Rubin 2001); (iii) the 

ratio of the variances of the propensity scores logit of the two groups and the ratios 

of covariates orthogonal to the propensity score (Rubin 2001); (iv) comparing 

interactions between treated and control groups to determine the similarity of 

covariances (Ho, et al. 2007); (v) the covariate Mahalanobis distance measure 

(Rubin 1976).  

The standardised mean differences and the Mahalanobis distance measure provide 

us with information on how many standard deviations apart the treated and 

control groups are with respect to the covariates or propensity scores. They all 

share an important property that its values are not sensitive to the measurement 
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scale in the sense of being affinely invariant. The standardised mean difference in 

covariates,  

( ) 2/

ˆ
22

tc

ct
tc

ss

XX

+

−
=∆ , 

is the difference in average covariate values, X , normalised by an average standard 

deviation of the covariates, where 2

cs  and  2

ts  are the sample variances of the 

covariates in the control and treated group, respectively.  

The standardised mean difference in estimated propensity score logit is thus 

defined as 

( ) 2/

ˆ
2

,

2

, tlcl

ctl

ct

ss

ll

+

−
=∆  

where cl  and tl  are the average values for the linearised propensity scores for 

control and treated units, and 2

,cls  and 2

,tls  their corresponding sample variances. 

The standardised mean difference can be used as a type of selection bias measure 

for assessing both: the initial and the remaining bias. Although there are no precise 

rules of acceptable values of standardised differences after propensity score 

adjustment, an absolute standardised difference of 0.2 or more might be of 

concern  (Stuart and Rubin 2007). However, absolute standardised differences with 

values of less than 0.1 usually indicate acceptable covariate balance (i.e., there are 

negligible differences in covariate distributions between both groups) (Austin 2011; 

Cochran and Rubin 1973; Cochran 1968; Steiner and Cook in press). Thus, an 

absolute standardised mean difference of 0.1 or less can often be considered to 

indicate negligible remaining bias (i.e., approximately unbiased treatment effects 

can be estimated). 
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The Mahalanobis distance measure is a similar measure to standardised mean 

differences with an addition that it also incorporates information about the 

variance-covariance matrix:  

( ) ( )∑
−

−−=
1'2

c ctctB µµµµ  

with tµ  and cµ  denoting the mean value of the treated and control group and 

∑c
denoting the variance-covariance matrix of the control group. 

The ratio of the variances, VR , of the propensity scores logit of the two samples,  

2

,

2

,

cl

tl

s

s
VR = , 

indicates the similarity of the covariate distributions’ variance between the treated 

and control group. The variance ratio should be close to one, whereas values of 0.5 

or below and 2 or above are too extreme (Rubin, 2001). 

It is important to keep in mind that the metrics that are used to diagnose the 

balance needed to be aware of with the adjustment method that is used to balance 

the design. For instance, when using propensity score subclassification, the balance 

should be assessed within each subclass, or when using propensity score weighting 

the weights should be incorporated into the calculation of the balance measure.  

GRAPHICAL TOOLS 

Graphical tools are mainly used to get an idea on how balanced a study design is 

based on the observed covariates in both groups (i.e., treatment and control 

groups). For a brief assessment of covariate balance we can use some graphical 

diagnostics tools presented in Figure 2.2 – 2.6. 

Figures 2.2 and 2.3 depict covariate distributions of both groups (i.e., treated and 

control) where the group of units to which treatment is applied is denoted by 

dashed bars below the horizontal line which represents zero frequency and the 
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group of units to which treatment is not applied is denoted by empty bars above 

the horizontal line representing zero frequency.  

Figure 2.2 depicts a large regime of common support for covariate distributions of 

treated and control units because there is only a small number of treated and 

control units for which distributions of observed covariates do not share a common 

support. Only the units presented in the second and the third bar for the control 

group and in the last four bars for the treated group do not share a common 

support in observed covariate distributions. In order to avoid extrapolations, it is 

recommended to consider discarding those units from a sample when balancing a 

study design 

Figure 2.2: Distribution of observed covariates for the treated and control groups – 

relative large common support (i.e., observed covariates overlap for most of the 

treated and control units). 

              

On the other hand, Figure 2.3 depicts a very small common support for covariate 

distributions of treated and control units, because there is a large number of 

treated and control units for which distributions of observed covariates do not 
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share a common support. Such designs can be called as heavily unbalanced study 

designs. 

As we can see from the Figure 2.3, only covariate distributions of units in the first 

and second bar of the treated group share a common support. In order to avoid 

extrapolations, we would have to discard a significant number of treated and 

control units, which could severely change the structure of the sample (i.e., the 

sample might not correctly represent our target population anymore).  

Figure 2.3: Distribution of observed covariates for the treated and control group - 

small common support (i.e., observed covariates overlap only for some of the 

treated and control units). 

              

In Figure 2.4 and 2.5, each dot presents the level of covariate balance between the 

treated and control group for each observed covariate. The balance is measured 

with standardised differences in means of observed covariates for the treated and 

control group and with variance ratios for the observed covariates for the treated 

and control groups.  
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The dashed horizontal and vertical lines denote “acceptable” levels of the covariate 

balance (i.e., there are negligible differences in covariate distributions between 

both groups) where the absolute value of the standardised mean difference should 

be smaller than 0.1 and where the variance ratio should not be smaller than 0.5 or 

bigger than 2. The red cross indicates covariate (im)balance in propensity score. 

Figure 2.4: An unbalanced design based on the standardised mean difference and 

the variance ratio diagnostics  

 

Source: Steiner et. al., On the Importance of Reliable Covariate Measurement in 

Selection Bias Adjustments Using Propensity Scores, 2011. 

Figure 2.4 shows an imbalanced design where most of the observed covariates do 

not satisfy the criterion of acceptable covariate balance. This criterion is not 

satisfied also for the linearised propensity score (i.e., propensity score logit), 

indicated by the red cross, which appears to be far off the boundaries of the 

“acceptable” balance. On the other hand, Figure 2.5 shows an “acceptable” level of 

the covariate balance for all the observed covariates and also for the propensity 

score logit. 
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Figure 2.5: A balanced design based on the standardised mean difference and the 

variance ratio diagnostics  

 

Source: Steiner et. al., On the Importance of Reliable Covariate Measurement in 

Selection Bias Adjustments Using Propensity Scores, 2011. 

Figure 2.6 shows quantile-quantile plot of propensity scores for the raw data (i.e., 

before the removal of selection bias) and for the matched data (i.e., after the 

removal of selection bias with propensity score matching adjustment method). The 

matched data set, where selection bias was removed, clearly shows a more 

balanced covariate structure between the treated and control group (grey line) 

than the raw data (black line). 
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Figure 2.6: Quantile-quantile (QQ) plot of propensity scores 

 

Source: Ho D. E., Imai, King, & Stuart, Matching as nonparametric preprocessing for 

reducing model dependence in parametric causal inference, 2007 

Figure 2.7 shows another version of graphical display for assessing covariate 

balance in observed data (Love 2002). The horizontal axis presents values for 

standardised differences in covariate means. The vertical axis presents observed 

covariates based on which a study design is balanced. The vertical grey line 

presents a balanced design. The black full circles present standardised differences 

in covariate means before balancing design (i.e., before proceeding with the design 

phase of propensity score methods) and the empty blue squares present 

standardised differences after design was balanced (i.e., after completing the 

design phase). 
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Figure 2.7: A balancing plot displying covariate (im)balances of the (un)matched 

cases 

 

Source: Love, 2002 

2.4 Analysis phase 

This section presents propensity score estimators, how to proceed with an 

additional covariate adjustment in order to remove residual covariate imbalances 

(i.e., the imbalances left after completion of the design phase), and how to perform 

sensitivity analysis. 12 

                                                           
12

 Note that when estimating conditional associations there is no need to perform sensitivity 
analysis. 



66 
 

2.4.1 Propensity Score Estimators 

A variety of propensity score estimators can be used for estimating causal effects 

with propensity score methods. This section presents propensity score estimators 

that can be used with each of the three main propensity score adjustment methods 

when estimating causal effects. When estimating conditional associations, the 

approach is more straightforward (i.e., we take the average difference in outcome 

values, Y , of the two groups and not the values of potential outcomes as in 

estimating causal effects), and their estimates will be denoted with the term: 

conditional comparison estimates. 

PROPENSITY SCORE MATCHING ESTIMATOR 

The propensity score matching estimator – the estimator used to estimate causal 

effects when removing selection bias with propensity score matching adjustment 

method – is, in its the most basic form (i.e., one-to-one matching without 

replacement), defined as follows: 

))0(ˆ)1(ˆ(
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where Ni ,,1K=  indicates the number of matched pairs for the whole sample, 

TN  indicates the number of matched pairs for the sample of treated units (Abadie 

and Imbens 2002). 
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The )1(ˆ
iY  and )0(ˆ

iY  denote imputed potential treatment and control outcomes 

defined as: 
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where M denotes the number of matched pairs and )(iJM  denotes that unit j  

belongs to the group of matched pairs, M , of the unit i . The ATEτ̂  estimates the 

average treatment effect, whereas the ATTτ̂  estimate the average treatment effect 

on the treated. 

PROPENSITY SCORE SUBCLASSIFICATION ESTIMATOR 

When using the propensity score subclassification adjustment method, we first 

obtain causal effects for each subclass, 

CjTjj YY −=τ̂  

where Kj ,,1K=  indexes classes with K  subclasses. The average treatment effect 

is then calculated as the weighted average of subclass-specific treatment effect 

estimates across subclasses.  

The subclassification estimators are defined as follows:  

∑ =
=

K

j jjATE w
1

ˆˆ ττ  with weights, NNNw TjCjj /)( += ,
 

∑ =
=

K

j jTjATT w
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ˆˆ ττ  with weights, TTjTj NNw /= ,
 



68 
 

where subscripts T  and C  represents treated and control units, respectively and 

w  denotes weights which are calculated as: 

∑=
K

j jjj nnw / . 

PROPENSITY SCORE WEIGHTING ESTIMATOR 

With the propensity score weighting adjustment methods, the causal estimator is 

defined as follows: 

∑
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with weights, )(ˆ/1 ii Xew =  for the treated units, Ti∈ , and ))(ˆ1/(1 ii Xew −=  for 

the control units, Ci∈ . The ATT is calculated with the same equation, the only 

difference is in the calculation of weights. For the treated units weights are 1=Tiw

and for the control units ))(ˆ1/()(ˆ iiCi XeXew −= . 

Each propensity score adjustment method with its own propensity score estimator 

requires its own variance estimation of estimated treatment effects. When we 

would use a combination of different adjustment methods (i.e., subclassification 

and matching or matching and covariate regression adjustment, etc.) the 

estimation of variances of different effects is a complex issue. This thesis does not 

address the topic of how to estimate treatment effect sampling variances, but the 

following literature does (Abadie and Imbens 2004; Hill and Jerome 2006; Imbens 

2004; Rubin and Thomas 1996; Schafer and Kang 2008). 
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2.4.2 Covariate Regression Adjustment 

Covariate regression adjustment can be employed after we completed the design 

phase of propensity score study. The main reason for employing regression 

adjustment after completing the design phase of propensity score methods is to 

remove residual covariate imbalances in our study design – the minor covariate 

imbalances that could not be removed in the design phase of the use of propensity 

score methods. 

Also, the regression adjustment is trustworthy when the magnitude of the 

difference in the distributions of the observed covariates between the two groups 

satisfies at least the following two conditions: (i) the absolute standardised mean 

difference of the propensity scores in the two groups is smaller than 0.5; (ii) the 

ratio of the propensity score variances in the two groups is close to one – values of 

0.5 and 2 are too extreme. For more in-depth discussion, on the required 

conditions, please refer to Rubin (2001, 173-174).  

The combination of propensity score matching with later covariate regression 

adjustment is known to be, in general, superior to propensity score matching alone 

(Rubin 2006, 234) and usually produces less biased treatment effect estimates 

(Rubin 1973, 185). The same holds when combining the propensity score 

subclassification with later regression adjustment (Imbens 2004). 

As aforementioned, covariate regression adjustment is not part of the design phase 

because it requires inclusion of the outcome variable. Thus, when using regression 

adjustment, in addition to some other propensity score adjustment method, the 

treatment effect is estimated by:  

( ) ( )ctct XXYY ˆˆˆˆ −−−= βτ , 

where ct YY −
 
is the difference in the outcomes of the matched pairs (i.e., matched 

treated and control units) and the 
ct XX ˆˆ −  is the difference in covariate values for 
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the treated and control group. The latter can also be replaced by  
ct ll ˆˆ −
 
denoting 

the difference in propensity scores logit for the treated and control group.  

The regression coefficient, β̂ ,  can be obtained in number of ways (Rubin 1973): (i) 

as the pooled estimate of the regression coefficient from a one-way analysis of 

variance, pβ̂ ; (ii) as the regression coefficient of differences, 
dβ̂ , obtained from 

the regression of  

cjtjdj YYY −=  on  ctdj XXX ˆˆˆ −=  (Rubin, 1979) 

with djY  being the difference in the outcomes of the matched pairs (i.e., matched 

treated and control units) and 
djX̂  the differences in the covariate values of the 

matched pairs – recommended in pair match settings; (iii) as the regression 

coefficient from the treated group, Tβ̂ , obtained from regressing outcomes of 

treated units, tjY , on X of treated units; and (iv) as the regression coefficient from 

the control group,
Cβ̂ , obtained from regressing outcomes of control units, cjY , on 

X of control units, 
cl̂ .  

The decision of which regression coefficient to estimate has to be based on the 

data characteristics (note that all of the proceeding regression coefficients are 

estimated with the outcome data we obtain after we balance the design with 

propensity score adjustment methods). The last two listed regression coefficients, 

Tβ̂  and 
Cβ̂  should be avoided when the response surfaces (i.e., outcome variables 

from both groups – treated and control) are parallel (Rubin 1979).  

When the variances of covariates between both groups are approximately equal 

and their distributions approximately symmetric, using pβ̂  might result in a slightly 

less biased results of treatment effects than using, 
dβ̂ . In cases when control 

group is at least twice as big as the treated group and propensity score matching 
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method is used using, 
dβ̂ , will most likely result in the least biased treatment 

effect estimates (Rubin 1973). 

The additional regression adjustment can also be employed by simply regressing Y  

on some observed covariates for which we believe that they will remove residual 

imbalances between observed covariates of the treated and control groups (an 

example is provided with an application in Chapter 6 – Real Data Set 2). 

However, some more complex regressions can be done as well, for example, using 

non-linear terms such as squares or even splines, and in cases when propensity 

score subclassification adjustment method is employed, we could use an indicator 

function within subclasses. However, these more extensive covariate regression 

adjustments would be tough or even impossible to be done in small sample 

studies. 

For more details on how to employ covariate regression adjustments, after 

completing the design phase of propensity score methods when estimating causal 

effects or conditional associations, please refer to (Gutman and Rubin 2012; 

Schafer and Kang 2008; Steiner 2012). 

2.4.3 Sensitivity Analysis 

Sensitivity analysis is the last step when estimating causal effects with propensity 

score methods. By using propensity score adjustment methods, when estimating 

causal effects, we attempt to unconfound the confounded assignment mechanism 

and thus remove selection bias, which results from a non-randomised selection 

procedure. By doing so, we remove imbalances in observed covariates; however, 

we have no control over the hidden bias that might also be part of a study that 

does not randomly select units in the treated or control group.  
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In a randomised experiment design, the randomisation takes care of balancing 

unmeasured covariates (at least in expectation), but this is not the case in a non-

randomised design. The hidden bias exists if, for example, there are two units with 

the same observed covariates, but they have a different chance of receiving or not 

receiving a treatment (i.e., they have a different chance of assignment to 

treatment) (Rosenbaum 2010). Because it is a hidden bias, we cannot directly 

measure it; however, we can use techniques that enable us to study how sensitive 

our causal claims might be to possible hidden biases.  

Sensitivity analysis can be done in a parametric or a non-parametric framework. 

Parametric sensitivity analysis was developed back in early eighties with the work 

of Rosenbaum and Rubin (1983b) and also applied in Rosenbaum (1986), whereas 

the non-parametric sensitivity analysis was developed by Rosenbaum (2005). The 

most recent approach for analysing sensitivity of causal claims to possible hidden 

biases can be performed by the Enhanced Tipping-Point Displays which were 

developed by Liublinska and Rubin (2012) for investigating sensitivity to 

nonignorable reasons for missing data 

In this chapter we present the Rosenbaum (2005) and Liublinska&Rubin (2012) 

approaches to sensitivity analysis. The former approach is particularly appealing 

because Keele (2011) developed software (an R package called rbounds) to 

perform sensitivity analysis based on the Rosenbaum approach. The latter 

approach is a novelty in the field of sensitivity analyses, and it has been recently 

accepted by the U.S. FDA (i.e., Food and Drug Administration) as a sufficient 

approach for studying sensitivity of causal claims to missing outcome data in one 

example. However, the software to perform Enhanced Tipping-Point Displays is still 

under development. 
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ROSENBAUM SENSITIVITY ANALYSIS IN OBSERVATIONAL STUDIES (2005) 

The Rosenbaum sensitivity analysis starts with the question of how could our 

causal claims change in presence of hidden biases? Thus, we try to understand how 

big the hidden bias should be for our causal claims to change. This is closely related 

to Cornfield et al. (1958), which may be the first sensitivity analysis in an 

observational study. 

Let say we have two units j and k  with the same observed covariates, X , but 

different probabilities to be assigned to either a treatment or a control group. In 

order to control for an overt bias (i.e., bias due to imbalances in observed 

covariates - selection bias) we would create matched pairs with units j and k  for 

which observed covariates are the same, [ ] [ ]kj XX = , but the chance for each of 

this unit to get assigned to a treatment group is possibly different, [ ] [ ]kj ππ ≠ . The 

odds that each of these units get assigned to a treatment is equal to )1/( ππ −  for 

j and k  respectively.  The odds ratio of j and k  units is thus: 

[ ] [ ]

[ ] [ ])1(

)1(

kk

jj

ππ

ππ

−

−
. 

If this odds ratio is equal to one, then [ ] [ ]kj ππ =
 
whenever [ ] [ ]kj XX = . Such studies 

are hence free of hidden bias. In case this odds ratio equals two, it means that unit 

j  is twice as likely to receive the treatment as unit k .  

Rosenbaum (2002) formulates the sensitivity analysis by considering several 

possible values of Γ  so that  

[ ] [ ]

[ ] [ ]
Γ≤

−

−
≤

Γ )1(

)1(1

jk

kj

ππ

ππ
 

for all j , k with [ ] [ ]kj XX = , and then look at how the causal inference might 

change with different magnitudes of Γ .  
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Causal inference of observational study designs assumes strong ignorability which 

means that all the covariates are observed. In this sense we assume that there is no 

hidden bias thus the odds ratio should be equal to one,  

[ ] [ ]

[ ] [ ]
1

)1(

)1(
=

−

−

kk

jj

ππ

ππ
. 

In case values of Γ  close to one lead in a very different causal inference than those 

obtained assuming strong ignorability (i.e., assuming that the study is free of 

hidden bias) the study is sensitive to a hidden bias.  

If even extreme values of Γ  do not change our causal claims, the study is not 

sensitive to hidden bias, and thus we can be comfortable making strong causal 

claims. 

ENHANCED TIPPING-POINT DISPLAYS 

The foundation of the Enhanced Tipping-Point displays is the “tipping-point” 

analysis introduced by Yan et al. (2009) but anticipated by others. The main 

objective of the “tipping-point” analysis is to assess if our conclusions about causal 

claims would have been different under a variety of plausible assignment 

mechanisms that we would pose for our observational design in order to mimic a 

randomised experiment design (Cochran and Rubin 1973). 

Typically an assignment mechanism for an observational design would be posed 

under the missing at random assumption (MAR). The Enhanced Tipping-Point 

displays thus assess sensitivity of our causal claims to unobserved covariates by 

posing a variety of assignment mechanisms for an observational design under the 

missing not at random assumption (MNAR). These assignment mechanisms are 

hence posed based on substantial knowledge of the study field. 
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Figure 2.7 shows an example of the Enhanced Tipping-Point display where 

displayed cells represent p-value from a hypothesis test (i.e., 0H : there is a 

difference in the outcomes between the units to which treatment was applied and 

units to which treatment was not applied). Although Figure 2.7 shows a missing 

data mechanism, it could also be used as assignment mechanism; thus, we are 

going to explain it that way. 

The dark blue square presents an assignment mechanism for observational design 

being posed under the MAR assumption while the remaining 32 squares present 32 

other plausible (more or less extreme) models of assignment mechanisms posed 

under the MNAR assumption. 

The dark blue square is in the area of high p-values denoting that there is a 

difference in the outcomes between the units to which treatment was applied and 

units to which treatment was not applied). Accordingly, the tipping-points denoted 

by the red contour show an area with p-values smaller than 0.05 (i.e., no 

differences in outcomes between treated and control group). 

As long as all the 32 assignment mechanisms posed under the MNAR assumption 

and presented with 32 squares of different colours are far from the area of cells 

denoting very small p-values, our conclusions regarding causal claims are not 

sensitive to unobserved covariates. 

Beside p-values, the displayed cells can also represent estimated treatment effect 

(i.e., specific values of treatment effect) or bounds on interval estimates (Rubin and 

Liublinska 2012). 
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Figure 2.7: An example of the Enhanced Tipping-Point display 

 

Source: Rubin and Liublinska, 2012 
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2.5 Software 

There has been a variety of software available to study causal questions within the 

propensity score method framework; some are presented in Table 2.1 – 2.4. 

Table 2.1: Software for STATA 

match 

 

It can be used for k:1 matching 
with and without replacement 
for estimating: ATT, ATE and 

robust variances. 

Abadie et al., Implementing 
matching estimators for average 
treatment effects in Stata 2004 

http://www.economics.harvard.edu/fac
ulty/imbens/software_imbens 

pscore It can be used for k:1 matching, 
matching with a caliper and also 

when performing propensity 
score subclassification 

adjustments for estimating ATT. 

Becker and Ichino, Estimation of 
average treatment effects based 

on propensity scores 2002 

http://www.lrz-
muenchen.de/~sobecker/pscore.html 

psmatch2 It can be used for k:1 propensity 
score matching, Mahalanobis 

matching and kernel weighting 
for estimating ATT and ATE. It 

also includes tools for assessing 
the balance. 

Leuven and Sianesi, psmatch2 
2003 

http://econpapers.repec.org/software/b
ocbocode/s432001.htm 

rbounds 
Performs Rosenbaum (2005) 

sensitivity analysis for ATT 

Markus Gangl 

http://econpapers.repec.org/software/b
ocbocode/s438301.htm 

mhbounds 
Performs Rosenbaum (2005) 

sensitivity analysis 

Sascha O. Becker, Marco Caliendo 

http://ideas.repec.org/p/diw/diwwpp/d
p659.html 

sensatt 
Performs a simulation-based 

sensitivity analysis for matching 
estimators 

Tommaso Nannicini 

http://ideas.repec.org/c/boc/bocode/s4
56747.html 

http://www.tommasonannicini.eu/Porta
ls/0/sensatt_wp_4.pdf 

 

 

 

 



78 
 

Table 2.2: Software for R 

Matching It performs multivariate and 
propensity score matching 
based on a genetic search 

algorithm. It includes a variety 
of univariate and multivariate 

tests to assess balance 

Sekhon, Multivariate and 
Propensity Score Matching 
Software with Automated 
Balance Optimization: The 

Matching Package for R 2011 

http://sekhon.berkeley.edu/matching 
MatchIt It includes a variety of matching 

procedures (i.e., nearest 
neighbour, Mahalanobis 

distance, caliper, exact, full, 
optimal, subclassification) and 
diagnostic tools for assessing 

balance 

Ho et al., MatchIt: 
Nonparametric Preprocessing 

for Parametric Causal Inference 
2011 

http://gking.harvard.edu/matchit 

optmatch It performs optimal and full 
matching 

Hansen and Klopfer, Optimal full 
matching and related designs 

via network flows 2006 

http://cran.r-
project.org/web/packages/optmatch/i

ndex.html 
PSAgraphics It includes a variety of function 

for assessing balance 
Helmreich and Pruzek, 

PSAgraphics: Propensity score 
analysis graphics 2009 

http://cran.r-
project.org/web/packages/PSAgraphic

s/index.html 
rbounds Performs Rosenbaum (2002) 

sensitivity analysis  
Keele, rbounds: Perform 

Rosenbaum bounds sensitivity 
tests for matched and 
unmatched data 2011 

http://cran.r-
project.org/web/packages/rbounds/in

dex.html 
twang It provides functions for 

propensity score estimating and 
weighting, nonresponse 

weighting, and diagnosis of the 
weights 

Ridgeway et al., Toolkit for 
weighting and analysis of non-

equivalent groups 2012 

http://cran.r-
project.org/web/packages/twang/inde

x.html 
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Table 2.3: Software for SAS 

SAS usage note How to use SAS for 
matching on propensity 

scores 

http://support.sas.com/kb/30/971.
html 

gmatch macro It provides functions 
for k:1 matching using 

greedy algorithm 

Kosanke and Bergstralh, 
gmatch 2004 

http://mayoresearch.mayo.edu/ma
yo/research/biostat/upload/gmatc

h.sas 
vmatch macro It provides functions to 

perform matching with 
optimal matching 

algorithm 

Kosanke and Bergstralh, 
gmatch 2004 

http://mayoresearch.mayo.edu/ma
yo/research/biostat/upload/vmatc

h.sas 
1:1 Mahalanobis 
matching within 
propensity score 
calipers 

It provides functions 
for matching on 

propensity scores and 
Mahalanobis distance 

Feng, W. W., Jun, Y. and Xu, 
R. 2005 

www.lexjansen.com/pharmasug/2
006/publichealthresearch/pr05.pdf 

Greedy 1:1 matching It provides functions 
for one-to-one 

matching with the 
greedy matching 

algorithm 

Parsons, L. S. 2005 

http://www2.sas.com/proceedings
/sugi25/25/po/25p225.pdf 

weighting It provides functions 
for propensity score 

weighting adjustment 
method 

Leslie, S. and Thiebaud, P. 
2006 

http://www.lexjansen.com/wuss/2
006/Analytics/ANL-Leslie.pdf 

 

Table 2.4: Software for SPSS 

Propensity 
score 
matching in 
SPSS 

It provides functions for 
propensity score matching 
with the greedy matching 

algorithm (i.e., k:1 
matching, matching with 
caliper, matching with or 

without replacement) and 
functions to assess balance 

Thoemmes, F. 2012: Propensity 
score matching in SPSS 

 
http://sourceforge.net/projects/psmsps

s/files/  
http://sourceforge.net/projects/psmsps

s/files/ 
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Chapter 3 

Sample Size Concerns with Propensity 

Score Methods 

The development of propensity score methods in the last decades resulted in 

guidance on estimating causal effects from large observational data sets. However, 

the question of “how large” the treated and control samples should be, or what 

minimum sample sizes are required for a successful implementation of the 

propensity score methods with estimated propensity scores, remains mostly 

unanswered. By using the term “successful implementation” we mean being able 

to balance a study design, with respect to observed covariates, to the level that 

possible residual imbalances in observed covariates can be considered as negligible 

(Section 2.3.4). Nevertheless, more research regarding small sample properties 

within propensity score methods is important also when the methods are used for 

estimating conditional associations on substantively interesting covariates – the 

covariates used to balance a study design.  

3.1 Sample Size and Causal Inference with 

Propensity Score Methods 

An overall sample size, n , with a dichotomous treatment variable (i.e., 1=W  if 

treatment is applied to a unit, and 0=W  if treatment is not applied to a unit) is 

defined as a sum of the units to which treatment is applied (i.e., a treated sample, 

tn ) and the units to which treatment is not applied (i.e., a control sample, cn ). Thus 

the overall sample size is ct nnn += . 
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In randomised experiments tn  and cn  are often equal and the samples are 

balanced with respect to observed and unobserved covariates, thus the size of tn  

and cn  
matters only from the perspective of statistical power and efficiency (i.e., 

standard errors). 

On the other hand, in observational designs, tn  and cn  are typically not balanced, 

with respect to the observed and unobserved covariates (which results in selection 

bias when estimating causal effects), and often not of the same size. Therefore, we 

are required to first balance such an unbalanced design (with respect to observed 

covariates), before proceeding with the estimation of causal effects or conditional 

associations. 

The topic of removing selection bias from observational designs, when estimating 

causal effects, was researched already in the sixties, when Cochran (1965) 

indicated that samples selected for study should be “large enough” in order to be 

able to minimise differences in units’ characteristics between the treated and 

control groups (i.e., to balance a study design – to obtain comparable groups). 

In 1996 Rubin and Thomas showed that by using propensity score matching, when 

estimating causal effects, selection bias can be removed from observational 

designs with moderately large samples. However, it is unclear from their paper, 

what sample sizes are considered as moderately large.  

Three simulation studies that include small and large samples (Rubin and Thomas 

1996; Zhao 2004; Luellen 2007) confirm that successful implementation of 

propensity score methods (i.e., comparable groups are obtained) depends on used 

sample sizes. This research thus indicates that guidelines established for large data 

sets may not be appropriate with small data sets.  
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3.2 Small Samples with Propensity Score 

Methods 

Small samples are common in various fields of social sciences and medical research 

(e.g., the number of students in classrooms, number of schools, or number of 

patients with a rare disease). Thus, the statistical community has been encouraged 

to conduct more research regarding small sample properties within propensity 

score methods (Shadish and Steiner 2010). 

To our knowledge, only a small number of publications have investigated how 

successfully selection bias can be removed from observational designs with 

propensity score methods, when only small samples are available (Rubin and 

Thomas 1996; Zhao 2004; Luellen 2007). These studies suggest that successful 

implementation of the methods depends on: (i) the sample size; (ii) the method 

used to estimate propensity scores, and; (iii) the propensity score adjustment 

method used to remove selection bias. 

Some within-study-comparisons (Shadish et al. 2008; Pohl, et al. 2009), where 

causal effect estimates from a randomised experiment are compared to those 

obtained from corresponding non-randomised design, suggest that small samples 

are in fact capable of approximating results of randomised designs. Yet, more 

research is required to be able to generalise their conclusions regarding small 

sample studies.   

3.2.1 Issues with Small Samples  

One of the main issues with small samples in general in statistical inference is the 

issue of large standard errors (i.e., the efficiency issue). It has been widely known 

that statistical inference with small samples is less precise than with large samples. 

However, the “efficiency issue” is not the only issue that small samples face when 

estimating causal effects or conditional associations with propensity score 

methods. 
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In order to remove covariate imbalances from observational designs, we must first 

estimate propensity scores. The aim of the estimated propensity scores is to act as 

balancing scores. The smaller is the sample, the less precise are the propensity 

score estimates and precision is decreasing, when the number of observed 

covariates increases. Thus, balancing a study design with less precisely estimated 

propensity scores might result in more residual imbalances (i.e., the covariate 

imbalances that remain after completing the design phase of propensity score 

methods). 

Furthermore, observational designs with small samples may also suffer more from 

the lack of overlap or lack of common support (as defined in Section 2.3.4), than 

observational designs with large samples. Consequently, due to small sample sizes 

the lack of a good overlap makes the balancing process more difficult, because it is 

harder to find comparable units, if only a limited number of units is available. At 

the same time, by discarding units that do not share a common support, we further 

reduce our sample size to avoid extrapolations. 

Once a balanced design in small sample observational studies is obtained, 

estimators (i.e., causal estimators or conditional comparison estimators) are much 

less efficient, due to larger standard errors, than those obtained with large 

samples. 

3.2.2 Past Research on Small Samples when Estimating Causal 

Effects 

When reviewing propensity score publications with small samples, we were 

interested in publications that investigated how well covariate imbalances can be 

removed in small sample observational designs, and what is the most appropriate 

propensity score adjustment method to be used. 

The most comprehensive study of propensity score methods was performed by 

Luellen (2007). Luellen investigated: (i) two different treated sample sizes (i.e., 

1001 =n
 
and 5002 =n ) with the group ratio of one; (ii) different methods for 
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estimating propensity scores (i.e., logistic regression, classification trees and 

ensemble methods such as bootstrap aggregating, boosted regression, and random 

forest); and (iii) the main propensity score adjustment methods (i.e., matching, 

subclassification and weighting) performed independently or in combination with 

an additional regression adjustment.  

His simulation study used only one set of observed covariates, 20=p  (all 

continuous), a binary treatment variable (whether a treatment was assigned to a 

unit or not) and a continuous outcome variable. His simulation results show, that 

all the investigated factors have an impact on how successfully selection bias can 

be removed from the observational design (i.e., how effectively treated and control 

groups can be balanced with respect to the observed covariates). 

His findings show that the effect of sample size is sensitive to both: the propensity 

score adjustment method used to balance an observational study design and to the 

method used to estimate propensity scores. With the smallest treated sample size 

1001 =n , only logistic method for estimating propensity scores, and the propensity 

score matching adjustment method, implemented with one-to-one matching, 

performed well.  

The ensemble methods for estimating propensity scores are meant to be used with 

large data sets, therefore, it is not surprising that these methods did not perform 

well with the smallest sample. The same holds for the subclassification adjustment 

method (it is meant to be used with large data sets), in order to ensure that each 

created subclass consists of a sufficient number of units. Hence, in small sample 

studies we might not even be able to follow Cochran’s (1968) advice that at least 

five to six subclasses should be created. For example, with treated samples,

,100<tn  less than 20 treated units would be included in one subclass, which 

would result in a lack of power, when estimating treatment effects within each 

subclass. 
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Luellen’s simulation results also show that propensity score weighting performs the 

worst of all the adjustment methods. Thus, he does not recommend the weighting 

approach, regardless of the used sample sizes. It is important to note here, that 

Luellen’s study simulates real observed data, thus, he was unable to know whether 

the model, that he is using to estimate propensity scores, is correctly specified. As 

explained in Section 2.3.3, the propensity score weighting requires a correctly 

specified propensity score model in order to estimate, unbiasedly, treatment 

effects. Luellen’s simulation study also confirms previous findings from Rubin 

(2006, 234), and Hirano and Imbens (2001), that the combination of propensity 

score adjustment methods with an additional covariate regression adjustment, 

performs better than any of the adjustment methods alone.  

Rubin and Thomas (1996) analytically investigated the role of the group ratio, 

tc nnR /= , when employing propensity score matching with one-to-one matching. 

Their analytical results are based on the moderately large treated samples, 

however, they tested their analytical findings with a simulation study using small 

samples. Their findings show, that in cases of moderately large treated samples and 

the initial bias13, B , of 0.5, 1.0, and 1.5, group ratios, R , of 2, 3, and 6 are required 

to eliminate differences in covariate distributions of the treated and control 

groups. Thus, the greater the difference in the treated and control groups’ 

covariate distributions, the larger the initial bias, and consequently, the more 

control units per treated unit are required. At the same time, Rubin and Thomas 

noted, that in cases of smaller treated samples, even larger group ratios are 

required, but without suggesting how large. 

 

 

                                                           
13

 The initial bias, B , is defined in terms of the Mahalanobis distance, ( ) ( )∑−
−−=

1'2

c ctctB µµµµ

with tµ  and cµ  denoting the covariate mean values of the treated and control group and  ∑c

denoting the variance-covariance matrix of the control group. 
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Rubin and Thomas tested their analytical findings with a simulation study of 

ellipsoidal data by using treated samples of 25 and 50 units (these are, to our 

knowledge, the smallest treated samples ever investigated in propensity score 

methods) with 5 and 10 observed covariates, group ratios, R , of 2, 5 and 10, and 

different level of initial bias, B , of 0.0, 0.25, 0.5, 0.75, 1.0 and 1.5. For the initial 

bias of 5.0=B , their simulation results show, that with a group ratio of 5=R  or 

10=R , essentially all the selection bias is removed whereas for the larger initial 

biases, the selection bias could not be removed with these group ratios. Similar 

results were also achieved with their real data simulation. Yet, they do not provide 

any insights whether different number of observed covariates has an influence on 

the level of selection bias that can be removed. 

Zhao’s simulation study investigated small and moderately large treated samples 

when comparing four different matching estimators14 (i.e., one-to-one propensity 

score matching, covariate-Mahalanobis distance matching, covariate-and-

propensity-score matching and covariate-and-outcome matching). The smallest 

investigated sample has 100 treated and 400 control units, indicating a group ratio 

of four. His results show that the propensity score matching estimator (i.e., one-to-

one propensity score matching) most effectively removes selection bias.  

3.3 Conclusion 

Based on the published research, regarding the propensity score estimation 

techniques and the propensity score adjustment methods, when using small 

samples, and by incorporating the theoretical background of the propensity score 

methods, we can conclude the following: (i) treated samples smaller than 100 have 

not yet been sufficiently investigated; (ii) the most sensible propensity score 

estimation method to be used, in cases of small samples, is the logistic regression; 

                                                           
14

 Two of the most widely applied matching estimators are: (i) the propensity scores as defined in 
the Chapter 2.3.1; and (ii) the covariate matching estimator that uses the Mahalanobis distance in 
order to balance covariates of both groups. 
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(ii) the use of the propensity score weighting can be too speculative in cases when 

the true model of the propensity score is not known, therefore, such an adjustment 

method might not be the best choice regardless of the used sample size; (iii) the 

propensity score subclassification is not a realistic option, in cases of small samples, 

when the smallest treated sample can be as small as consisting of only eight units; 

(iv) one-to-one propensity score matching appears to perform the best of all the 

propensity score adjustment methods, in terms of balancing observational study 

designs; (v) the importance of the size of the group ratio, with small treated 

samples, has not been investigated beyond the simulation study of Rubin and 

Thomas (1996) which only used two treated sample sizes (i.e., 25=tn  and )50=tn , 

five and ten observed covariates, and three group ratios (i.e., 10,5,2=R ), showing 

that only 5≥R  removes on average all the selection bias in both of the studied 

treated samples; (vi) the use of the covariate regression adjustment, after 

successfully completing the design phase of propensity score methods (i.e., the 

covariate imbalances are removed to negligible levels) is highly recommended 

(Rubin 2006, 234; Rubin 2001, 173-174). Such an adjustment can further remove 

possible residual covariate imbalances that remain after completing the design 

phase. 
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Chapter 4 

Simulation Study 

Based on the discussion in Section 3.3, our simulation study investigates small 

sample properties of propensity score methods using logistic regression for 

estimating the unknown propensity score, a one-to-one propensity score matching 

approach to balance a study design, and an additional covariate regression 

adjustment for further removing residual bias to estimate the average treatment 

effect on the treated (ATT). 

In particular, our focus is on studying the required sizes of control groups when 

dealing with small treated samples. Thus, our primary interest lies in examining 

small sizes of treated samples and the corresponding required sizes of control 

samples to estimate approximately unbiased treatment effects from observational 

data. In this sense, our study aims to define a minimum required group ratio,

,*

tc nnR = for treated samples of size 100,50,30,25,20,15,10,8=tn , and to 

compare the findings with the minimum required group ratios for moderately large 

treated samples of 500,200=tn . Such a comparison is important from two 

perspectives.  

First, minimum required group ratios for moderately large treated samples were 

investigated by Rubin and Thomas (1996); thus, inclusion of moderately large 

treated samples in our study enables us to check the consistency of our results 

regarding moderately large treated samples to the results obtained by Rubin and 

Thomas. A high consistency of these two sets of findings increases the reliability of 

our results for small treated samples. Second, our simulation study also 

investigates the influence of the number of observed covariates on the minimum 

required group ratio.  
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As when studying small treated samples and the required minimum group ratios 

for satisfactorily removing selection bias from observational designs consisting of 

small samples, to the best of our knowledge, no research has investigated the 

influence of the number of observed covariates on the minimum required group 

ratio in cases of small or moderately large treated samples. Thus, the simulation 

study focuses on a unique aspect that no previous research has systematically 

investigated; treated samples that consist of fewer than 100 units, nor the 

minimum group ratio required for small treated samples, nor the influence of the 

number of observed covariates on the minimum required group ratio in cases of 

small and moderately large treated samples.  

We present two main simulation studies and two extensions to these. The first 

main simulation study investigates small sample properties by using estimated 

propensity scores when applying the matching approach, whereas the second one 

uses true propensity scores. Although, according to the previous research, 

balancing designs with estimated propensity scores often is preferable to using true 

propensity scores, these findings are established only for moderately large and 

large treated samples. We believe that the behaviour of small treated samples may 

be quite different; thus such a comparison will have a value for real world 

scenarios, which often face small treated samples.  

Both of the main simulation studies consist of three separate sub-studies covering 

selection mechanisms of different strengths (i.e., the level of initial imbalances in 

study design). The first simulation investigates a selection mechanism, which 

results in an initial squared bias, calculated in terms of the Mahalanobis distance of 

5.0=B  where,  

( ) ( )∑
−

−′−=
12

c ctctB µµµµ  

with 
tµ  and 

cµ  denoting the mean value of X  in the treated and control group, 

respectively and  ∑c
denoting the variance-covariance matrix of X  in the control 

group. 



90 
 

The second and third sub-studies investigate stronger selection mechanisms with 

initial biases of 1 and 1.5, respectively.  

The first extension of the simulation study assesses whether different correlation 

structures between the outcome variable and observed covariates (i.e., weaker 

versus stronger) have an impact on the minimum required group ratio with small 

treated samples to estimate, unbiasedly, treatment effects. The second extension 

of the simulation study uses an outcome variable that is binary instead of 

continuous like in the rest of simulation studies. 

This chapter is organised as follows. The first section presents the simulation design 

for two main simulation studies by describing the data generation process for 

factors that are known or estimable by the investigator at the design stage (i.e., 

sample sizes, initial imbalances, the number of observed covariates, etc.), and by 

presenting measures on quality of the procedures (i.e., remaining bias and variance 

ratio). 

4.1 Simulation – Factors Known or Estimable at 

the Design Phase 

The factors known or estimable by the investigator are the factors that we observe 

(i.e., treated sample size, group ratio and number of observed covariates), the 

factors that are estimable (i.e., initial bias) or chosen (i.e., matching algorithm) 

prior to the implementation of propensity score study. Table 4.1 displays the 

abovementioned factors together with their levels in the simulation study. 
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Table 4.1: Factors known or estimable at the design phase 

The examined factors 
Each Factor’s Levels for the 
Small treated sample study 

Each Factor’s Levels for 
the Moderately large 
treated sample study 

tn    -      treated sample size 
{8, 10, 15, 20, 25,  

30, 50, 100} 
 

{200, 500} 
} 

R    -      group ratio 
 

{1:100} 
 

{1:9} 
 

p    -      number of observed  
covariates 

{10, 15, 20, 30} 
 

{10, 15, 20, 30} 
 

2B   -     initial bias 
 
 

{0.5, 1.0, 1.5} 
 
 

{0.5, 1.0, 1.5} 
 
 

Matching algorithm {greedy, optimal} {greedy, optimal} 

Factor design 8 x 100 x 4 x 3 x 2 = 19200 2 x 9 x 4 x 3 x 2 = 432 
 

2.1.1 Data Generation 

The simulation design is based on a target population of 000,125,1=N  units from 

which we draw repeated samples of investigated sizes without replacement. In 

order to investigate the influence of the number of observed covariates on the 

minimum required group ratio, we generate four such target populations, each 

representing a different sized covariate set with p  covariates, { }30,20,15,10∈p .  

The observed covariates, X , are generated as independent and normally 

distributed variables:  

N(0,1)~X . 

The outcome variable, Y , is generated as:  

εββ +++= ppXXY K11    with   N(0,1) ~ε  

for each set of p  observed covariates. No treatment effect is added, hence, the 

outcome variable for the treated and for the control group has the same functional 

form in the treatment and control groups. 

The beta coefficients for each set of p  covariates are calculated as:  

,
p

Q
p =β  
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where the factor Q denotes the covariance between the outcome variable and the 

linear combination of observed covariates 

( ),, ∑= iXYCovQ β  

and is derived as follows. 

With N(0,1) ~,εiX  and εβ += ∑ iXY , it follows that 

εβ += ∑ iXY  . 

The covariance structure between a linear combination of 
iX , ∑= iXX β , and 

Y  is then  

( )∑ iXYCov β,  

( )∑∑ += ii XXCov βεβ ,
 

( ) ( )
44 344 21

termerrortheof
ceindependenthetodueis

iii XCovXXCov

0

,, ∑∑∑ += βεββ  

( ) 0,2 += ∑∑ ii XXCovβ . 

Because of the independently normally distributed observed covariates, 

,)1,0(~ NX i
it follows:  

( ) ( ) pXVarXVarXXCov iiii === ∑∑∑∑ )(, . 

As a result we obtain that 

( ) pXYCov i

2, ββ =∑  

                               Q= . 
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The calculation of such beta coefficients fixes the correlation structure between the 

linear combination of observed covariates and the outcome variable for all the 

covariate sets. We set the factor Q to be 0.35 and hence obtain the correlation 

structure between observed covariates and the outcome variable we would 

typically observe in practise: 

( )
51.0

35.0)135.0(

35.0

)1()()(

,
2

, =
⋅+

=
+

==
∑

∑
QQ

Q

XVarYVar

XYCov
R

i

i

XY

β

β
 

The numerator in the above equation denotes the covariance between covariates 

and the outcome variable, ),( XYCov , and the denominator denotes the square 

root variance of the outcome variable, )(YVar  times the variance of  ∑ Xβ , 

∑ )( XVar β . 

The 1+Q is hence derived from )(YVar  as follows: 

( )∑ += εβ iXVarYVar )(
 

( ) ( )
321

1

2 εβ VarXVar i += ∑
 

( ) 1

1

2 += ∑
43421

iXVarβ
 

12 += pβ  

.1+=Q  
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Based on 35.0=Q  , we calculate the values of the beta coefficients, iβ , for each 

covariate set, p , as follows: 

19.0
10

35.0
10 ===pβ

 

15.0
15

35.0
15 ===pβ

 

13.0
20

35.0
20 ===pβ

 

.11.0
30

35.0
30 ===pβ   

After generating the target populations for each covariate set, we calculate true 

propensity scores, )(Xe , for each target population of size, 
ip

N , and each strength 

of the selection mechanism, i.e., initial bias, { }5.1,0.1,5.02 ∈B . The true 

propensity scores, )(Xe , are calculated as 

,(logit-1 )())( 1 pXXXe ++= Kγ  

where p  is the number of observed covariates and γ  is the coefficient 

determining the strength of the selection mechanism, that is, the size of the initial 

squared bias 2B . Table 4.2 displays the coefficients used for different selection 

mechanisms and different numbers of observed covariates.   

 

Table 4.2: Gamma coefficient for calculating true propensity scores, )(Xe , as a 

function of 2B and p . 

2B  � = 10 � = 15 � = 20 � = 30 

 

0.5 0.24 0.19 0.17 0.14 

1.0 0.35 0.29 0.25 0.21 

1.5 0.46 0.37 0.33 0.27 
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For each target population, the treatment indicator variable, 
iW , is generated as a 

random draw from a Bernoulli distribution with the true propensity score, )(Xe , 

representing the probability of being selected:  

))(probBernoulli(~ XeWi = . 

2.1.2 Data Generation – Simulation Study Extensions 

The first extension of the simulation study only changes the value of the factor Q 

in order to achieve a stronger correlation structure between the outcome variable 

and the observed covariates. The second extension of the simulation study replaces 

only the measurement type of the outcome variable from (i.e., the one in the main 

simulation studies) from continuous to binary. 

SIMULATION STUDY EXTENSION – Stronger Correlation Structure  

The only part of the data generation process that changes for this simulation study 

is the value of the factor Q. In order to generate a stronger correlation structure 

between the outcome variable and the observed covariates, we increase the value 

of Q to 1.5. By doing so, the correlation between the outcome variable and the 

observed covariates is as follows: 

( )
78.0

)()(

,
2

, ==
∑

∑
i

i

XY

XVarYVar

XYCov
R

β

β
, 

which is stronger correlation structure than in the main simulation studies: 

51.02

, =XYR . 

The remaining parts of the data generation process are the same as in the two 

main simulation studies; however, the study was done only with the true 

propensity score – the same as the first main simulation study. 
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SIMULATION STUDY EXTENSION – Binary Outcome  

The only part of the data generation process that changes for this simulation study 

is the generation of the outcome variable. The outcome variable is generated in 

two steps. In step one we generate the outcome variable, Y , the same way as in 

the main simulation studies: 

εββ +++= ppXXY K11    with   N(0,1) ~ε  

for each set of p  observed covariates and also without a treatment effect (i.e., the 

outcome variable for the treated and for the control group has the same functional 

form). 

In step two we discretise the continuous outcome values into binary values 

according to the following rule: 





≥=

<=
=

.01

,00

ii

ii

i
YifY

YifY
Y  

The remaining parts of the data generation process are the same as in the two 

main simulation studies; however, this study is performed only with the true 

propensity score – the same as the second main simulation study. 

4.2 Simulation – Measures of Quality of the 

Procedure 

The quality of a procedure is assessed by two measures: the remaining bias, RB , 

and the variance ratio, VR . These two measures give us an idea of how well a study 

design is balanced, after adjusting for covariate imbalances using propensity score 

matching adjustment methods. 
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The remaining bias, RB , measures how much of the selection bias is still left (i.e., 

residual selection bias) after we balance the design with a propensity score 

matching approach, and it is defined as the absolute standardised mean difference 

of the logits of propensity scores,  

( ) 2/22

lclt

ct

ss

ll
RB

+

−
=  

where 
tl  and 

cl  are the mean values of the propensity score logit of the treated 

group and control group and, 2

lts  and 2

lcs  are the variances of the propensity score 

logit for the treated group and for the control group, respectively, where logit of 

propensity score is calculated as  

( )
( ) 









−
=

i

i

Xe

Xe
l

1
log . 

The calculation of the remaining bias in the first main simulation study is 

performed with the estimated propensity scores, ( ){ }iXê , whereas in the second 

main simulation study, it is performed with true propensity scores, ( ){ }iXe . 

The variance ratio, VR , is the ratio of the variances of propensity score logits 

between the treated group and control group, 22

lclt ss , also calculated using 

estimated propensity scores in the first main simulation study and with true 

propensity scores in the second main simulation study. 

Because it is rarely possible to remove 100 per cent of the selection bias, previous 

research (Austin 2011; Cochran 1968; Rosenbaum and Rubin 1983a; Rosenbaum 

2010; Rubin 1979; Steiner and Cook (in press)) suggests that the remaining bias, 

RB , of 0.1 or smaller indicates an acceptable covariate balance (i.e., there are 

negligible differences in covariate distributions between both groups – 

approximately balanced study design), whereas with values bigger than 0.1 but 

smaller than 0.2 an approximately unbiased treatment effect estimates can be 

obtained provided that an additional statistical adjustment, possibly a covariate 
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regression adjustment, is applied to further remove the residual selection bias. The 

variance ratio, VR , of propensity scores between treated and control groups 

should be close to one (values smaller than 0.5 or bigger than 2 are, according to 

Rubin (2001), considered too extreme). 

4.3 Simulated Data 

This section describes how the data were simulated (Section 4.3.1) and how we 

analysed the simulated data (Section 4.3.2). All the simulation studies were 

performed with 1,000 replications.  

The simulation study is programmed and analysed with R (R Core Team 2012). The 

package MatchIt  (Ho, et al. 2011) is used for matching treated and control units 

with the greedy matching algorithm, and the package optmatch (Hansen and 

Klopfer 2006) is used to perform matching with the optimal matching algorithm. 

4.3.1 Data simulation  

The data were simulated by drawing repeated samples without replacement from 

the target populations (generated as described in Section 4.1.1). We draw 1000 

such samples, and in each sample, we perform one-to-one propensity score 

matching without replacement (i.e., we match one control unit to one treated unit) 

on the logit of the estimated and true propensity scores, respectively. After 

obtaining a balanced design, we estimated the treatment effect on the treated by 

using an additional propensity score regression adjustment.  

The simulated data are then summarised by: (i) averaging values of 1000 simulation 

replications for the remaining bias, RB , the variance ratio, VR , and the treatment 

effect estimate, TTA ˆ ; and (ii) by using the standard deviation of 1000 simulation 

replications for TTA ˆ  in order to calculate standard errors of ,TTA ˆ  which are used 

for constructing confidence intervals of TTA ˆ .  



99 
 

The matching is performed by one of two matching algorithms: greedy or optimal 

matching. In the study with estimated propensity scores, the propensity scores are 

estimated via logistic regression according to the equation: 

,XXWlogit ppλλλ +++= K110)(  

where W  denotes the treatment indicator (i.e., whether treatment was applied to 

a unit, 1=W , or it was not applied to a unit, 0=W ) and pX  denotes observed 

covariates for each covariate set, { }30,20,15,10∈p .  

When estimating the average treatment effect on the treated, ATT , we also 

perform an additional covariate regression adjustment on the matched data, where 

the regression adjusted treatment effect is calculated as: 

( ) ( ),ctdct llYY ˆˆˆˆ −−−= βτ  

where the regression coefficient, dβ̂ , is obtained from the regression of  

cjtjdj YYY −=   on  cjtjdj lll ˆˆˆ −=  (Rubin 1979) 

with djY  being the difference in the outcomes of the matched pairs (i.e., matched 

treated and control units) and the djl̂  are the differences in the propensity score 

logits of the matched pairs.  

According to Rubin (1979), the covariate regression adjustment with dβ̂  is the 

most natural one in pair match settings, usually producing the least biased 

treatment effect estimates in particular when bigger group ratios are used. 
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4.3.2 Analysis of simulated data 

The results of the simulated data are anaysed by performing an analysis of variance 

– ANOVA, in order to investigate which factors known or estimable by the 

investigator (i.e., 
tn , R , p , 2B  and the matching algorithm) impact measures on 

quality of the procedure the most (i.e., RB  and VR ).  

Furthermore, descriptive statistical analyses are performed to display how the 

examined factors (i.e., 
tn , R , p , 2B ) that lead to balanced design by the criteria of 

15.0<RB  and 25.0 <<VR  interact. We allow for a bit bigger remaining bias (i.e., 

15.0<RB ) in comparison to the negligable remaining bias (i.e., 10.0<RB ) because 

we combine the matching approach in the design phase with an additional 

propensity score regression adjustment to estimate average treatment effect on 

the treated – .ATT  

The descriptive analysis of the simulated data is then performed by finding the 

minimum required group ratio, *R , i.e., the smallest group ratio for which the 

remaining bias (in absolute terms) on the propensity score logit, RB , is smaller 

than 0.15 standard deviations and that the variance ratio, VR , of the propensity 

score logit is between 0.5 and 2. More formally:  

,2)(15.0)(:min{* }and <<= RVRRRBRR  

where )(RRB  and )(RVR  indicate that the remaining bias and variance ratio is a 

function of the group ratio, R . 

Both of the analyses (i.e., ANOVA and descriptive) are presented in Chapter 5 

supported by tables and graphical depictions.  
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Chapter 5 

Results 

This Chapter provides results of the analyses for the two main simulation studies 

summarised by analyses of variance – ANOVAs, and descriptive statistics. 

Additionally, we present the results of two simulation study extensions. The first 

simulation extension examines the impact that different correlation structures 

between observed covariates and the outcome variable have (weaker versus 

stronger correlation). The second simulation extension examines the impact of a 

continuous versus a binary outcome variable.  

The ANOVA suggests which factors, that are known or estimable in the design 

phase of propensity score study (i.e., tn , R , p , 2B ), explain the results of 

measures of quality of the procedures (i.e., RB  and VR ) the most. Based on the 

ANOVA findings, we then provide the analysis of descriptive statistics and show 

how the bias of treatment effect estimates is affected by the levels of the factors 

known or estimable in the design phase.  

5.1 Simulation with Estimated Propensity Scores 

This section presents results of the analyses performed on the simulated data 

when propensity scores are estimated, thereby reflecting real world situations 

when true propensity scores are unknown. 

5.1.1 Analysis of Variance 

The simulation consists of a 8 x 100 x 4 x 3 x 2 factorial design (19,200 cells) for the 

small treated sample study and a 2 x 9 x 4 x 3 x 2 factorial design (432 cells) for the 

moderately large treated sample study (Table 4.1).  
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However, the simulated data of the small treated sample study resulted in some 

empty cells for to the following reason: when estimating propensity scores with 

very small treated samples (i.e.,  of 8, 10, 15, 20, 25) and using group ratio, 

,1=R  the logistic regression resulted in extreme values of 0 and 1 for all sets of 

observed covariates, i.e., =p {10, 15, 20, 30} all simulation replications. We 

consider that such behaviour in the simulation violates the probabilistic part of the 

strong ignorability assumption. Thus, we excluded those from further propensity 

score analysis. 

As a result we have some empty cells in the small treated sample study design. Yet, 

this problem for very small treated samples did not occur only for the group           

ratio, R  of 1 but also for some larger group ratios when 30 covariates are 

observed. Table 5.1 displays treated samples, group ratios and the number of 

observed covariates for which logistic regression resulted in extreme values of 0 

and 1. 

Each row in Table 5.1 (except the first row) presents treated samples where logistic 

regression resulted in extreme values of 0 and 1 for each set of observed 

covariates, i.e., =p {10, 15, 20, 30}, respectively and for the group ratios, R , 

specified in the first row of the table. The empty cells represent that for a specific 

group ratio and the number of observed covariates, the logistic regression did not 

result in extreme values of zero and one.  

Table 5.1: Factors and their levels for which logistic regression, for estimating 

propensity score, resulted in extreme values of 0 and 1. 

 
 

1=R  
 

2=R  

 

6 5, 4, 3,=R  
 

12 11, 10, 9, 8, 7,=R  
 

10=p  
 

2520,15,10,8,=tn  / / / 

 

15=p  

 

2520,15,10,8,=tn  / / / 

 

20=p  

 

2520,15,10,8,=tn  / / / 

 

30=p  

 

2520,15,10,8,=tn  

 

1510,8,=tn  
 

108,=tn  
 

8=tn  
� – number of observed covariates; R  – group ratio;  ��– treated sample size.  

tn
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Based on the aforementioned constraints and to perform ANOVA on a balanced 

design, we carried out three ANOVA analyses with the factor designs presented in 

the Table 5.2. 

Table 5.2: Factors known or estimable by the investigator at the design phase 

Factors 
Factor’s Levels Small 

 treated sample study  

1 

Factor’s Levels Small 

treated sample study 

2 

Factor’s Levels 
Moderately large 

treated sample 

study 
 

tn  
 

{8, 10, 15, 20, 25, 30, 50, 100} 
 

{20, 25, 30, 50, 100} 
 

{200, 500} 
} 

 

R  
 
 

{13:100} 
 

{2:100} 
 

{1:9} 
 

 

p  
 

{10, 15, 20, 30} 
 

{10, 15, 20, 30} 
 

{10, 15, 20, 30} 
 

 

2B  
 
 
 

{0.5, 1.0, 1.5} 
 

 

{0.5, 1.0, 1.5} 
 

 

{0.5, 1.0, 1.5} 
 

 

 

Method 
 

{greedy, optimal} {greedy, optimal} {greedy, optimal} 

 

Factor 

design 
 

8 x 88 x 4 x 3 x 2 =  

16896 

5 x 99 x 4 x 3 x 2 = 

11880 

2 x 9 x 4 x 3 x 2 = 

432 

�� – treated sample size; R  – group ratio; � – number of observed covariates; �� – initial squared bias; 

Method - the matching algorithm used (greedy or optimal). 

The ANOVA analyses are performed for both the remaining bias, RB , and the 

variance ratio, VR , and we include main effects as well as all the interactions (i.e., 

up to five-way interactions).  The results are presented in Tables 5.3 and 5.4 where 

the factors known or estimable in the design phase are sorted by decreasing order 

of the mean sum of squares explained - MSS.  

ANOVA – REMAINING BIAS 

The ANOVA analyses for the remaining bias, RB , with small treated samples (the 

two small treated sample studies) show that the most influential factors in 

propensity score studies with small treated samples are the treated sample size, tn , 

the number of observed covariates, p , the initial squared bias, 
2B , the group 

ratio, R , and the two-way interactions of the treated sample size and the number 
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of observed covariates, tn : p . However, the ANOVA results show no influence of 

higher levels of the interactions (i.e., above the two-way interaction level) in small 

treated sample studies.  

The most influential factors for moderately large treated sample study are the 

group ratio, R , the initial imbalance, 
2B , and the interaction between group ratio 

and initial imbalances, R : 2B . The main difference, in the most influential factors, 

between small and moderately large treated sample studies is in the most 

influential two-way interaction factors. In the small treated sample study, the 

interaction of tn and p  is the most influential, whereas in the moderately large 

treated sample study, this interaction cannot be considered as influential. On the 

other hand, in the moderately large treated sample study, the interaction between 

R  and 
2B  is the most influential, whereas such an interaction does not appear to 

have a strong impact on the propensity score study with small treated samples. 

However, we should be cautious with such a direct comparison of the most 

influential factors in small and moderately large treated sample studies because, as 

is displayed in Table 4.1, the factorial designs of these studies are not fully 

comparable. Nevertheless, the differences in ANOVA results between small and 

moderately large treated sample studies can still serve as an indicator that small 

treated samples behave differently in propensity score studies from moderately 

large treated samples. 
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Table 5.3: ANOVA table for Small treated sample study 1 and 2 with estimated 

propensity scores for the remaining bias measure, RB  

Small treated sample study 1 

tn  {8, 10, 15, 20, 25, 30, 50, 100} 

R
 

{13:100} 
 

Small treated sample study 2 

tn  {20, 25, 30, 50, 100} 

R
 

{2:100} 
 

Factor DF MSS 
n 7 4.60 
p 3 2.53 
B 2 2.37 
n:p 21 0.32 
R 87 0.18 
n:B 14 0.09 
p:B 6 0.03 
method 1 0.02 
R:n 609 0.01 
R:B 174 0.01 
R:p 261 0.01 
n:p:B 42 0.01 
R:method 87 0.00 
p:method 3 0.00 
R:n:p 1827 0.00 
n:method 7 0.00 
method:B 2 0.00 
R:n:method 609 0.00 
R:p:method 261 0.00 
n:p:method 21 0.00 
R:n:B 1218 0.00 
R:p:B 522 0.00 
R:method:B 174 0.00 
n:method:B 14 0.00 
p:method:B 6 0.00 
R:n:p:method 1827 0.00 
R:n:p:B 3654 0.00 
R:n:method:B 1218 0.00 
R:p:method:B 522 0.00 
n:p:method:B 42 0.00 
R:n:p:method:B 3654 0.00 

 

Factor DF MSS 
B 2 2.26 
R 98 1.48 
n 4 1.29 
p 3 0.96 
n:p 12 0.09 
R:B 196 0.05 
n:B 8 0.04 
R:n 392 0.04 
R:p 294 0.03 
p:B 6 0.02 
method 1 0.01 
R:n:p 1176 0.00 
n:p:B 24 0.00 
R:n:B 784 0.00 
R:p:B 588 0.00 
n:method 4 0.00 
R:method 98 0.00 
R:n:p:B 2352 0.00 
p:method 3 0.00 
method:B 2 0.00 
R:n:method 392 0.00 
R:p:method 294 0.00 
n:p:method 12 0.00 
R:method:B 196 0.00 
n:method:B 8 0.00 
p:method:B 6 0.00 
R:n:p:method 1176 0.00 
R:n:method:B 784 0.00 
R:p:method:B 588 0.00 
n:p:method:B 24 0.00 
R:n:p:method:B 2352 0.00 

 

n - treated sample size, ��; R – group ratio, R ; p – number of observed covariates, �; method – the 

matching algorithm used; B – initial squared bias; DF – degrees of freedom; MSS – mean sum of 

squares explained. 

 

 

 

 



106 
 

Table 5.4: ANOVA table for Moderately large treated sample study with estimated 

propensity scores for the remaining bias measure, RB  

Moderately large treated sample study 

tn  {200, 500} 

R
 

{1:9} 
 

Factor DF MSS 
R 8 5.29 
B 2 1.80 
R:B 16 0.10 
n 1 0.07 
p 3 0.02 
R:n 8 0.01 
n:p 3 0.00 
R:p 24 0.00 
method 1 0.00 
R:method 8 0.00 
n:method 1 0.00 
p:method 3 0.00 
n:B 2 0.00 
p:B 6 0.00 
method:B 2 0.00 
R:n:p 24 0.00 
R:n:method 8 0.00 
R:p:method 24 0.00 
n:p:method 3 0.00 
R:n:B 16 0.00 
R:p:B 48 0.00 
n:p:B 6 0.00 
R:method:B 16 0.00 
n:method:B 2 0.00 
p:method:B 6 0.00 
R:n:p:method 24 0.00 
R:n:p:B 48 0.00 
R:n:method:B 16 0.00 
R:p:method:B 48 0.00 
n:p:method:B 6 0.00 
R:n:p:method:B 48 0.00 

 

n - treated sample size, ��; R – group ratio, R ; p – 

number of observed covariates, �; method – the 

matching algorithm used; B – initial squared bias; 

DF – degrees of freedom; MSS – mean sum of 

squares explained. 
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ANOVA – VARIANCE RATIO 

The ANOVA analyses for the variance ratio, VR , are presented in the Tables 5.5 and 

5.6. The results are very similar regarding the most influential factors to the results 

of the analyses with the remaining bias, RB . However, the treated sample size, tn , 

and the number of observed covariates, p , appear to be far more influential 

regarding the size of the MSS than the rest of the most influential factors (i.e., 2B ,

tn : p ) in small sample studies.  

Yet, in the moderately large sample study, the interaction between group ratio and 

initial imbalances, R : 2B , is not a very influential factor, although it is in the 

ANOVA with the remaining bias. The number of observed covariates, p ,  is the 

second most influential factor in the ANOVA for the variance ratio, although this 

factor has a negligible influence in the ANOVA with the remaining bias in the 

moderately large treated sample study. The discussion on the obtained results with 

ANOVA analyses is presented in Section 5.1.3 together with findings obtained from 

descriptive analysis. 
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Table 5.5: ANOVA table for Small treated sample study 1 and 2 with estimated 

propensity scores for the variance ratio measure, VR  

Small treated sample study 1 

tn  {8, 10, 15, 20, 25, 30, 50, 100} 

R
 

{13:100} 
 

Small treated sample study 2 

tn  {20, 25, 30, 50, 100} 

R
 

{2:100} 
 

Factor DF MSS 
n 7 36.88 
p 3 33.37 
B 2 3.30 
n:p 21 2.95 
R 87 0.25 
n:B 14 0.08 
p:B 6 0.08 
n:p:B 42 0.02 
R:n 609 0.01 
R:p 261 0.01 
method 1 0.00 
R:method 87 0.00 
n:method 7 0.00 
p:method 3 0.00 
R:B 174 0.00 
method:B 2 0.00 
R:n:p 1827 0.00 
R:n:method 609 0.00 
R:p:method 261 0.00 
n:p:method 21 0.00 
R:n:B 1218 0.00 
R:p:B 522 0.00 
R:method:B 174 0.00 
n:method:B 14 0.00 
p:method:B 6 0.00 
R:n:p:method 1827 0.00 
R:n:p:B 3654 0.00 
R:n:method:B 1218 0.00 
R:p:method:B 522 0.00 
n:p:method:B 42 0.00 
R:n:p:method:B 3654 0.00 

 

Factor DF MSS 
p 3 6.20 
n 4 4.85 
B 2 1.41 
n:p 12 0.60 
R 98 0.12 
p:B 6 0.10 
n:B 8 0.06 
R:p 294 0.01 
R:n 392 0.01 
n:p:B 24 0.00 
R:B 196 0.00 
R:n:p 1176 0.00 
method 1 0.00 
R:method 98 0.00 
n:method 4 0.00 
p:method 3 0.00 
method:B 2 0.00 
R:n:method 392 0.00 
R:p:method 294 0.00 
n:p:method 12 0.00 
R:n:B 784 0.00 
R:p:B 588 0.00 
R:method:B 196 0.00 
n:method:B 8 0.00 
p:method:B 6 0.00 
R:n:p:method 1176 0.00 
R:n:p:B 2352 0.00 
R:n:method:B 784 0.00 
R:p:method:B 588 0.00 
n:p:method:B 24 0.00 
R:n:p:method:B 2352 0.00 

 

n - treated sample size, ��; R – group ratio, R ; p – number of observed covariates, �; method – the 

matching algorithm used; B – initial squared bias; DF – degrees of freedom; MSS – mean sum of squares 

explained. 
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Table 5.6: ANOVA table for Moderately large treated sample study with estimated 

propensity scores for the variance ratio measure, VR  

Moderately large treated sample study 

tn  {200, 500} 

R
 

{1:9} 
 

Factor DF MSSx100 
n 1 0.50 
p 3 0.20 
R 8 0.20 
B 2 0.10 
R:n 8 0.00 
n:p 3 0.00 
p:B 6 0.00 
n:B 2 0.00 
n:p:B 6 0.00 
R:p 24 0.00 
R:B 16 0.00 
R:n:p 24 0.00 
R:p:B 48 0.00 
R:n:p:B 48 0.00 
R:n:B 16 0.00 
method 1 0.00 
R:method 8 0.00 
n:method 1 0.00 
p:method 3 0.00 
method:B 2 0.00 
R:n:method 8 0.00 
R:p:method 24 0.00 
n:p:method 3 0.00 
R:method:B 16 0.00 
n:method:B 2 0.00 
p:method:B 6 0.00 
R:n:p:method 24 0.00 
R:n:method:B 16 0.00 
R:p:method:B 48 0.00 
n:p:method:B 6 0.00 
R:n:p:method:B 48 0.00 

 

n - treated sample size, ��; R – group ratio, R ; p – 

number of observed covariates, �; method – the 

matching algorithm used; B – initial squared bias; 

DF – degrees of freedom; MSS – mean sum of 

squares explained. 
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5.1.2 Descriptive Analysis 

The simulated data are analysed as explained in Chapter 4.3, and the results are 

presented in Tables 5.7 – 5.10. The first two tables present results of propensity 

score matching with the greedy matching algorithm whereas the other two present 

results of the matching with the optimal matching algorithm.  

The first column in each table presents the treated sample size, tn , followed by the 

minimum required group ratio, *R , (as defined in Section 4.3.2), the absolute value 

of the remaining bias, RB , the variance ratio of the propensity score logits 

between the treated and control groups ( 22

ct ssVR = ), the 99% confidence 

intervals of the estimated average treatment effect of the treated - ,TTA
)

 and the 

simulation standard errors of the TTA
)

. 

The results show that the minimum required group ratio, 
*R , is decreasing when 

the treated sample size, tn , is increasing, which means that with more treated units 

a smaller pool of control units is required, relative to the size of the treated sample, 

in order to estimate, unbiasedly, treatment effects. This agrees with theoretical 

results in Rubin (1973).  

Furthermore, bigger samples of treated units, as expected, provide us with more 

precise estimates of treatment effects, as a result of smaller standard errors, SE , 

of treatment effect estimates for bigger treated samples. For example, with an 

initial squared bias of 5.02 =B  and p  of 10 or 15, standard errors of the 

estimated treatment effect (i.e., the average treatment effect on the treated – 

TTA
)

) are almost seven times bigger (i.e., 0.02/0.003=6.7 – Table 5.7) for the 

smallest treated sample 8=tn  in comparison to the moderately large treated 

samples, tn  of 200 or 500. This ratio ( SE  of the TTA
)

 between small and 

moderately large treated samples) increases further with larger initial squared bias,

2B , or with more observed covariates, p . For instance, when 5.12 =B  and p  is 

10 or 15, the SE  of TTA
)

 for 8=tn  are ten times bigger (i.e., 0.02/0.002=10 – 
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Table 5.7) in comparison to the SE  of TTA
)

 for 500=tn . With more observed 

covariates (e.g., 30=p ) the SE  of TTA
)

 for 8=tn  are more than ten times bigger 

in comparison to the SE  of TTA
)

 for 500=tn (i.e., 0.027/0.002=13.5 – Table 5.8). 

On the other hand, the minimum required group ratio, 
*R , for small treated 

samples (i.e., 100<tn ) is greatly influenced by the increased number of observed 

covariates, p . For instance, when the number of observed covariates increases 

from 10=p  to 30=p , the minimum required group ratio increases by more than 

four times for the treated sample size ,8=tn  whereas it barely changes for 

.100≥tn  
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Table 5.7: Minimum required group ratios for investigated treated samples for 

10=p  and 15=p  - greedy matching algorithm∗  

� = �� � = �� 

�� R* RB 
��� !
��� "

 

99% CI of 

TTA ˆ based 
on the 

simulation SE  

Simulation 

SE of TTA ˆ

	$% = �. � 

8 13 0.149 1.57 [-0.08,0.03] 0.020 

10 10 0.144 1.46 [-0.03,0.06] 0.017 

15 7 0.123 1.38 [-0.02,0.05] 0.014 

20 5 0.138 1.40 [-0.03,0.04] 0.013 

25 5 0.107 1.31 [-0.03,0.02] 0.010 

30 4 0.128 1.35 [-0.03,0.02] 0.010 

50 3 0.137 1.35 [-0.01,0.03] 0.008 

100 3 0.086 1.24 [-0.01,0.02] 0.005 

200 3 0.061 1.18 [-0.01,0.01] 0.003 

500 2 0.140 1.33 [-0.01,0.01] 0.003 

$% = � 

8 19 0.149 1.53 [-0.04,0.06] 0.019 

10 15 0.137 1.47 [-0.01,0.08] 0.017 

15 10 0.137 1.42 [-0.02,0.05] 0.014 

20 8 0.131 1.41 [-0.04,0.02] 0.011 

25 7 0.130 1.39 [-0.03,0.02] 0.010 

30 6 0.136 1.40 [-0.01,0.04] 0.009 

50 5 0.131 1.38 [-0.02,0.02] 0.008 

100 4 0.138 1.39 [-0.01,0.02] 0.005 

200 4 0.112 1.33 [-0.01,0.01] 0.004 

500 4 0.101 1.30 [-0.00,0.01] 0.002 

$% = �. � 

8 27 0.149 1.54 [-0.01,0.09] 0.020 

10 22 0.146 1.50 [-0.04,0.05] 0.017 

15 14 0.149 1.51 [-0.03,0.04] 0.014 

20 12 0.137 1.45 [-0.04,0.03] 0.012 

25 10 0.141 1.46 [-0.01,0.05] 0.011 

30 9 0.142 1.44 [-0.02,0.03] 0.010 

50 8 0.124 1.39 [-0.03,0.02] 0.007 

100 7 0.149 1.45 [-0.03,0.01] 0.005 

200 6 0.134 1.41 [-0.01,0.01] 0.004 

500 6 0.121 1.38 [-0.00,0.01] 0.002 
  

�� R* RB 
��� !
��� "

 

99% CI of 

TTA ˆ based 
on the 

simulation SE 

Simulation 

SE of TTA ˆ  

$% = �. � 

8 22 0.142 1.47 [-0.03,0.07] 0.020 

10 15 0.149 1.51 [-0.02,0.06] 0.017 

15 9 0.139 1.43 [-0.02,0.05] 0.014 

20 7 0.125 1.37 [-0.01,0.05] 0.012 

25 6 0.115 1.33 [-0.01,0.04] 0.011 

30 5 0.122 1.35 [-0.01,0.04] 0.010 

50 4 0.101 1.28 [-0.01,0.02] 0.008 

100 3 0.102 1.28 [-0.01,0.02] 0.005 

200 3 0.066 1.19 [-0.01,0.01] 0.004 

500 2 0.148 1.35 [-0.00,0.01] 0.003 

$% = � 

8 32 0.149 1.53 [-0.07,0.03] 0.020 

10 23 0.144 1.51 [-0.06,0.03] 0.017 

15 13 0.142 1.46 [-0.04,0.03] 0.014 

20 10 0.137 1.42 [-0.04,0.02] 0.012 

25 8 0.143 1.43 [-0.04,0.01] 0.011 

30 7 0.139 1.41 [-0.02,0.04] 0.009 

50 6 0.114 1.34 [-0.03,0.02] 0.007 

100 5 0.101 1.30 [-0.01,0.01] 0.005 

200  4 0.119 1.34 [-0.02,0.01] 0.004 

500 4 0.104 1.30 [-0.02,0.00] 0.002 

$% = �. � 

8 47 0.149 1.52 [-0.08,0.02] 0.020 

10 33 0.149 1.52 [-0.06,0.03] 0.017 

15 20 0.149 1.50 [-0.03,0.04] 0.014 

20 15 0.149 1.49 [-0.03,0.03] 0.012 

25 13 0.138 1.45 [-0.03,0.03] 0.010 

30 11 0.143 1.46 [-0.04,0.01] 0.010 

50 9 0.130 1.41 [-0.01,0.02] 0.007 

100 7 0.135 1.41 [-0.01,0.02] 0.005 

200 6 0.140 1.42 [-0.00,0.02] 0.004 

500 6 0.127 1.39 [-0.00,0.01] 0.002 

∗  �� – treated samples size; RB – the remaining bias;  ��� ! ��� "'  – variance ratio (VR);  R∗ - the minimum required 

group ratio, for each investigated treated sample which satisfies: RB < 0.15 and 0.5 < ,- < 2. The 99% 

confidence intervals of the estimated ATT, calculated with standard errors (i.e., simulation SE of TTA ˆ ) designed 

by using the standard deviation of treatment effect estimates across 1,000 iterations,	SE0121 = s0121	 √1000⁄ , 

show that the true value of the treatment effect (τ = 0) is within the interval boundaries of the estimated 

treatment effect. This indicates that treatment effect estimates are unbiased (i.e., selection bias is successfully 

removed).  

 



113 
 

Table 5.8: Minimum required group ratios for investigated treated samples for 

20=p  and 30=p  - greedy matching algorithm∗
 

� = %� � = 7� 

�� R* RB 
��� !
��� "

 

99% CI of 

TTA ˆ based 
on the 

simulation SE  

Simulation 

SE of TTA ˆ  

	$% = �. � 

8 33 0.149 1.50 [-0.10,0.01] 0.026 

10 23 0.144 1.46 [-0.06,0.04] 0.022 

15 13 0.147 1.45 [-0.04,0.03] 0.017 

20 9 0.134 1.39 [-0.02,0.04] 0.015 

25 7 0.134 1.39 [-0.02,0.03] 0.013 

30 6 0.130 1.37 [-0.02,0.04] 0.011 

50 4 0.136 1.37 [-0.02,0.02] 0.009 

100 3 0.118 1.32 [-0.02,0.01] 0.006 

200 3 0.076 1.22 [-0.00,0.01] 0.004 

500 3 0.051 1.16 [-0.00,0.00] 0.002 

$% = � 

8 45 0.149 1.47 [-0.05,0.06] 0.021 

10 32 0.143 1.48 [-0.04,0.05] 0.018 

15 19 0.137 1.44 [-0.04,0.04] 0.014 

20 13 0.143 1.43 [-0.04,0.02] 0.012 

25 10 0.146 1.44 [-0.04,0.01] 0.011 

30 9 0.136 1.41 [-0.02,0.02] 0.010 

50 6 0.139 1.40 [-0.01,0.02] 0.008 

100 5 0.115 1.33 [-0.01,0.01] 0.005 

200 4 0.131 1.37 [-0.01,0.00] 0.004 

500 4 0.111 1.32 [-0.01,0.00] 0.002 

$% = �. � 

8 65 0.147 1.50 [-0.06,0.05] 0.021 

10 48 0.149 1.52 [-0.04,0.05] 0.018 

15 27 0.144 1.46 [-0.05,0.02] 0.014 

20 18 0.149 1.48 [-0.02,0.04] 0.011 

25 15 0.144 1.45 [-0.01,0.05] 0.010 

30 13 0.140 1.43 [-0.02,0.03] 0.010 

50 9 0.141 1.43 [-0.03,0.02] 0.007 

100 7 0.144 1.44 [-0.02,0.01] 0.005 

200 6 0.147 1.44 [-0.00,0.02] 0.004 

500 6 0.129 1.40 [-0.00,0.01] 0.002 
 

 

�� R* RB 
��� !
��� "

 

99% CI of 

TTA ˆ based  
on the 

simulation SE  

Simulation 

SE of TTA ˆ

$% = �. � 

a8 58 0.149 1.43 [-0.09,0.04] 0.049 

a10 45 0.149 1.46 [-0.04,0.07] 0.033 

15 22 0.145 1.46 [-0.07,0.00] 0.023 

20 14 0.139 1.41 [-0.03,0.03] 0.019 

25 10 0.141 1.41 [-0.03,0.03] 0.018 

30 8 0.142 1.41 [-0.03,0.02] 0.016 

50 5 0.133 1.37 [-0.02,0.01] 0.011 

100 4 0.087 1.25 [-0.01,0.02] 0.007 

200 3 0.093 1.26 [-0.00,0.01] 0.005 

500 3 0.058 1.18 [-0.00,0.01] 0.003 

$% = � 
a
 8 79 0.157 1.45 [-0.07,0.07] 0.027 

a
 10 65 0.140 1.39 [-0.05,0.04] 0.019 

15 31 0.148 1.47 [-0.01,0.07] 0.014 

20 20 0.145 1.45 [-0.03,0.04] 0.013 

25 15 0.140 1.42 [-0.02,0.04] 0.011 

30 12 0.141 1.43 [-0.04,0.01] 0.010 

50 8 0.129 1.39 [-0.01,0.03] 0.008 

100 5 0.145 1.42 [-0.02,0.01] 0.005 

200 4 0.149 1.42 [-0.00,0.01] 0.004 

500 4 0.113 1.33 [-0.01,0.01] 0.002 

$% = �. � 
a
8 98 0.148 1.42 [-0.11,0.03] 0.027 

a
10 75 0.149 1.45 [-0.08,0.03] 0.020 

15 43 0.149 1.45 [-0.05,0.03] 0.014 

20 29 0.146 1.45 [-0.04,0.02] 0.012 

25 22 0.143 1.44 [-0.03,0.02] 0.011 

30 18 0.142 1.44 [-0.02,0.03] 0.010 

50 12 0.136 1.42 [-0.02,0.02] 0.008 

100 8 0.139 1.42 [-0.01,0.02] 0.005 

200 7 0.127 1.39 [-0.01,0.01] 0.004 

500 6 0.133 1.40 [-0.01,0.01] 0.002 

∗  �� – treated samples size; RB – the remaining bias;  ��� ! ��� "'  – variance ratio (VR);  R∗ - the minimum required 

group ratio, for each investigated treated sample which satisfies: RB < 0.15 and 0.5 < ,- < 2. The 99% 

confidence intervals of the estimated ATT, calculated with standard errors (i.e., simulation SE of TTA ˆ ) designed 

by using the standard deviation of treatment effect estimates across 1,000 iterations,	SE0121 = s0121	 √1000⁄ , 

show that the true value of the treatment effect (τ = 0) is within the interval boundaries of the estimated 

treatment effect. This indicates that treatment effect estimates are unbiased (i.e., selection bias is successfully 

removed).  

a Approximately 30% of simulation replications where logistic regression for estimating propensity scores 

results in extreme values of zero and one. 
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Table 5.9: Minimum required group ratios for investigated treated samples for 

10=p  and 15=p  - optimal matching algorithm∗  

� = �� � = �� 

�� R* RB 
��� !
��� "

 

99% CI of 

TTA ˆ based 
on the 

simulation SE  

Simulation 

SE of TTA ˆ

	$% = �. � 

8 13 0.141 1.56 [-0.07,0.03] 0.020 

10 10 0.135 1.45 [-0.03,0.06] 0.017 

15 6 0.143 1.44 [-0.02,0.05] 0.013 

20 5 0.127 1.38 [-0.02,0.04] 0.012 

25 5 0.147 1.42 [-0.02,0.04] 0.010 

30 4 0.117 1.34 [-0.02,0.03] 0.009 

50 3 0.127 1.34 [-0.01,0.03] 0.007 

100 3 0.079 1.23 [-0.01,0.03] 0.005 

200 3 0.056 1.17 [-0.01,0.00] 0.003 

500 2 0.139 1.33 [-0.00,0.01] 0.002 

$% = � 

8 18 0.148 1.54 [-0.01,0.08] 0.018 

10 14 0.146 1.48 [-0.05,0.04] 0.017 

15 9 0.148 1.46 [-0.01,0.06] 0.013 

20 8 0.124 1.39 [-0.01,0.04] 0.010 

25 7 0.122 1.38 [-0.01,0.04] 0.010 

30 6 0.129 1.39 [-0.02,0.04] 0.008 

50 5 0.125 1.37 [-0.01,0.02] 0.007 

100 4 0.135 1.39 [-0.02,0.02] 0.005 

200 4 0.110 1.32 [-0.01,0.00] 0.003 

500 4 0.101 1.30 [-0.00,0.01] 0.002 

$% = �. � 

8 27 0.147 1.52 [-0.02,0.08] 0.019 

10 21 0.147 1.52 [-0.07,0.01] 0.016 

15 14 0.144 1.49 [-0.03,0.04] 0.013 

20 12 0.131 1.44 [-0.02,0.04] 0.011 

25 10 0.136 1.45 [-0.01,0.04] 0.010 

30 9 0.137 1.43 [-0.02,0.01] 0.009 

50 8 0.120 1.38 [-0.02,0.01] 0.007 

100 6 0.148 1.44 [-0.02,0.02] 0.005 

200 6 0.133 1.41 [-0.02,0.00] 0.004 

500 6 0.121 1.38 [-0.00,0.01] 0.002 
  

�� R* RB 
��� !
��� "

 

99% CI of 

TTA ˆ based  
on the 

simulation SE  

Simulation 

SE of TTA ˆ

$% = �. � 

8 21 0.143 1.49 [-0.02,0.08] 0,019 

10 15 0.141 1.49 [-0.03,0.05] 0,016 

15 9 0.131 1.41 [-0.05,0.04] 0,013 

20 7 0.117 1.35 [-0.02,0.04] 0,011 

25 5 0.148 1.43 [-0.02,0.03] 0,010 

30 5 0.113 1.33 [-0.02,0.03] 0,009 

50 4 0.093 1.27 [-0.02,0.02] 0,007 

100 3 0.095 1.27 [-0.01,0.01] 0,005 

200 3 0.062 1.19 [-0.01,0.01] 0,003 

500 2 0.147 1.35 [-0.00,0.01] 0,002 

$% = � 

8 32 0.146 1.50 [-0.07,0.03] 0.023 

10 22 0.146 1.52 [-0.07,0.01] 0.020 

15 13 0.136 1.44 [-0.05,0.01] 0.016 

20 10 0.131 1.40 [-0.04,0.02] 0.013 

25 8 0.136 1.42 [-0.03,0.02] 0.012 

30 7 0.132 1.40 [-0.02,0.02] 0.011 

50 5 0.149 1.43 [-0.02,0.02] 0.008 

100 4 0.148 1.42 [-0.02,0.02] 0.005 

200   4 0.118 1.34 [-0.01,0.01] 0.004 

500 4 0.103 1.30 [-0.01,0.00] 0.002 

$% = �. � 

8 47 0.149 1.48 [-0.06,0.05] 0.020 

10 33 0.147 1.49 [-0.05,0.04] 0.017 

15 20 0.146 1.48 [-0.03,0.04] 0.013 

20 15 0.146 1.47 [-0.03,0.03] 0.011 

25 12 0.149 1.48 [-0.03,0.03] 0.010 

30 11 0.139 1.45 [-0.02,0.03] 0.009 

50 8 0.149 1.47 [-0.02,0.02] 0.007 

100 7 0.133 1.41 [-0.01,0.02] 0.005 

200 6 0.140 1.42 [-0.01,0.01] 0.003 

500 6 0.126 1.39 [-0.01,0.01] 0.002 

∗ �� – treated samples size; RB – the remaining bias;  ��� ! ��� "'  – variance ratio (VR);  R∗ - the minimum required 

group ratio, for each investigated treated sample which satisfies: RB < 0.15 and 0.5 < ,- < 2. The 99% 

confidence intervals of the estimated ATT, calculated with standard errors (i.e., simulation SE of TTA ˆ ) designed 

by using the standard deviation of treatment effect estimates across 1,000 iterations,	SE0121 = s0121	 √1000⁄ , 

show that the true value of the treatment effect (τ = 0) is within the interval boundaries of the estimated 

treatment effect. This indicates that treatment effect estimates are unbiased (i.e., selection bias is successfully 

removed).  
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Table 5.10: Minimum required group ratios for investigated treated samples for 

20=p  and 30=p  - optimal matching algorithm∗
 

� = %� � = 7� 

�� R* RB 
��� !
��� "

 

99% CI of 

TTA ˆ based  
on the 

simulation SE  

Simulation 

SE of TTA ˆ  

	$% = �. � 

8 33 0.148 1.49 [-0.10,0.01] 0.021 

10 22 0.146 1.46 [-0.06,0.03] 0.017 

15 13 0.142 1.43 [-0.03,0.04] 0.013 

20 9 0.127 1.38 [-0.03,0.03] 0.012 

25 7 0.126 1.38 [-0.03,0.03] 0.011 

30 6 0.122 1.36 [-0.03,0.02] 0.010 

50 4 0.130 1.36 [-0.02,0.02] 0.007 

100 3 0.113 1.31 [-0.02,0.01] 0.005 

200 3 0.073 1.21 [-0.01,0.01] 0.003 

500 3 0.050 1.15 [-0.00,0.01] 0.002 

$% = � 

8 45 0.149 1.43 [-0.06,0.04] 0.021 

10 31 0.148 1.48 [-0.04,0.05] 0.017 

15 18 0.145 1.44 [-0.03,0.03] 0.013 

20 13 0.138 1.41 [-0.03,0.03] 0.011 

25 10 0.140 1.42 [-0.04,0.02] 0.010 

30 9 0.131 1.40 [-0.04,0.01] 0.009 

50 6 0.134 1.39 [-0.02,0.03] 0.007 

100 5 0.112 1.33 [-0.02,0.02] 0.005 

200 4 0.129 1.37 [-0.01,0.01] 0.003 

500 4 0.110 1.32 [-0.01,0.01] 0.002 

$% = �. � 

8 65 0.149 1.45 [-0.06,0.11] 0.021 

10 46 0.147 1.47 [-0.08,0.06] 0.017 

15 26 0.148 1.46 [-0.04,0.06] 0.013 

20 18 0.147 1.47 [-0.03,0.05] 0.011 

25 15 0.141 1.44 [-0.04,0.04] 0.010 

30 13 0.137 1.42 [-0.03,0.04] 0.009 

50 9 0.138 1.42 [-0.01,0.04] 0.007 

100 7 0.143 1.43 [-0.02,0.02] 0.005 

200 6 0.146 1.44 [-0.01,0.01] 0.003 

500 6 0.129 1.40 [-0.01,0.01] 0.002 
 

 

�� R* RB 
��� !
��� "

 

99% CI of 

TTA ˆ based 
on the 

simulation SE  

Simulation 

SE of TTA ˆ  

$% = �. � 
a
 8 58 0.149 1.43 [-0.08,0.05] 0.025 

a
 10 45 0.149 1.46 [-0.05,0.05] 0.019 

15 22 0.145 1.46 [-0.06,0.01] 0.013 

20 14 0.139 1.41 [-0.03,0.03] 0.011 

25 10 0.141 1.41 [-0.03,0.03] 0.010 

30 8 0.142 1.41 [-0.02,0.03] 0.009 

50 5 0.133 1.37 [-0.02,0.01] 0.007 

100 4 0.087 1.25 [-0.01,0.01] 0.005 

200 3 0.093 1.26 [-0.00,0.01] 0.004 

500 3 0.058 1.18 [-0.00,0.01] 0.002 

$% = � 
a
 8 79 0.157 1.45 [-0.07,0.07] 0.028 

a
 10 64 0.140 1.39 [-0.05,0.04] 0.019 

15 31 0.148 1.47 [-0.02,0.05] 0.014 

20 19 0.145 1.45 [-0.02,0.04] 0.012 

25 14 0.140 1.42 [-0.03,0.03] 0.010 

30 11 0.141 1.43 [-0.03,0.02] 0.009 

50 8 0.129 1.39 [-0.02,0.02] 0.007 

100 5 0.145 1.42 [-0.01,0.01] 0.005 

200 4 0.149 1.42 [-0.01,0.01] 0.004 

500 4 0.113 1.33 [-0.00,0.01] 0.002 

$% = �. � 
a
 8 98 0.148 1.41 [-0.10,0.04] 0.019 

a
 10 81 0.147 1.38 [-0.10,0.01] 0.013 

15 44 0.145 1.42 [-0.04,0.03] 0.012 

20 29 0.149 1.44 [-0.05,0.01] 0.011 

25 21 0.140 1.42 [-0.02,0.03] 0.009 

30 18 0.133 1.41 [-0.02,0.03] 0.007 

50 12 0.138 1.42 [-0.02,0.02] 0.005 

100 8 0.127 1.39 [-0.01,0.01] 0.003 

200 7 0.132 1.40 [-0.01,0.01] 0.002 

500 6 0.148 1.31 [-0.01,0.00] 0.019 

∗  �� – treated samples size; RB – the remaining bias;  ��� ! ��� "'  – variance ratio (VR);  R∗ - the minimum required 

group ratio, for each investigated treated sample which satisfies: RB < 0.15 and 0.5 < ,- < 2. The 99% 

confidence intervals of the estimated ATT, calculated with standard errors (i.e., simulation SE of TTA ˆ ) designed 

by using the standard deviation of treatment effect estimates across 1,000 iterations,	SE0121 = s0121	 √1000⁄ , 

show that the true value of the treatment effect (τ = 0) is within the interval boundaries of the estimated 

treatment effect. This indicates that treatment effect estimates are unbiased (i.e., selection bias is successfully 

removed).  

a Approximately 30% of simulation replications where logistic regression for estimating propensity scores 

results in extreme values of zero and one. 
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Our initial descriptive-analysis findings are furthermore supported with some 

graphical depictions to see how strongly treated sample sizes depend on the 

adequate size of the control group in removing a sufficient amount of selection bias 

(i.e., 2)(15.0)( << RVRRRB and ), before using an additional covariate 

regression adjustment to estimate .ATT  

In the beginning of the descriptive analysis section, we already mentioned that the 

minimum required group ratio, 
*R , decreases when the size of a treated sample, 

tn , increases. We also mentioned that the minimum required group ratios for small 

treated samples, 100<tn , increases when the number of observed covariates 

increases, p .  

Figure 5.1 shows this relation between the minimum required group ratio, 
*R , and 

the size of the treated sample, tn , on the log scale, )log( tn  for the initial squared 

bias of 12 =B   (other 2B values produce very similar depictions) with the lines 

representing the four covariate sets. 
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Figure 5.1: Comparison of the number of observed covariates, p , versus the 

treated sample sizes and their correspondingly required minimum group ratios,
*R  

with 12 =B  

 

Figure 5.1 demonstrates that the minimum required group ratio increases when 

the size of the treated sample decreases. Furthermore, the figure also shows that 

the minimum required group ratio does depend, not only on the size of the treated 

sample, but also on the number of observed covariates (each line represents each 

covariate set). However, this finding is particularly applicable for treated samples 

smaller than 100. A treated sample  with 10=p  requires a minimum group 

ratio of 19* =R , whereas with 30=p , requires almost 80* =R . On the other 

hand, a treated sample of 100=tn  with  requires 4* =R , whereas with 

30=p  it requires only 5* =R . 
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The relation between the minimum required group ratio, *R , and the number of 

observed covariates, p , is depicted in Figure 5.2, where lines denote different 

treatment sample sizes. The figure shows that treated samples with 100<tn  are 

sensitive to the number of observed covariates. Particularly with treated samples 

of ,20<tn the relationship between *R  and p  shows a strong exponential 

functional form, whereas with treated samples of 100, >tn the number of 

covariates has a negligible effect on the group ratio. 

Figure 5.2: Relationship between the number of observed covariates, p , and the 

minimum required group ratio, *R , for different treated samples (presented with 

lines) when  (other 2B produce very similar depictions). 

 

Treated sample, ��, of 200 and 500 are presented with the 

same line (the first line from bottom-top) due to the same 

values of the minimum required group ratios. 
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Besides the vast impact that the number of observed covariates has on the 

minimum required group ratio with small treated samples, the number of observed 

covariates plays another important role when estimating propensity scores with 

small samples. The simulated data show that with 30 observed covariates, the 

smallest investigated treated samples of 8=tn  and 10=tn , with a required 

minimum group ratio of 79, and 65, respectively, when the initial squared bias is 

12 =B , result in over 30 per cent of simulation replications where we estimate that 

the probabilistic part of the strong ignorability assumption appears to be violated 

(in the sense that the logistic regression for estimating propensity scores results in 

extreme values of zero and one). Thus, the group ratios in the above mentioned 

settings should be even larger, 100> R* .  

Furthermore, the level of initial imbalances in study designs has its impaction with 

the minimum required group ratio as well. The minimum required group ratio 

increases with an increasing level of initial imbalances for small treated samples. 

For example, in the case of 10=p  covariates, and an initial squared bias of 

5.02 =B , our results demonstrate that the treated sample of 8=tn  requires at 

least a group ratio of 13* =R . If the initial squared bias of 12 =B  or 5.12 =B , a 

group ratio of at least 19, and 27, respectively, is required. The relation between 

different levels of initial squared biases and the minimum required group ratios is 

depicted in Figure 5.3, where each graph within the figure presents the relation 

between the initial imbalances (different initial biases, i.e., 2B  of 0.5, 1 and 1.5 are 

depicted with lines) and minimum required group ratio for each treated sample, tn  

and each covariate set, p . 
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Figure 5.3: Relationship between different initial squared biases, 2B , and the 

minimum required group ratio, *R , for different treated samples and different 

number of observed covariates, p . 

 

Later, we investigate possible differences in results of propensity score study when 

matching is performed with the greedy or the optimal matching algorithm. The 

evaluation is done by comparing mean-squared-errors (MSE) of the estimated 

treatment effects obtained using different matching algorithms for all the treated 

samples, number of observed covariates and initial squared biases. The MSE of an 

estimator ATTτ̂ with respect to the estimated parameter ATTτ is defined as: 

( ) ( )( )2
ˆˆ

ATTATTATT EMSE τττ −=  
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The results of the MSE of the estimated treatment effects are based on the 

propensity score study with the minimum required group ratios for each treated 

sample, covariate set and level of initial imbalances, respectively (Table 5.1). 

Although the optimal matching algorithm performs slightly better, in comparison to 

the greedy matching algorithm with regard to the MSE, the difference in MSE is not 

significant. Yet, the difference is bigger for small treated samples in comparison to 

the moderately large treated samples. 

Table 5.11: MSE of TTA ˆ  when matching is performed with greedy and optimal 

algorithm 

  5.02 =B  12 =B  5.12 =B  optimalGreedy MSEMSE −  

 
tn
  p  Greedy Optimal Greedy Optimal Greedy Optimal 5.02 =B  12 =B  5.12 =B  

8 10 0.42 0.39 0.38 0.33 0.41 0.36 0.03 0.05 0.05 

10 10 0.31 0.29 0.30 0.30 0.29 0.27 0.02 0.00 0.02 

15 10 0.20 0.17 0.19 0.18 0.20 0.18 0.03 0.01 0.02 

20 10 0.16 0.14 0.12 0.11 0.13 0.12 0.02 0.01 0.01 

25 10 0.11 0.10 0.11 0.10 0.12 0.11 0.01 0.01 0.01 

30 10 0.10 0.08 0.09 0.08 0.10 0.09 0.02 0.01 0.01 

50 10 0.06 0.05 0.06 0.05 0.05 0.05 0.01 0.01 0.00 

100 10 0.03 0.02 0.03 0.02 0.03 0.02 0.01 0.01 0.01 

200 10 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.00 

500 10 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.01 0.01 
 

8 15 0.38 0.35 0.40 0.36 0.39 0.38 0.03 0.04 0.01 

10 15 0.28 0.26 0.29 0.29 0.30 0.28 0.02 0.00 0.02 

15 15 0.19 0.18 0.19 0.17 0.20 0.17 0.01 0.02 0.03 

20 15 0.15 0.13 0.15 0.13 0.14 0.13 0.02 0.02 0.01 

25 15 0.12 0.10 0.11 0.10 0.10 0.10 0.02 0.01 0.00 

30 15 0.09 0.08 0.09 0.08 0.09 0.08 0.01 0.01 0.01 

50 15 0.06 0.05 0.06 0.05 0.05 0.05 0.01 0.01 0.00 

100 15 0.03 0.02 0.03 0.03 0.03 0.02 0.01 0.00 0.01 

200 15 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.00 

500 15 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.01 0.01 
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Table 5.11 (continues): MSE of TTA ˆ  when matching is performed with greedy and 

optimal algorithm 

  5.02 =B  12 =B  5.12 =B  optimalGreedy MSEMSE −  

 
tn
  p  Greedy Optimal Greedy Optimal Greedy Optimal 5.02 =B  12 =B  5.12 =B  

 

8 20 0.41 0.39 0.42 0.38 0.40 0.39 0.02 0.04 0.01 

10 20 0.36 0.29 0.30 0.30 0.31 0.28 0.07 0.00 0.03 

15 20 0.20 0.17 0.20 0.17 0.19 0.18 0.03 0.03 0.01 

20 20 0.16 0.15 0.15 0.13 0.13 0.13 0.01 0.02 0.00 

25 20 0.13 0.11 0.12 0.10 0.11 0.10 0.02 0.02 0.01 

30 20 0.10 0.09 0.09 0.08 0.10 0.08 0.01 0.01 0.02 

50 20 0.06 0.05 0.06 0.05 0.06 0.05 0.01 0.01 0.01 

100 20 0.03 0.03 0.03 0.02 0.03 0.02 0.00 0.01 0.01 

200 20 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.00 

500 20 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.01 0.01 
 

8 30 0.42 0.38 0.44 0.44 0.39 0.30 0.04 0.00 0.09 

10 30 0.35 0.31 0.31 0.30 0.32 0.30 0.04 0.01 0.14 

15 30 0.20 0.17 0.19 0.18 0.20 0.18 0.03 0.01 0.06 

20 30 0.16 0.13 0.17 0.15 0.15 0.14 0.03 0.02 0.03 

25 30 0.12 0.11 0.13 0.11 0.12 0.12 0.01 0.02 0.03 

30 30 0.11 0.09 0.10 0.09 0.09 0.09 0.02 0.01 0.04 

50 30 0.06 0.05 0.06 0.05 0.06 0.05 0.01 0.01 0.03 

100 30 0.03 0.02 0.03 0.03 0.03 0.03 0.01 0.00 0.02 

200 30 0.01 0.01 0.02 0.01 0.01 0.01 0.00 0.01 0.01 

500 30 0.00 0.00 0.01 0.00 0.01 0.00 0.00 0.01 0.01 

 

5.1.3 Summary 

The descriptive analyses complement the ANOVA, which reveals the most 

influential factors for propensity score study design for small and moderately large 

treated samples. The most influential factors obtained by performing ANOVA for 

small (i.e., 
tn , R , p , 2B , and the two-way interaction, tn : p ) and moderately large 

treated sample studies (i.e., R , 2B , and the two-way interaction, R : 2B ) are well 

in line with the findings of descriptive analyses. 
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Both treated sample sizes (i.e., small and moderately large) can equally well 

remove a sufficient amount of selection bias from observational studies to 

estimate, unbiasedly, treatment effects, given a strongly ignorable assignment 

mechanism. However, there are four main differences between propensity score 

studies performed with small versus large treated samples. 

First, small treated samples require a substantially bigger group ratio (i.e., more 

control units per treated unit). This is not elucidated only by descriptive analyses, 

but also with results of ANOVA showing that the interaction between the group 

ratio and treated sample size is one of the influential factors in propensity score 

study with small samples.  

Second, the number of observed covariates has a vast impact on small treated 

samples, with regard to the minimum required group ratio ( tn : p  being another 

influential factor), whereas the interaction tn : p  is not an influential factor with 

moderately large treated samples. 

Third, the number of observed covariates has an influence on the standard errors 

of small treated samples, whereas it barely affects standard errors of moderately 

large treated samples, i.e., when the number of observed covariates increases, 

treatment effect’s standard errors, 
TTA

SE ˆ , of small treated samples increase 

considerably (e.g., for 8=tn  and 12 =B  the 
TTA

SE ˆ   for 10=p   is 0.019, whereas 

for the 30=p   the 
TTA

SE ˆ  is 0.027). 
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5.2 Simulation with True Propensity Scores 

This section presents results of the simulated analyses performed on the data using 

true propensity scores. The purpose of such a study is purely theoretical because in 

real world examples of observational designs, true propensity scores are unknown. 

However, the results serve as a benchmark for the results obtained in the previous 

sections, when the simulated data reflect situations we would observe in practice, 

where we have to estimate propensity scores. 

5.2.1 Analysis of Variance 

The simulation is a 8 x 100 x 4 x 3 x 2 factorial design (19,200 cells) for the small 

treated sample study, and a 2 x 9 x 4 x 3 x 2 factorial design (432 cells) for the 

moderately large treated sample (Table 4.1). Due to the propensity scores being 

known (i.e., true propensity scores), there are no empty cells as in the previous 

simulation study with estimated propensity scores. The strong ignorability 

assumption is thus not violated, although it appeared to be in the previous 

simulation study, when propensity scores were estimated. 

However, in order to compare these results to the results obtained with estimated 

propensity scores, the ANOVA is performed on both small treated sample study 

designs as in the previous section (Table 5.2), and in addition also on the full 

factorial design (19,200 cells), which includes group ratios, R , from 1 to 100.  

The ANOVA is performed for both measures of quality of the procedure: the 

remaining bias, RB , and the variance ratio, VR , and it includes main effects and all 

the interaction effects (i.e., up to five-way interactions).  The results are presented 

in Tables 5.12 and 5.13 where the factors known or estimable in the design phase 

of propensity score methods are sorted by their decreasing order of the mean sum 

of squares explained - MSS.  
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ANOVA – REMAINING BIAS 

The ANOVA results of small treated sample studies with the true propensity scores 

are a bit different from what we obtained in the previous section with the 

estimated propensity scores. On the other hand, the ANOVA results of moderately 

large sample study with the true propensity scores are comparable to those 

obtained in the previous section with the estimated propensity scores. 

The most influential factors for small treated sample studies with true propensity 

scores are initial squared bias, 
2B , group ratio, R , treated sample size, tn ,  and a 

two-way interaction between the group ratio and initial squared bias, R : 2B . 

Although the orders of the most influential factors do not perfectly match between 

the three small treated sample studies, due to the slight differences in the factorial 

designs of the studies, the most important – the type of the most influential factors 

– matches across all the simulation studies.  

The most influential factors for the moderately large treated sample study are: 

group ratio, R , initial imbalance, 
2B , the interaction between group ratio and 

initial imbalance, R : 2B , and the treated sample size, tn . 
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Table 5.12: ANOVA table for Small treated sample study 1 and 2 with true 

propensity scores for the remaining bias measure, RB  

Small treated sample study 1 

tn  {8, 10, 15, 20, 25, 30, 50, 100} 

R
 

{13:100} 
 

Small treated sample study 2 

tn  {20, 25, 30, 50, 100} 

R
 

{2:100} 
 

Factor DF MSS 
B 2 0.40 
n 7 0.05 
R 87 0.02 
n:B 14 0.01 
method 1 0.00 
R:B 174 0.00 
p:B 6 0.00 
method:B 2 0.00 
R:n 609 0.00 
p 3 0.00 
R:p 261 0.00 
n:p 21 0.00 
R:method 87 0.00 
n:method 7 0.00 
p:method 3 0.00 
R:n:p 1827 0.00 
R:n:method 609 0.00 
R:p:method 261 0.00 
n:p:method 21 0.00 
R:n:B 1218 0.00 
R:p:B 522 0.00 
n:p:B 42 0.00 
R:method:B 174 0.00 
n:method:B 14 0.00 
p:method:B 6 0.00 
R:n:p:method 1827 0.00 
R:n:p:B 3654 0.00 
R:n:method:B 1218 0.00 
R:p:method:B 522 0.00 
n:p:method:B 42 0.00 
R:n:p:method:B 3654 0.00 

 

Factor DF MSS 
B 2 0.81 
R 98 0.27 
n 4 0.03 
R:B 196 0.03 
method 1 0.01 
n:B 8 0.00 
R:n 392 0.00 
p:B 6 0.00 
p 3 0.00 
R:method 98 0.00 
n:method 4 0.00 
method:B 2 0.00 
R:p 294 0.00 
n:p 12 0.00 
p:method 3 0.00 
R:n:p 1176 0.00 
R:n:method 392 0.00 
R:p:method 294 0.00 
n:p:method 12 0.00 
R:n:B 784 0.00 
R:p:B 588 0.00 
n:p:B 24 0.00 
R:method:B 196 0.00 
n:method:B 8 0.00 
p:method:B 6 0.00 
R:n:p:method 1176 0.00 
R:n:p:B 2352 0.00 
R:n:method:B 784 0.00 
R:p:method:B 588 0.00 
n:p:method:B 24 0.00 
B 2 0.81 

 

n - treated sample size, ��; R – group ratio, R ; p – number of observed covariates, �; method – the 

matching algorithm used; B – initial squared bias; DF – degrees of freedom; MSS – mean sum of 

squares explained. 
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Table 5.13: ANOVA table for Moderately large treated sample study with true 

propensity scores for the remaining bias measure, RB  

Small treated sample study 3 

tn  {8, 10, 15, 20, 25, 30, 50, 100} 

R
 

{1:100} 
 

Moderately large treated sample study 

tn  {200, 500} 

R
 

{1:9} 
 

Factor DF MSS 
R 99 2.35 
B 2 2.27 
n 7 0.14 
R:B 198 0.09 
method 1 0.01 
n:B 14 0.01 
R:n 693 0.00 
p:B 6 0.00 
p 3 0.00 
R:method 99 0.00 
n:method 7 0.00 
method:B 2 0.00 
n:p 21 0.00 
n:p:B 42 0.00 
R:p 297 0.00 
p:method 3 0.00 
R:n:p 2079 0.00 
R:n:method 693 0.00 
R:p:method 297 0.00 
n:p:method 21 0.00 
R:n:B 1386 0.00 
R:p:B 594 0.00 
R:method:B 198 0.00 
n:method:B 14 0.00 
p:method:B 6 0.00 
R:n:p:method 2079 0.00 
R:n:p:B 4158 0.00 
R:n:method:B 1386 0.00 
R:p:method:B 594 0.00 
n:p:method:B 42 0.00 
R:n:p:method:B 4158 0.00 

 

Factor DF MSS 
R 8 4.53 
B 2 1.68 
R:B 16 0.11 
n 1 0.00 
p 3 0.00 
method 1 0.00 
R:n 8 0.00 
R:p 24 0.00 
n:p 3 0.00 
R:method 8 0.00 
n:method 1 0.00 
p:method 3 0.00 
n:B 2 0.00 
p:B 6 0.00 
method:B 2 0.00 
R:n:p 24 0.00 
R:n:method 8 0.00 
R:p:method 24 0.00 
n:p:method 3 0.00 
R:n:B 16 0.00 
R:p:B 48 0.00 
n:p:B 6 0.00 
R:method:B 16 0.00 
n:method:B 2 0.00 
p:method:B 6 0.00 
R:n:p:method 24 0.00 
R:n:p:B 48 0.00 
R:n:method:B 16 0.00 
R:p:method:B 48 0.00 
n:p:method:B 6 0.00 
R:n:p:method:B 48 0.00 

 

n - treated sample size, ��; R – group ratio, R ; p – number of observed covariates, �; method – the 

matching algorithm used; B – initial squared bias; DF – degrees of freedom; MSS – mean sum of 

squares explained. 

The main difference in the most influential factors between the small and 

moderately large treated sample studies is the treated sample size, tn ,  which is 

one of the most influential factors for the small treated sample studies but it is not 

considered as an influential factor in the moderately large treated sample study. 

Although this finding does provide some insights on the role of sample sizes in 

propensity score studies, we remain cautious in drawing a strong conclusion due to 
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the fact that the factorial designs of the small treated sample studies and 

moderately large treated sample studies are not fully comparable (as displayed in 

Table 4.1). Further descriptive analyses might provide more details on such 

insights. 

ANOVA – VARIANCE RATIO 

The ANOVA results for the variance ratio, VR , are presented in Tables 5.14 and 

5.15. The results are a bit different, with respect to the most influential factors (for 

small and moderately large treated sample studies), from the results of the 

analyses with the remaining bias, RB , as described below. The most influential 

factors in the small treated sample study are: all the factors identified as the most 

influential already in the ANOVA with the remaining bias, number of observed 

covariates, p , and a two-way interaction between the number of observed 

covariates and initial squared bias, p : 2B .  

The differences in results between ANOVA with the remaining bias and ANOVA 

with the variance ratio, with respect to the most influential factors, are even bigger 

for the moderately large treated sample study. The most influential factors in 

ANOVA with the variance ratio are: initial squared bias, 
2B , group ratio, R , a two-

way interaction between the number of observed covariates and initial squared 

bias, p : 2B , a two-way interaction between the treated sample size and initial 

squared bias, tn : 2B , number of observed covariates, p , method (i.e., nearest 

versus greedy matching algorithm), a two-way interaction between the method 

and initial squared bias, method : 2B , treated sample size, tn , and a two-way 

interaction between the group ratio and treated sample size, R : tn . The discussion 

on the obtained results with ANOVA analyses is presented in Section 5.2.3 together 

with findings obtained from descriptive analysis. 
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Table 5.14: ANOVA table for Small treated sample study 1 and 2 with true 

propensity scores for the variance ratio measure, VR  

Small treated sample study 1 

tn  {8, 10, 15, 20, 25, 30, 50, 100} 

R
 

{13:100} 
 

Small treated sample study 2 

tn  {20, 25, 30, 50, 100} 

R
 

{2:100} 
 

Factor DF MSS 
B 2 0.101 
p:B 6 0.064 
n 7 0.008 
n:B 14 0.004 
n:p:B 42 0.003 
n:p 21 0.003 
p 3 0.003 
R 87 0.001 
R:B 174 0.000 
R:p:B 522 0.000 
R:p 261 0.000 
R:n 609 0.000 
R:n:p 1827 0.000 
R:n:p:B 3654 0.000 
R:n:B 1218 0.000 
n:method:B 14 0.000 
n:method 7 0.000 
R:method 87 0.000 
p:method 3 0.000 
R:p:method 261 0.000 
n:p:method 21 0.000 
R:method:B 174 0.000 
p:method:B 6 0.000 
R:p:method:B 522 0.000 
n:p:method:B 42 0.000 
method 1 0.000 
R:n:method 609 0.000 
R:n:p:method 1827 0.000 
R:n:method:B 1218 0.000 
R:n:p:method:B 3654 0.000 
method:B 2 0.000 

 

Factor DF MSS 
B 2 0.054 
p:B 6 0.037 
p 3 0.006 
n:B 8 0.004 
n 4 0.004 
n:p:B 24 0.003 
R 98 0.003 
n:p 12 0.000 
R:n 392 0.000 
R:p:B 588 0.000 
R:p 294 0.000 
R:B 196 0.000 
R:n:p 1176 0.000 
R:n:B 784 0.000 
R:n:p:B 2352 0.000 
method 1 0.000 
method:B 2 0.000 
p:method 3 0.000 
p:method:B 6 0.000 
n:method 4 0.000 
n:method:B 8 0.000 
n:p:method 12 0.000 
n:p:method:B 24 0.000 
R:method 98 0.000 
R:n:method 392 0.000 
R:p:method 294 0.000 
R:method:B 196 0.000 
R:n:p:method 1176 0.000 
R:n:method:B 784 0.000 
R:p:method:B 588 0.000 
R:n:p:method:B 2352 0.000 

 

n - treated sample size, ��; R – group ratio, R ; p – number of observed covariates, �; method – the 

matching algorithm used; B – initial squared bias; DF – degrees of freedom; MSS – mean sum of 

squares explained. 
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Table 5.15: ANOVA table for Small treated sample study 1 and 2 with true 

propensity scores for the variance ratio measure, VR  

Small treated sample study 3 

tn  {8, 10, 15, 20, 25, 30, 50, 100} 

R
 

{1:100} 
 

Moderately large treated sample study 

tn  {200, 500} 

R
 

{1:9} 
 

Factor DF MSS 
B 2 0.124 
p:B 6 0.077 
n 7 0.062 
R 99 0.059 
R:n 693 0.006 
n:B 14 0.004 
n:p:B 42 0.004 
p 3 0.003 
n:p 21 0.003 
R:B 198 0.001 
R:p 297 0.000 
R:p:B 594 0.000 
R:n:p 2079 0.000 
R:n:p:B 4158 0.000 
R:n:B 1386 0.000 
n:method:B 14 0.000 
n:method 7 0.000 
R:method 99 0.000 
p:method 3 0.000 
R:p:method 297 0.000 
n:p:method 21 0.000 
R:method:B 198 0.000 
p:method:B 6 0.000 
R:p:method:B 594 0.000 
n:p:method:B 42 0.000 
method 1 0.000 
R:n:method 693 0.000 
R:n:p:method 2079 0.000 
R:n:method:B 1386 0.000 
R:n:p:method:B 4158 0.000 
method:B 2 0.000 

 

Factor DF MSSx1000 
B 2 0.39 
R 8 0.24 
p:B 6 0.21 
n:B 2 0.19 
p 3 0.13 
method 1 0.05 
method:B 2 0.04 
n 1 0.04 
R:n 8 0.04 
n:p:B 6 0.03 
R:n:p:B 48 0.03 
R:B 16 0.02 
n:p:method 3 0.02 
n:p:method:B 6 0.02 
R:p:B 48 0.02 
p:method 3 0.02 
p:method:B 6 0.02 
n:method 1 0.01 
n:method:B 2 0.01 
R:p 24 0.01 
n:p 3 0.01 
R:n:p 24 0.01 
R:n:B 16 0.00 
R:n:p:method 24 0.00 
R:n:p:method:B 48 0.00 
R:p:method 24 0.00 
R:p:method:B 48 0.00 
R:method:B 16 0.00 
R:method 8 0.00 
R:n:method 8 0.00 
R:n:method:B 16 0.00 

 

n - treated sample size, ��; R – group ratio, R ; p – number of observed covariates, �; method – the 

matching algorithm used; B – initial squared bias; DF – degrees of freedom; MSS – mean sum of 

squares explained. 
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5.2.2 Descriptive Analysis 

The simulated data are analysed as explained in Section 4.3 and the results are 

presented in Tables 5.16 – 5.19. The first two tables present results of the 

propensity score matching with the greedy matching algorithm whereas the other 

two present results of the matching with the optimal matching algorithm.  

The first column in each table presents the treated sample size, tn , followed by the 

minimum required group ratio, *R , (as defined in Section 4.3), the absolute value 

of the remaining bias, RB , the variance ratio of the propensity score logit between 

the treated and control group ( 22

ct ssVR = ), the 99% confidence intervals for the 

estimated average treatment effect of the treated - TTA
)

 and the simulation 

standard errors of the TTA
)

. 

The results show that the minimum required group ratio, 
*R , is decreasing when 

the treated sample size, tn , is increasing which means that with more treated units, 

we can have a smaller pool of control units, relative to the size of the treated 

sample to estimate, unbiasedly, treatment effects.  

The number of observed covariates, p , does not have an impact on either the 

minimum required group ratio, or the standard errors of the treatment effect 

estimates. When we observe more covariates, for example, when the number of 

observed covariates increases from 20=p  to 30=p , the minimum required group 

ratio remains the same for all the treated samples. Moreover, such an increase in 

the observed covariates does not have an impact on the standard errors either. 
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Table 5.16: Minimum required group ratios for investigated treated samples for 

10=p  and 15=p  - greedy matching algorithm∗  

� = �� � = �� 

�� R* RB 
��� !
��� "

 

99% CI of 

TTA ˆ based 
on the 

simulation SE  

Simulation 

SE of TTA ˆ  

	$% = �. � 

8 4 0.129 1.40 [-0.03,0.06] 0.018 

10 4 0.113 1.35 [-0.03,0.04] 0.016 

15 3 0.129 1.34 [-0.04,0.03] 0.013 

20 3 0.112 1.30 [-0.03,0.03] 0.012 

25 3 0.103 1.28 [-0.03,0.02] 0.010 

30 3 0.102 1.28 [-0.02,0.03] 0.010 

50 3 0.076 1.21 [-0.02,0.02] 0.007 

100 3 0.148 1.34 [-0.01,0.02] 0.006 

200 2 0.138 1.33 [-0.02,0.01] 0.004 

500 2 0.131 1.31 [-0.00,0.02] 0.003 

$% = � 

8 6 0.146 1.49 [-0.03,0.06] 0.018 

10 6 0.130 1.45 [-0.04,0.04] 0.015 

15 5 0.132 1.40 [-0.04,0.03] 0.012 

20 5 0.118 1.36 [-0.04,0.02] 0.011 

25 4 0.147 1.42 [-0.02,0.03] 0.010 

30 4 0.137 1.39 [-0.02,0.03] 0.010 

50 4 0.120 1.34 [-0.01,0.03] 0.007 

100 4 0.106 1.31 [-0.01,0.02] 0.005 

200 4 0.103 1.31 [-0.01,0.01] 0.004 

500 4 0.099 1.29 [-0.01,0.00] 0.002 

$% = �. � 

8 9 0.149 1.53 [-0.02,0.07] 0.019 

10 9 0.132 1.45 [-0.03,0.06] 0.016 

15 8 0.137 1.48 [-0.03,0.03] 0.013 

20 7 0.144 1.47 [-0.02,0.04] 0.011 

25 7 0.138 1.44 [-0.03,0.02] 0.010 

30 7 0.126 1.40 [-0.02,0.03] 0.010 

50 6 0.141 1.44 [-0.01,0.03] 0.007 

100 6 0.128 1.40 [-0.02,0.01] 0.005 

200 6 0.121 1.38 [-0.01,0.01] 0.004 

500 6 0.118 1.36 [-0.00,0.01] 0.002 
  

�� R* RB 
��� !
��� "

 

99% CI of 

TTA ˆ based 
on the 

simulation SE  

Simulation 

SE of TTA ˆ  

$% = �. � 

8 4 0.123 1.38 [-0.04,0.05] 0.018 

10 4 0.102 1.31 [-0.01,0.07] 0.016 

15 3 0.127 1.33 [-0.02,0.04] 0.013 

20 3 0.110 1.29 [-0.02,0.04] 0.011 

25 3 0.100 1.26 [-0.02,0.03] 0.010 

30 3 0.092 1.25 [-0.02,0.03] 0.009 

50 3 0.073 1.20 [-0.00,0.03] 0.007 

100 3 0.146 1.34 [-0.01,0.02] 0.006 

200 2 0.135 1.32 [-0.01,0.01] 0.004 

500 2 0.129 1.31 [-0.01,0.01] 0.003 

$% = � 

8 6 0.145 1.49 [-0.07,0.03] 0.019 

10 6 0.127 1.41 [-0.04,0.04] 0.016 

15 5 0.129 1.39 [-0.04,0.03] 0.013 

20 5 0.116 1.34 [-0.02,0.04] 0.011 

25 4 0.147 1.42 [-0.02,0.04] 0.011 

30 4 0.138 1.39 [-0.02,0.03] 0.009 

50 4 0.121 1.35 [-0.02,0.02] 0.007 

100 4 0.105 1.31 [-0.01,0.02] 0.005 

200 4 0.098 1.29 [-0.01,0.01] 0.004 

500 4 0.095 1.28 [-0.01,0.00] 0.002 

$% = �. � 

8 9 0.143 1.56 [-0.07,0.03] 0.018 

10 9 0.136 1.50 [-0.05,0.03] 0.016 

15 8 0.147 1.50 [-0.04,0.03] 0.013 

20 7 0.133 1.45 [-0.02,0.03] 0.011 

25 7 0.143 1.46 [-0.02,0.04] 0.010 

30 7 0.137 1.45 [-0.00,0.04] 0.009 

50 6 0.147 1.46 [-0.01,0.03] 0.007 

100 6 0.132 1.41 [-0.01,0.02] 0.005 

200 6 0.123 1.38 [-0.01,0.01] 0.004 

500 6 0.120 1.37 [-0.01,0.01] 0.002 

∗  �� – treated samples size; RB – the remaining bias;  ��� ! ��� "'  – variance ratio (VR);  R∗ - the minimum required 

group ratio, for each investigated treated sample which satisfies: RB < 0.15 and 0.5 < ,- < 2. The 99% 

confidence intervals of the estimated ATT, calculated with standard errors (i.e., simulation SE of TTA ˆ ) designed 

by using the standard deviation of treatment effect estimates across 1,000 iterations,	SE0121 = s0121	 √1000⁄ , 

show that the true value of the treatment effect (τ = 0) is within the interval boundaries of the estimated 

treatment effect. This indicates that treatment effect estimates are unbiased (i.e., selection bias is successfully 

removed).  
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Table 5.17: Minimum required group ratios for investigated treated samples for 

20=p  and 30=p  - greedy matching algorithm∗
 

� = %� � = 7� 

�� R* RB 
��� !
��� "

 

99% CI of 

TTA ˆ based  
on the 

simulation SE  

Simulation 

SE of TTA ˆ  

	$% = �. � 

8 4 0.131 1.39 [-0.07,0.02] 0.019 

10 4 0.112 1.33 [-0.09,-0.01] 0.016 

15 3 0.132 1.33 [-0.04,0.02] 0.013 

20 3 0.114 1.29 [-0.03,0.03] 0.011 

25 3 0.103 1.26 [-0.02,0.03] 0.010 

30 3 0.097 1.26 [-0.01,0.04] 0.009 

50 3 0.074 1.20 [-0.02,0.02] 0.007 

100 3 0.148 1.35 [-0.02,0.01] 0.006 

200 2 0.134 1.32 [-0.01,0.01] 0.004 

500 2 0.130 1.31 [-0.01,0.01] 0.003 

$% = � 

8 6 0.146 1.51 [-0.05,0.04] 0.018 

10 6 0.132 1.45 [-0.02,0.07] 0.017 

15 5 0.136 1.44 [-0.01,0.06] 0.013 

20 5 0.123 1.40 [-0.01,0.05] 0.011 

25 4 0.114 1.36 [-0.01,0.04] 0.010 

30 4 0.150 1.42 [-0.03,0.02] 0.010 

50 4 0.131 1.37 [-0.03,0.01] 0.007 

100 4 0.111 1.32 [-0.01,0.02] 0.005 

200 4 0.100 1.30 [-0.01,0.01] 0.004 

500 4 0.100 1.30 [-0.01,0.01] 0.002 

$% = �. � 

8 9 0.147 1.54 [-0.02,0.08] 0.019 

10 9 0.138 1.50 [-0.02,0.06] 0.016 

15 8 0.135 1.46 [-0.03,0.04] 0.013 

20 7 0.147 1.48 [-0.02,0.04] 0.012 

25 7 0.138 1.44 [-0.02,0.04] 0.011 

30 7 0.127 1.41 [-0.02,0.03] 0.009 

50 6 0.137 1.42 [-0.03,0.01] 0.007 

100 6 0.128 1.40 [-0.02,0.00] 0.005 

200 6 0.121 1.38 [-0.01,0.01] 0.004 

500 6 0.121 1.38 [-0.01,0.00] 0.002 
  

�� R* RB 
��� !
��� "

 

99% CI of 

TTA ˆ based  
on the 

simulation SE  

Simulation 

SE of TTA ˆ  

$% = �. � 

8 4 0.133 1.39 [-0.05,0.04] 0.019 

10 4 0.109 1.33 [-0.02,0.06] 0.015 

15 3 0.133 1.34 [-0.05,0.02] 0.014 

20 3 0.117 1.31 [-0.05,0.01] 0.011 

25 3 0.101 1.26 [-0.04,0.01] 0.010 

30 3 0.090 1.24 [-0.02,0.02] 0.009 

50 3 0.072 1.20 [-0.02,0.01] 0.007 

100 3 0.143 1.33 [-0.02,0.01] 0.005 

200 2 0.136 1.32 [-0.01,0.01] 0.004 

500 2 0.131 1.32 [-0.00 ,0.01] 0.003 

$% = � 

8 6 0.143 1.50 [-0.06,0.04] 0.019 

10 6 0.130 1.42 [-0.04,0.04] 0.016 

15 5 0.127 1.37 [-0.03,0.04] 0.013 

20 5 0.112 1.34 [-0.03,0.03] 0.011 

25 4 0.140 1.40 [-0.02,0.03] 0.010 

30 4 0.135 1.38 [-0.03,0.02] 0.010 

50 4 0.121 1.36 [-0.02,0.02] 0.007 

100 4 0.106 1.31 [-0.01,0.02] 0.005 

200 4 0.102 1.30 [-0.02,0.00] 0.003 

500 4 0.097 1.29 [-0.00,0.01] 0.002 

$% = �. � 

8 9 0.150 1.55 [-0.06,0.03] 0.018 

10 9 0.136 1.49 [-0.06,0.02] 0.016 

15 8 0.138 1.45 [-0.04,0.03] 0.013 

20 7 0.148 1.47 [-0.04,0.02] 0.012 

25 7 0.139 1.43 [-0.03,0.02] 0.010 

30 7 0.134 1.42 [-0.02,0.03] 0.010 

50 6 0.145 1.44 [-0.02,0.02] 0.008 

100 6 0.132 1.40 [-0.01,0.01] 0.005 

200 6 0.121 1.38 [-0.01,0.01] 0.004 

500 6 0.119 1.37 [-0.01,0.01] 0.002 

∗  �� – treated samples size; RB – the remaining bias;  ��� ! ��� "'  – variance ratio (VR);  R∗ - the minimum required 

group ratio, for each investigated treated sample which satisfies: RB < 0.15 and 0.5 < ,- < 2. The 99% 

confidence intervals of the estimated ATT, calculated with standard errors (i.e., simulation SE of TTA ˆ ) designed 

by using the standard deviation of treatment effect estimates across 1,000 iterations,	SE0121 = s0121	 √1000⁄ , 

show that the true value of the treatment effect (τ = 0) is within the interval boundaries of the estimated 

treatment effect. This indicates that treatment effect estimates are unbiased (i.e., selection bias is successfully 

removed).  
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Table 5.18: Minimum required group ratios for investigated treated samples for 

10=p  and 15=p  - optimal matching algorithm∗  

� = �� � = �� 

�� R* RB 
��� !
��� "

 

99% CI of 

TTA ˆ based  
on the 

simulation SE  

Simulation 
SE of ATT 

	$% = �. � 

8 4 0.112 1.39 [-0.04,0.05] 0.018 

10 3 0.139 1.42 [-0.05,0.03] 0.016 

15 3 0.108 1.32 [-0.03,0.03] 0.012 

20 3 0.093 1.28 [-0.03,0.03] 0.011 

25 3 0.085 1.26 [-0.04,0.01] 0.010 

30 3 0.086 1.26 [-0.02,0.03] 0.009 

50 3 0.063 1.19 [-0.02,0.02] 0.007 

100 2 0.139 1.33 [-0.01,0.02] 0.005 

200 2 0.135 1.32 [-0.01,0.00] 0.003 

500 2 0.130 1.31 [-0.00,0.01] 0.002 

$% = � 

8 6 0.134 1.51 [-0.05,0.05] 0.018 

10 5 0.141 1.47 [-0.02,0.06] 0.016 

15 5 0.150 1.44 [-0.02,0.05] 0.013 

20 5 0.142 1.41 [-0.01,0.04] 0.011 

25 4 0.139 1.40 [-0.01,0.04] 0.010 

30 4 0.127 1.38 [-0.02,0.03] 0.009 

50 4 0.113 1.33 [-0.01,0.03] 0.007 

100 4 0.102 1.30 [-0.01,0.01] 0.005 

200 4 0.102 1.30 [-0.01,0.00] 0.003 

500 4 0.098 1.29 [-0.01,0.00] 0.002 

$% = �. � 

8 9 0.141 1.52 [-0.03,0.06] 0.018 

10 9 0.145 1.54 [-0.04,0.04] 0.016 

15 8 0.147 1.50 [-0.02,0.04] 0.013 

20 7 0.138 1.46 [-0.02,0.04] 0.011 

25 7 0.132 1.44 [-0.03,0.02] 0.010 

30 7 0.146 1.46 [-0.02,0.03] 0.009 

50 6 0.136 1.43 [-0.01,0.03] 0.007 

100 6 0.126 1.39 [-0.02,0.01] 0.005 

200 6 0.120 1.38 [-0.01,0.01] 0.003 

500 6 0.118 1.36 [-0.00,0.01] 0.002 
  

�� R* RB 
��� !
��� "

 

99% CI of 

TTA ˆ based  
on the 

simulation SE  

Simulation 

SE of TTA ˆ  

$% = �. � 

8 4 0.102 1.36 [-0.03,0.06] 0.017 

10 3 0.130 1.42 [-0.01,0.07] 0.015 

15 3 0.104 1.31 [-0.02,0.05] 0.012 

20 3 0.091 1.27 [-0.01,0.05] 0.010 

25 3 0.083 1.25 [-0.01,0.04] 0.009 

30 3 0.075 1.23 [-0.01,0.03] 0.008 

50 3 0.061 1.18 [-0.01,0.03] 0.007 

100 2 0.138 1.33 [-0.01,0.02] 0.005 

200 2 0.131 1.31 [-0.01,0.01] 0.003 

500 2 0.127 1.31 [-0.00,0.01] 0.002 

$% = � 

8 6 0.136 1.49 [-0.07,0.03] 0.018 

10 5 0.148 1.49 [-0.04,0.04] 0.016 

15 5 0.118 1.37 [-0.03,0.03] 0.013 

20 5 0.145 1.42 [-0.02,0.03] 0.011 

25 4 0.137 1.40 [-0.02,0.03] 0.010 

30 4 0.128 1.37 [-0.02,0.02] 0.009 

50 4 0.114 1.33 [-0.02,0.02] 0.007 

100 4 0.101 1.30 [-0.01,0.01] 0.005 

200 4 0.096 1.29 [-0.01,0.01] 0.003 

500 4 0.095 1.28 [-0.01,0.00] 0.002 

$% = �. � 

8 9 0.148 1.59 [-0.06,0.03] 0.018 

10 9 0.143 1.54 [-0.06,0.02] 0.016 

15 8 0.138 1.49 [-0.03,0.03] 0.013 

20 7 0.146 1.50 [-0.02,0.03] 0.011 

25 7 0.136 1.45 [-0.01,0.04] 0.010 

30 7 0.131 1.43 [-0.02,0.03] 0.009 

50 6 0.142 1.45 [-0.01,0.03] 0.007 

100 6 0.130 1.40 [-0.01,0.01] 0.005 

200 6 0.122 1.38 [-0.01,0.01] 0.003 

500 6 0.120 1.37 [-0.01,0.00] 0.002 

∗  �� – treated samples size; RB – the remaining bias;  ��� ! ��� "'  – variance ratio (VR);  R∗ - the minimum required 

group ratio, for each investigated treated sample which satisfies: RB < 0.15 and 0.5 < ,- < 2. The 99% 

confidence intervals of the estimated ATT, calculated with standard errors (i.e., simulation SE of TTA ˆ ) designed 

by using the standard deviation of treatment effect estimates across 1,000 iterations,	SE0121 = s0121	 √1000⁄ , 

show that the true value of the treatment effect (τ = 0) is within the interval boundaries of the estimated 

treatment effect. This indicates that treatment effect estimates are unbiased (i.e., selection bias is successfully 

removed).  
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Table 5.19:  Minimum required group ratios for investigated treated samples for 

20=p  and 30=p  - optimal matching algorithm∗
 

� = %� � = 7� 

�� R* RB 
��� !
��� "

 

99% CI of 

TTA ˆ based  
on the 

simulation SE  

Simulation 

SE of TTA ˆ  

	$% = �. � 

8 4 0.112 1.38 [-0.08,0.01] 0.018 

10 3 0.143 1.44 [-0.09,-0.01] 0.016 

15 3 0.108 1.30 [-0.04,0.03] 0.012 

20 3 0.094 1.27 [-0.03,0.02] 0.011 

25 3 0.086 1.24 [-0.02,0.02] 0.009 

30 3 0.081 1.24 [-0.01,0.03] 0.008 

50 3 0.062 1.18 [-0.01,0.02] 0.007 

100 2 0.140 1.34 [-0.02,0.00] 0.005 

200 2 0.130 1.31 [-0.01,0.01] 0.004 

500 2 0.129 1.31 [-0.01,0.00] 0.002 

$% = � 

8 6 0.131 1.49 [-0.05,0.04] 0.017 

10 5 0.150 1.52 [-0.01,0.08] 0.016 

15 5 0.124 1.43 [-0.02,0.04] 0.013 

20 5 0.111 1.38 [-0.01,0.05] 0.011 

25 4 0.143 1.44 [-0.01,0.04] 0.010 

30 4 0.136 1.40 [-0.01,0.03] 0.009 

50 4 0.118 1.35 [-0.02,0.01] 0.007 

100 4 0.106 1.31 [-0.02,0.01] 0.005 

200 4 0.098 1.30 [-0.01,0.01] 0.004 

500 4 0.095 1.28 [-0.01,0.01] 0.002 

$% = �. � 

8 9 0.138 1.53 [-0.02,0.08] 0.018 

10 9 0.150 1.56 [-0.03,0.05] 0.015 

15 8 0.148 1.51 [-0.03,0.03] 0.013 

20 7 0.141 1.47 [-0.02,0.04] 0.011 

25 7 0.132 1.43 [-0.01,0.04] 0.010 

30 7 0.148 1.47 [-0.02,0.03] 0.009 

50 6 0.133 1.42 [-0.02,0.02] 0.007 

100 6 0.126 1.40 [-0.02,0.01] 0.005 

200 6 0.121 1.38 [-0.01,0.01] 0.003 

500 6 0.120 1.38 [-0.01,0.00] 0.002 
  

�� R* RB 
��� !
��� "

 

99% CI of 

TTA ˆ based 
on the 

simulation SE  

Simulation 

SE of TTA ˆ  

$% = �. � 

8 4 0.117 1.38 [-0.05,0.04] 0.018 

10 3 0.138 1.43 [-0.03,0.05] 0.016 

15 3 0.111 1.32 [-0.05,0.02] 0.013 

20 3 0.097 1.28 [-0.04,0.01] 0.010 

25 3 0.084 1.24 [-0.04,0.00] 0.009 

30 3 0.073 1.21 [-0.02,0.02] 0.009 

50 3 0.146 1.34 [-0.02,0.01] 0.007 

100 2 0.135 1.32 [-0.01,0.01] 0.005 

200 2 0.132 1.32 [-0.01,0.01] 0.003 

500 2 0.130 1.31 [-0,00,0.01] 0.002 

$% = � 

8 6 0.132 1.49 [-0.06,0.04] 0.018 

10 5 0.148 1.50 [-0.04,0.04] 0.016 

15 5 0.113 1.36 [-0.03,0.03] 0.012 

20 5 0.140 1.41 [-0.02,0.03] 0.011 

25 4 0.129 1.38 [-0.03,0.02] 0.010 

30 4 0.125 1.37 [-0.02,0.03] 0.009 

50 4 0.114 1.34 [-0.02,0.02] 0.007 

100 4 0.102 1.30 [-0.01,0.01] 0.005 

200 4 0.101 1.30 [-0.01,0.01] 0.003 

500 4 0.094 1.28 [-0.01,0.00] 0.002 

$% = �. � 

8 9 0.138 1.54 [-0.06,0.03] 0.017 

10 9 0.144 1.53 [-0.05,0.03] 0.015 

15 8 0.129 1.44 [-0.04,0.03] 0.013 

20 7 0.140 1.46 [-0.03,0.02] 0.011 

25 7 0.132 1.42 [-0.03,0.02] 0.010 

30 7 0.128 1.41 [-0.02,0.03] 0.009 

50 6 0.142 1.44 [-0.01,0.03] 0.007 

100 6 0.130 1.40 [-0.01,0.02] 0.005 

200 6 0.120 1.37 [-0.01,0.01] 0.003 

500 6 0.119 1.37 [-0.01,0.00] 0.002 

∗  �� – treated samples size; RB – the remaining bias;  ��� ! ��� "'  – variance ratio (VR);  R∗ - the minimum required 

group ratio, for each investigated treated sample which satisfies: RB < 0.15 and 0.5 < ,- < 2. The 99% 

confidence intervals of the estimated ATT, calculated with standard errors (i.e., simulation SE of TTA ˆ ) designed 

by using the standard deviation of treatment effect estimates across 1,000 iterations,	SE0121 = s0121	 √1000⁄ , 

show that the true value of the treatment effect (τ = 0) is within the interval boundaries of the estimated 

treatment effect. This indicates that treatment effect estimates are unbiased (i.e., selection bias is successfully 

removed).  
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Our initial descriptive analyses findings are furthermore supported with some 

graphical depictions. The aim is to display how strongly treated sample sizes 

depend on the adequate size of the control group, in order to remove a sufficient 

amount of selection bias (i.e., 2)(15.0)( << RVRRRB and ) before using an 

additional covariate regression adjustment and estimating .ATT   

In the beginning of the descriptive-analysis section we noted that the minimum 

required group ratio, 
*R , decreases when the size of a treated sample, ,tn  

increases. The relationship between the minimum required group ratio and treated 

sample size, together with the number of observed covariates is presented in 

Figure 5.4. 

Figure 5.4: Relationship between the number of observed covariates, p , and the 

minimum required group ratio, *R , for different treated samples (presented with 

lines) when 12 =B  (other 2B produce very similar depictions). 
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Figure 5.4 shows that the minimum required group ratio increases when the size of 

the treated sample decreases. Additionally, the figure also shows that the 

minimum required group ratio in propensity score studies with true propensity 

scores does not depend on the number of observed covariates (lines which present 

each covariate set are on the top of each other, thus we can see only one line 

representing the relation between the treated sample size and minimum required 

group ratio).  

Moreover, the level of initial imbalance in a study design does have an influence on 

the minimum required group ratio. For example, with an initial squared bias of

5.02 =B , results show that a treated sample of 8=tn  requires at least a group 

ratio of 4* =R . If the initial squared bias increases to 12 =B  or 5.12 =B , a group 

ratio of at least 6 and 7, respectively, is required. The relation between different 

levels of initial bias and the minimum required group ratios for the treated sample, 

tn , is shown in Figure 5.5, where the lines represent different initial squared biases, 

i.e., 2B  of 0.5, 1 and 1.5. 
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Figure 5.5: Relationship between the minimum required group ratio, *R , and initial 

squared biases, 2B , for different sizes of treated samples. 

 

Also in this study, with true propensity scores, we investigated possible differences 

in results of propensity score studies when matching is performed with the greedy 

or with the optimal matching algorithm. The evaluation is again performed by 

comparing mean-squared-errors (MSE) of TTA
)

obtained when using different 

matching algorithms (i.e., greedy and optimal) for all the treated samples, number 

of observed covariates, and initial squared biases.  

The results are presented in Table 5.20 and show that in most of the cases, the 
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Table 5.20: MSE of TTA
)

 when matching is performed with greedy or optimal 

algorithms 

  5.02 =B  12 =B  5.12 =B  optimalGreedy MSEMSE −  

 
tn
  p  Greedy Optimal Greedy Optimal Greedy Optimal 5.02 =B  12 =B  5.12 =B  

8 10 0.35 0.32 0.35 0.32 0.32 0.33 0.03 0.00 0.02 

10 10 0.27 0.23 0.26 0.25 0.25 0.26 0.02 -0.02 0.00 

15 10 0.18 0.16 0.16 0.16 0.18 0.16 0.02 -0.02 0.00 

20 10 0.14 0.12 0.13 0.12 0.12 0.12 0.02 0.00 0.01 

25 10 0.10 0.11 0.10 0.09 0.10 0.09 0.01 0.01 0.01 

30 10 0.09 0.10 0.09 0.08 0.07 0.09 0.01 0.03 0.00 

50 10 0.05 0.05 0.05 0.05 0.05 0.05 0.00 0.00 0.00 

100 10 0.03 0.03 0.03 0.03 0.02 0.02 0.00 0.01 0.01 

200 10 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.00 

500 10 0.01 0.01 0.01 0.00 0.00 0.00 0.01 0.01 0.01 
 

8 15 0.35 0.35 0.34 0.30 0.33 0.32 0.05 0.02 0.02 

10 15 0.25 0.27 0.26 0.23 0.26 0.25 0.02 0.01 0.01 

15 15 0.18 0.18 0.17 0.15 0.16 0.16 0.03 0.02 0.01 

20 15 0.12 0.13 0.12 0.11 0.12 0.12 0.01 0.01 0.00 

25 15 0.10 0.11 0.11 0.09 0.10 0.10 0.01 0.01 0.01 

30 15 0.08 0.09 0.09 0.07 0.08 0.08 0.01 0.01 0.01 

50 15 0.05 0.05 0.05 0.04 0.05 0.05 0.01 0.00 0.00 

100 15 0.03 0.03 0.03 0.02 0.02 0.02 0.01 0.01 0.01 

200 15 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.00 

500 15 0.01 0.01 0.01 0.00 0.00 0.00 0.01 0.01 0.01 
 

8 20 0.36 0.33 0.35 0.33 0.31 0.34 0.03 0.02 0.01 

10 20 0.25 0.30 0.26 0.26 0.28 0.24 -0.01 0.02 0.02 

15 20 0.18 0.17 0.18 0.15 0.16 0.17 0.03 0.01 0.01 

20 20 0.12 0.12 0.14 0.11 0.11 0.13 0.01 0.01 0.01 

25 20 0.10 0.10 0.11 0.09 0.10 0.11 0.01 0.00 0.00 

30 20 0.08 0.10 0.08 0.07 0.08 0.08 0.01 0.02 0.00 

50 20 0.05 0.05 0.06 0.04 0.04 0.05 0.01 0.01 0.01 

100 20 0.03 0.03 0.03 0.02 0.02 0.02 0.01 0.01 0.01 

200 20 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.00 

500 20 0.01 0.01 0.01 0.00 0.00 0.00 0.01 0.01 0.01 
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Table 5.20 (continues): MSE of TTA
)

 when matching is performed with greedy or 

optimal algorithms 

  5.02 =B  12 =B  5.12 =B  optimalGreedy MSEMSE −  

 
tn
  p  Greedy Optimal Greedy Optimal Greedy Optimal 5.02 =B  12 =B  5.12 =B  

8 30 0.38 0.38 0.32 0.35 0.34 0.29 0.03 0.04 0.03 

10 30 0.24 0.27 0.25 0.25 0.26 0.24 -0.01 0.01 0.01 

15 30 0.19 0.16 0.18 0.17 0.15 0.17 0.02 0.01 0.01 

20 30 0.13 0.13 0.14 0.11 0.12 0.13 0.02 0.01 0.01 

25 30 0.10 0.10 0.11 0.09 0.09 0.10 0.01 0.01 0.01 

30 30 0.08 0.10 0.09 0.08 0.09 0.09 0.00 0.01 0.00 

50 30 0.05 0.06 0.06 0.05 0.05 0.05 0.00 0.01 0.01 

100 30 0.03 0.03 0.03 0.02 0.02 0.02 0.01 0.01 0.01 

200 30 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.00 

500 30 0.01 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.01 

 

5.2.3 Summary 

The descriptive analyses complement the ANOVA results, which reveal the most 

influential factors in propensity score studies with true propensity scores for small 

and moderately large treated samples.  

The most influential factors revealed by performing ANOVA for small (i.e., 2B , R , 

tn  and a two-way interaction R : 2B ) and moderately large treated sample studies 

(i.e., R , 2B , and the two-way interaction, R : 2B ) accord well with the findings of 

descriptive analyses. 

Both treated sample sizes (i.e., small and moderately large) remove a sufficient 

amount of selection bias from observational studies to estimate, unbiasedly, 

treatment effects given a strongly ignorable assignment mechanism. However, 

there are two main differences between propensity score studies performed with 

small versus large treated samples: (i) small treated samples require slightly bigger 

group ratios (i.e., more control units per treated unit); (ii) moderately large treated 

samples produce much more precise treatment effect estimates. 
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5.3 Discussion on Simulation Results: True 

versus Estimated Propensity Score 

Our comparison between using the true propensity scores and the estimated 

propensity scores starts by comparing the findings of the analyses performed by 

ANOVA (where the dependent variable is the remaining bias, RB , and the 

independent variables are factors known or estimable in the design phase of a 

propensity score study: treated sample size, tn , number of observed covariates, p , 

group ratio, R , and initial squared bias, 
2B )15 and continues with the comparison 

of the results of the descriptive analyses for the simulation study with true and 

estimated propensity scores. 

Although the ANOVA results for the moderately large treated samples, with true 

and estimated propensity scores are fully comparable, there are some major 

differences in the ANOVA results between true versus using estimated propensity 

scores for small treated sample studies. Table 5.21 presents ANOVA results for fully 

comparable factorial designs of the Small treated sample study 1 with estimated 

and true propensity scores. All the factors that have MSS values larger than zero 

are displayed to two decimal places, sorted by decreasing order of MSS. 

The main difference between the two studies (i.e., the estimated versus true 

propensity score study) is in the factors that appear as the most influential. The 

ANOVA results of the most influential factors show that the number of observed 

covariates, p , is an influential factor when using estimated propensity scores, 

whereas the number of observed covariates does not appear as an influential 

factor when using true propensity scores. Furthermore, as we can see from Table 

5.21, there are some more factors that appear as influential in studies with 

estimated propensity scores, but are not influential in studies with true propensity 

scores (e.g., tn : p , p : 2B , method , R : tn , R :B , R : p  and tn : p : 2B ). 

                                                           
15

 The ANOVA for VR produces comparable results to the ANOVA for RB for both: true and 
estimated propensity score study. 
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Table 5.21: Comparison of ANOVA - RB  results for the Small treated sample study 

1 with estimated and true propensity scores for =tn  {8, 10, 15, 20, 25, 30, 50, 100}  

and =R {13:100} 

Estimated propensity scores True propensity score 

Factor DF MSS 
n 7 4,60 
p 3 2,53 
B 2 2,37 
n:p 21 0,32 
R 87 0,18 
n:B 14 0,09 
p:B 6 0,03 
method 1 0,02 
R:n 609 0,01 
R:B 174 0,01 
R:p 261 0,01 
n:p:B 42 0,01 

 

Factor DF MSS 
B 2 0,40 
n 7 0,05 
R 87 0,02 
n:B 14 0,01 
   

 

n – treated sample size, ��; R – group ratio, R ; p – number of observed covariates, �; method – the 

matching algorithm used; B – initial squared bias; DF – degrees of freedom; MSS – mean sum of 

squares explained. 

In small sample studies with estimated propensity scores, the sample sizes of the 

treated and control groups (the latter is in our study defined based on the group 

ratio) play a very important role, when the number of observed covariates 

increases. In cases of very small treated samples and a larger number of observed 

covariates, a propensity score study requires substantially larger pools of control 

units for the estimated propensity scores to be effective balancing scores, and 

hence, being able to balance an observational study design (i.e., to remove 

selection bias). Therefore, factors such as R : p  and tn : p  which are influential in 

studies with estimated propensity scores, do not have an influence in studies with 

true propensity scores when the propensity scores are known thus they are 

automatically effective balancing scores. For the same reason, other factors that 

are influential in studies with estimated propensity scores such as, p : 2B , method , 

R : tn , R :B , and tn : p : ,2B  do not appear to be influential in studies with true 

propensity scores. 
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The descriptive analyses of our studies complement the findings of ANOVA. The 

minimum required group ratio, in the study with estimated propensity scores, 

increases severely with an increasing number of observed covariates for small 

treated sample; however, this is not the case in the study with true propensity 

scores (Figure 5.6) because propensity scores are known.  Again, the reason for this 

distinctness is in the estimation process of propensity scores (i.e., to obtain 

effective balancing scores).  

Figure 5.6: Comparison of the number of observed covariates, p , (presented with 

lines) versus the treated sample sizes and their correspondingly required minimum 

group ratios with 12 =B . Study with estimated propensity scores (left) and study 

with true propensity scores (right). 

For the graph on the right: lines which present each covariate set are on the top of each other; thus, we 

can only see one line representing the relation between the treated sample size and minimum required 

group ratio – the number of observed covariates does not have an impact on the minimum required 

group ratio when true propensity scores are used. 

As mentioned in the beginning of this section, there are no differences in the most 

influential factors obtained with ANOVA for moderately large treated samples 

between the studies using estimated propensity scores (Table 5.4) versus true 

propensity scores (Table 5.13). This indicates that different sets of observed 
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covariates, p=10, 15, 20, 30, do not materially affect the estimation of propensity 

scores with moderately large treated sample (i.e., tn  of 200 and 500) as they do in 

studies with small treated samples (i.e., sample sizes are large enough to estimate 

effectively propensity scores that are precise balancing scores). 

5.4 Extensions 

Two simulation study extensions are carried out with true propensity scores, for 

only one level of the initial squared bias factor: 12 =B  and the greedy matching 

algorithm. The aim of these simulation extensions is to get an idea of some other 

factors that might have an impact on propensity score studies with small treated 

samples. Only descriptive analyses are provided for the two simulation study 

extensions. 

5.4.1 Stronger Correlation between the Outcome Variable and 

Covariates 

This simulation extension is conducted by using true propensity scores and 

considers a stronger correlation structure ( 78.02 =R ) between the outcome 

variable and the observed covariates, in comparison to our main simulation study 

with the covariate structure between the outcome variable and the observed 

covariates of 51.02 =R . The results are displayed in Table 5.22. 

The first column in each table presents the treated sample size, tn , followed by the 

minimum required group ratio, *R , (as defined in Section 4.3.2), the absolute value 

of the remaining bias, RB , the variance ratio of the propensity score logit between 

the treated and control group ( 22

ct ssVR = ), the confidence intervals of the 

estimated average treatment effect of the treated - TTA
)

 and the simulation 

standard errors of TTA
)

. 
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Table 5.22: The minimum required group ratios for investigated treated samples 

and observed covariates p=10, 15, 20, 30 with greedy matching algorithm∗  

$% = � 

�� R* RB 
��� !
��� "

 
99% CI of TTA ˆ

based on the 
simulation SE  

Simulation 
SE of TTA ˆ  

� = �� 

8 6 0,132 1,48 [-0.06,0.03] 0,019 

10 6 0,136 1,49 [-0.07,0.02] 0,016 

15 5 0,137 1,43 [-0.05,0.02] 0,013 

20 5 0,121 1,37 [-0.05,0.02] 0,012 

25 4 0,113 1,35 [-0.04,0.01] 0,011 

30 4 0,145 1,41 [-0.02,0.03] 0,009 

50 4 0,124 1,36 [-0.03,0.01] 0,008 

100 4 0,108 1,31 [-0.01,0.02] 0,005 

200 4 0,100 1,29 [-0.01,0.01] 0,004 

500 4 0,096 1,29 [-0.01,0.00] 0,002 

� = %� 

8 6 0,139 1,46 [-0.09,0.00] 0,018 

10 6 0,127 1,41 [-0.08,0.00] 0,016 

15 5 0,128 1,39 [-0.05,0.02] 0,013 

20 5 0,115 1,34 [-0.04,0.02] 0,011 

25 4 0,145 1,41 [-0.03,0.02] 0,011 

30 4 0,140 1,39 [-0.02,0.03] 0,010 

50 4 0,120 1,34 [-0.02,0.02] 0,007 

100 4 0,108 1,32 [-0.02,0.01] 0,005 

200 4 0,100 1,30 [-0.01,0.01] 0,004 

500 4 0,096 1,29 [-0.00,0.01] 0,002 
  

�� R* RB 
��� !
��� "

 
99% CI of TTA ˆ

based on the 
simulation SE  

Simulation 
SE of TTA ˆ  

� = �� 

8 6 0,145 1,49 [-0.07,0.03] 0,019 

10 6 0,127 1,41 [-0.04,0.04] 0,016 

15 5 0,129 1,39 [-0.04,0.03] 0,013 

20 5 0,116 1,34 [-0.02,0.04] 0,011 

25 4 0,147 1,42 [-0.02,0.04] 0,011 

30 4 0,138 1,39 [-0.02,0.03] 0,009 

50 4 0,121 1,35 [-0.02,0.02] 0,007 

100 4 0,105 1,31 [-0.01,0.02] 0,005 

200 4 0,098 1,29 [-0.01,0.01] 0,004 

500 4 0,095 1,28 [-0.01,0.03] 0,002 

� = 7� 

8 6 0,146 1,49 [-0.03,0.07] 0,020 

10 6 0,128 1,43 [-0.04,0.05] 0,017 

15 5 0,133 1,40 [-0.01,0.06] 0,014 

20 5 0,113 1,34 [-0.02,0.04] 0,012 

25 4 0,143 1,40 [-0.02,0.04] 0,011 

30 4 0,135 1,38 [-0.03,0.02] 0,010 

50 4 0,121 1,36 [-0.02,0.02] 0,007 

100 4 0,106 1,31 [-0.01,0.02] 0,005 

200 4 0,102 1,30 [-0.02,0.00] 0,004 

500 4 0,099 1,29 [-0.01,0.01] 0,002 

∗ The 99% confidence intervals of the estimated ATT, calculated with standard errors (i.e., simulation SE of  

TTA ˆ ) designed by using the standard deviation of treatment effect estimates across 1,000 iterations,	SE011 =
s011	 √1000⁄ , show that the true value of the treatment effect (τ = 0) is within the interval boundaries of the 

estimated treatment effect. This indicates that treatment effect estimates are unbiased (i.e., selection bias is 

successfully removed).  

The results show exactly the same structure of the minimum required group ratios 

for the investigated treated samples and covariate sets as in our main simulation 

study, performed with true propensity scores and a weaker correlation structure 

(Tables 5.16 - 5.17). 

Furthermore, Figure 5.7 shows the required group ratios for the investigated 

treated sample sizes and covariate sets. The depiction is essentially the same as the 

one presented in Section 5.2.2 – descriptive analyses of the simulation study with 

true propensity scores.  
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Additionally, we also obtained similar values of treatment effect simulation 

standard errors and the treatment effect confidence intervals. Based on that, we 

can conclude that the strength of the correlation structure between observed 

covariates and the outcome variable does not play a major role in propensity score 

studies – neither with small, nor with moderately large treated samples. 

Figure 5.7: Comparison of the number of observed covariates, p , versus the 

treated sample sizes and their correspondingly required minimum group ratios 

with 12 =B  (the lines denoting observed covariates are on the top of each other). 
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5.4.2 Binary outcome variable 

The following simulation extension uses a binary outcome variable. The propensity 

score matching is conducted with true propensity scores and performed with the 

greedy matching algorithm. The additional propensity score regression adjustment, 

for removing the residual selection bias, was not performed because the 

investigation is beyond the scope of this thesis. 

Thus, we present results of the treatment effects estimates obtained from matched 

pairs as a difference in proportions between treated and control group. We present 

the results of the binary outcome simulation study together with the results of the 

main simulation study with continuous outcome, where additional regression 

adjustment was not performed in order to show consistency in obtained results 

between these two simulations (Table 5.23). 

The first column in each table presents the treated sample size, tn , followed by the 

minimum required group ratio, *R , (as defined I Section 4.3.2), the absolute value 

of the remaining bias, RB , the variance ratio of the propensity score logit between 

the treated and control group ( 22

ct ssVR = ), the 99% confidence intervals of the 

estimated average treatment effect of the treated - TTA
)

and the simulation 

standard errors of TTA
)

. The confidence intervals of TTA
)

, calculated with 

standard errors (i.e., simulation SE of TTA
)

) using the standard deviation of 

treatment effect estimates across 1,000 iterations,	SE011 = s011	 √1000⁄ . If the 

true value of the treatment effect (τ = 0) is within the interval boundaries of TTA
)

 

than our TTA
)

 is unbiased or approximately unbiased. 
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Table 5.23: The minimum required group ratios for investigated treated samples, 

initial squared bias, 12 =B , and observed covariates without additional propensity 

score regression adjustment, when the outcome is continuous or binary  

  

Continuous outcome TTA ˆ without additional 

regression adjustment 

�� R* RB 
��� !
��� "

 

99% CI of 

TTA ˆ based 
on the 

simulation 
SE  

Simulation 

SE of TTA ˆ  

� = �� 

8 6 0.146 1.49 [0.04,0.12] 0.015 

10 6 0.130 1.45 [0.03,0.10] 0.013 

15 5 0.132 1.40 [0.03,0.09] 0.011 

20 5 0.118 1.36 [0.03,0.08] 0.010 

25 4 0.147 1.42 [0.05,0.10] 0.009 

30 4 0.137 1.39 [0.05,0.09] 0.008 

50 4 0.120 1.34 [0.05,0.08] 0.006 

100 4 0.106 1.31 [0.04,0.07] 0.005 

200 4 0.103 1.31 [0.04,0.06] 0.003 

500 4 0.099 1.29 [0.04,0.05] 0.002 

� = �� 

8 6 0.145 1.49 [0.01,0.09] 0.016 

10 6 0.127 1.41 [0.02,0.09] 0.014 

15 5 0.129 1.39 [0.03,0.09] 0.011 

20 5 0.116 1.34 [0.04,0.09] 0.010 

25 4 0.147 1.42 [0.05,0.09] 0.009 

30 4 0.138 1.39 [0.05,0.09] 0.008 

50 4 0.121 1.35 [0.04,0.07] 0.006 

100 4 0.105 1.31 [0.04,0.06] 0.004 

200 4 0.098 1.29 [0.04,0.05] 0.003 

500 4 0.095 1.28 [0.04,0.05] 0.002 

� = %� 

8 6 0.146 1.51 [0.03,0.11] 0.015 

10 6 0.132 1.45 [0.05,0.12] 0.015 

15 5 0.136 1.44 [0.05,0.11] 0.011 

20 5 0.123 1.40 [0.04,0.09] 0.010 

25 4 0.114 1.36 [0.04,0.09] 0.009 

30 4 0.150 1.42 [0.05,0.09] 0.008 

50 4 0.131 1.37 [0.04,0.07] 0.006 

100 4 0.111 1.32 [0.05,0.07] 0.005 

200 4 0.100 1.30 [0.04,0.06] 0.003 

500 4 0.100 1.30 [0.04,0.05] 0.002 

� = 7� 

8 6 0.143 1.50 [0.02,0.11] 0.016 

10 6 0.130 1.42 [0.02,0.09] 0.014 

15 5 0.127 1.37 [0.03,0.09] 0.011 

20 5 0.112 1.34 [0.03,0.09] 0.010 

25 4 0.140 1.40 [0.05,0.09] 0.009 

30 4 0.135 1.38 [0.05,0.09] 0.009 

50 4 0.121 1.36 [0.04,0.08] 0.007 

100 4 0.106 1.31 [0.04,0.07] 0.005 

200 4 0.102 1.30 [0.04,0.06] 0.003 

500 4 0.097 1.29 [0.04,0.05] 0.002 
 

Binary outcome TTA ˆ without additional 

regression adjustment 

�� R* RB 
��� !
��� "

 

99% CI of 

TTA ˆ based 
on the 

simulation 
SE  

Simulation 

SE of TTA ˆ  

� = �� 

8 6 0,144 1,51 [-0.01,0.03] 0,007 

10 6 0,126 1,42 [-0.01,0.03] 0,007 

15 5 0,124 1,37 [-0.01,0.02] 0,005 

20 5 0,111 1,34 [-0.00,0.02] 0,005 

25 4 0,146 1,42 [0.01,0.03] 0,004 

30 4 0,143 1,41 [0.01,0.03] 0,004 

50 4 0,122 1,35 [0.01,0.03] 0,003 

100 4 0,109 1,32 [0.01,0.02] 0,002 

200 4 0,103 1,30 [0.01,0.02] 0,001 

500 4 0,095 1,28 [0.01,0.01] 0,001 

� = �� 

8 6 0,145 1,49 [-0.01,0.03] 0,007 

10 6 0,127 1,41 [-0.01,0.03] 0,006 

15 5 0,129 1,39 [-0.00,0.02] 0,005 

20 5 0,116 1,34 [-0.00,0.02] 0,005 

25 4 0,147 1,42 [0.01,0.03] 0,004 

30 4 0,138 1,39 [0.01,0.03] 0,004 

50 4 0,121 1,35 [0.01,0.02] 0,003 

100 4 0,105 1,31 [0.01,0.02] 0,002 

200 4 0,098 1,29 [0.01,0.01] 0,002 

500 4 0,095 1,28 [0.01,0.01] 0,001 

� = %� 

8 6 0,149 1,50 [0.00,0.03] 0,006 

10 6 0,124 1,40 [-0.00,0.03] 0,006 

15 5 0,128 1,39 [-0.00,0.02] 0,005 

20 5 0,117 1,36 [-0.00,0.02] 0,004 

25 4 0,109 1,33 [-0.00,0.02] 0,004 

30 4 0,140 1,40 [0.02,0.04] 0,004 

50 4 0,123 1,35 [0.02,0.03] 0,003 

100 4 0,109 1,32 [0.02,0.03] 0,002 

200 4 0,101 1,30 [0.01,0.02] 0,001 

500 4 0,099 1,29 [0.01,0.02] 0,001 

� = 7� 

8 6 0,146 1,49 [0.00,0.03] 0,006 

10 6 0,128 1,43 [0.00,0.03] 0,006 

15 5 0,133 1,40 [0.01,0.03] 0,005 

20 5 0,113 1,34 [0.01,0.03] 0,004 

25 4 0,143 1,40 [0.01,0.03] 0,004 

30 4 0,135 1,38 [0.01,0.03] 0,004 

50 4 0,121 1,36 [0.01,0.03] 0,003 

100 4 0,106 1,31 [0.01,0.02] 0,002 

200 4 0,100 1,30 [0.01,0.01] 0,002 
500 4 0,096 1,29 [0.01,0.02] 0,001 
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The results obtained with the simulation study for binary outcome variable are fully 

comparable, with regard to the minimum required group ratio, to the results 

obtained with the simulation study for continuous outcome. This means that 

selection bias is equally well removed, regardless of the class of the outcome 

variable. However, the results are different with respect to the treatment effect 

standard errors (i.e., the simulation study with binary outcome variable produces 

smaller treatment effect standard errors) and with respect to the unbiasedness of 

TTA
)

. 

With a continuous outcome variable the ATT estimated without the additional 

regression adjustment is biased (i.e., the true value of the treatment effect  (τ = 0) 

is not within the confidence interval boundaries of the estimated treatment effect). 

On the other hand, with a binary outcome variable the ATT estimated without the 

additional regression adjustment for the smallest treated samples, tn  of 8, 10, 15 

and 20, and with observed covariates, p  of 10, 15 and 20 are unbiased, whereas 

biased with p  of 30. The ATT estimated without the additional regression 

adjustment, for all the remaining investigated treated samples, tn  of 25, 30, 50, 

100 and 200, are biased regardless of the number of observed covariates. 

These differences in results are due to the outcome variable, 
Y , not being 

generated as a linear function but as an approximation of a linear model. Thus, 

small samples normal distributions are not a really good approximation of a normal 

distribution. Consequently, the bias is lost in the noise of the estimated simulation 

standard errors for small samples. The noise of the estimated simulation standard 

errors decreases once the sample size increases; hence, results of large samples 

with binary outcome variable approximate the results of simulation study with 

continuous outcome variable. 
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Chapter 6 

Applications 

This Chapter presents two applications. The first application simulates real 

observational data (Lalonde data (1986)) based on the results of the descriptive 

analysis of our theoretical simulation study with estimated propensity scores 

(Section 5.1). The purpose of such an application is to evaluate how reliable our 

results of the descriptive analysis are for practice.  

The aim of the second application is twofold: (i) we want to show an example of 

real data where the nature of data set does not allow the estimation of causal 

effects; thus, we estimate conditional associations; (ii) to provide an example of 

why the use of propensity score methods is so important also when studying 

conditional association questions (i.e., why model-based approaches, (e.g., 

regression methods) cannot be trusted and or are not reliable when dealing with 

small samples). 

6.1 Real Data Set 1 – The Lalonde Data 

To evaluate the reliability of the descriptive analysis results, we apply our findings 

of the minimum required group ratios to a real data setting by using the within-

study comparison of Lalonde  (1986).  

Lalonde examined the effect of labour market training programmes on earnings. In 

his within-study comparison, he compared the results of a randomised experiment 

(the National Support Work Demonstration, NSW) with results obtained from a 

non-randomised experiment (i.e., where the randomised control group is 

substituted with a non-equivalent comparison group from the Current Population 

Survey (CPS) and the Panel Study of Income Dynamics survey (PSID)).  
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Lalonde then used least squares regressions, an instrumental variable approach 

and Heckman’s  (1979) two-step procedure in order to remove a selection bias in 

the non-randomised experiment.  

This very influential study concluded that the statistical adjustments of the 

observational data failed to replicate the results of the experimental data. Later on, 

Dehejia and Wahba  (1999) re-evaluated Lalonde’s study by applying propensity 

score methods and concluded that the use of propensity score methods succeeded 

in replicating the results of Lalonde’s randomised experiment. Our simulation study 

of real data uses the same data as Dehejia and Wahba  (1999), which can be found 

in the MatchIt package of the statistical software R (Ho, et al. 2011).  

The Lalonde data consist of 445 observations with a treated sample, tn , of 185 and 

a control sample, cn , of 260 with measurements on 10 covariates, an earnings 

outcome and an assignment variable (of having participated in the labour market 

programme or not). We conducted a simulation with the Lalonde data based on the 

minimum required group ratio for each treated sample size, obtained from our 

theoretical simulation study with estimated propensity scores. Hence, we evaluate 

whether our descriptive analysis results, of the theoretical simulation, regarding 

the minimum required group ratio of corresponding treated samples enable to 

estimate, unbiasedly, treatment effects also within real data settings.  

6.1.1. Simulation study  

Since Lalonde’s disposable sample indicates an initial squared bias of 19.02 =B , 

we conducted an additional theoretical simulation with an initial squared bias of  

19.02 =B  and 10 covariates, because our theoretical simulations covered only 

initial squared bias, 2B , of 0.5, 1 and 1.5.  
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The data are generated as explained in Chapter 4, but in order to obtain an initial 

bias of 0.19, the true propensity scores calculated with a logistic model are 

following the function:  

)())((logit 101

-1 XXXe ++= Kγ , 

where the gamma coefficient, γ , is 0.09.  

The results are evaluated based on the same criteria as in our theoretical 

simulation study: (i) the absolute value of the remaining bias, RB , calculated as 

absolute standardised difference in means of propensity score logit is less than 

0.15; and (ii) the variance ratio, VR , of propensity score logit variances should be 

between 0.5 and 2. 

Table 6.1 presents results of descriptive analysis, obtained with our theoretical 

simulation with estimated propensity scores, for 10 observed covariates and an 

initial squared bias, 2B , of 0.19. 

Table 6.1: The minimum required group ratio, 
*R , for 10=p , and 19.02 =B  

n R* RB 
��� !
��� "

 

99% CI of TTA ˆ

based on the 

simulation SE of

TTA ˆ  

Simulation 

SE of 

TTA ˆ  

8 11 0.14 1.42 [-0.05,0.08] 0.021 

10 8 0.13 1.39 [-0.11,0.02] 0.019 

15 5 0.13 1.38 [-0.08,0.02] 0.015 

20 4 0.13 1.34 [-0.07,0.02] 0.013 

25 4 0.09 1.27 [-0.06,0.02] 0.011 

30 3 0.12 1.32 [-0.06,0.01] 0.011 

50 3 0.07 1.19 [-0.03,0.02] 0.007 

100 2 0.09 1.23 [-0.03,0.01] 0.006 

200 2 0.05 1.15 [-0.02,0.01] 0.004 

500 2 0.03 1.10 [-0.01,0.01] 0.002 

p – number of covariates;  R* – minimum group ratio; RB – 
remaining bias. The confidence interval of the estimated 
ATT includes the value of zero which represents the true 
treatment effect.  
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As expected, the initial squared bias of 19.02 =B  results in smaller minimum 

required group ratios for investigated treated samples than observational data with 

larger initial squared biases, 2B , of 0.5, 1.0 and 1.5. The smallest investigated 

treated sample of 8=tn  only requires a minimum group ratio of 11 when 

19.02 =B , whereas with an initial squared bias of 12 =B , a minimum group ratio 

of 19 is required. Table 6.1 provides the minimum required group ratios, of the 

additional theoretical simulation, for each investigated treated sample with initial 

imbalances of 19.02 =B . Based on these group ratios the Lalonde data are 

simulated.  

Lalonde’s disposable sample of 445 units acts, in this case, as the target population 

from which samples of desired sizes are drawn. Based on disposable treated              

( 185=tn ) and control ( 260=cn ) units of the Lalonde sample, we can only 

simulate small treated samples with 100 or less units. We thus investigated the 

following treated sample sizes: 
{ }10050,30,25,20,15,10,8,=tn  with group ratios 

(obtained from Table 6.1), *R , of 11, 8, 5, 4, 4, 3, 3, and 2, respectively. With regard 

to the investigated treated sample sizes and group ratios, the sample sizes of the 

control group are: { }200150,90,100,80,75,80,88,=cn .  

We use the same logistic regression model for estimating propensity scores as in 

the theoretical simulation study: 1010110) XXW λλλ +++= Klogit(  where W

denotes a treatment indicator (i.e., whether treatment was applied to a unit, 

1=W , or it was not applied to a unit, 0=W ). The simulation consists of 1,000 

replications and the propensity score logit is used for computing the balancing 

measures (e.g., remaining bias and variance ratio). 
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6.1.2. Simulation Results  

The results of the Lalonde simulation aim to evaluate the consistency with the 

results of the theoretical simulation regarding the balancing diagnostics (i.e., 

remaining bias, variance ratio) and thus provide answers to three main questions: 

(i) is the remaining bias in absolute terms, RB , smaller than 0.15; (ii) is the variance 

ratio,VR , between 0.5 and 2; and (iii) is the estimated ATT close to the treatment 

effect of the randomised experiment provided in Lalonde  (1986), 1794=τ . 

The Lalonde simulation results are provided in Table 6.2, and are consistent with 

the results of the theoretical simulation, regarding the balance diagnostics. The 

absolute value of the remaining bias is below 0.15 and the variance ratio does not 

go below 0.5 or above 2 for all of the investigated treated samples. 

Table 6.2: Simulation results of the Lalonde data set. 

n R* RB 
��� !
��� "

 TTA ˆ  

99% CI of TTA ˆ

based on the 

simulation SE of 

TTA ˆ  

Simulation SE 

of TTA ˆ  
τ−TTA ˆ  

a
 8 r11 0.11 1.74 1380 [577,2183] 230 -414 

10 r8 0.11 1.69 1908 [1314,2501] 183 114 

15 r5 0.12 1.56 1760 [1400,2121] 121 -34 

20 r4 0.11 1.50 1807 [1560,2054] 86 13 

25 r4 0.08 1.30 1767 [1570,1963] 70 -27 

30 r3 0.11 1.37 1776 [1606,1945] 62 -18 

50 r3 0.05 1.15 1876 [1770,1982] 40 82 

100 r2 0.05 1.12 1789 [1723,1855] 25 -5 

p – number of covariates;  R* – minimum required group ratio; RB – remaining 

bias. The confidence interval of the estimated ATT includes the value of 1794 

which represents the true treatment effect (LaLonde 1986). 
a the logistic regression used for estimating propensity scores resulted in 

extreme values of 0 and 1 for 32% of simulation replications 

Furthermore, for all the investigated treated samples, the Lalonde simulation 

results show even slightly less remaining bias in comparison to our theoretical 

simulation results. For treated sample sizes of 30≥tn , the Lalonde simulation 

results demonstrate even better balancing also regarding the variance ratio (VR  is 

closer to 1 than in our theoretical simulation). In addition, the ATT estimate              
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( 1789ˆ =τ  with 100=tn   and  2=R ) is very close to the treatment effect estimate 

of the randomised experiment ( 1794=τ , Lalonde (1984)) and to the treatment 

effect estimate of Dehejia and Whaba (1999) - 1788ˆ =τ .  

The only inconsistency found, is with the smallest investigated treated sample, 

8=tn . We estimate that in the Lalonde simulation with eight treated units, too 

many simulation replications (32%) violated the estimated probabilistic part of the 

strong ignorability assumption. This was not the case in our theoretical simulation 

when the percentage was only 0.5% for the treated sample consisting of eight 

units. Such an inconsistency might result from the fact that none of observed 

covariates of the Lalonde data set are normally distributed. 

6.2 Real Data Set 2 – The Role of Cultural 

Capitals in Production of Good Health 

The observational data for investigating the role of cultural capitals in production of 

good health consist of small and moderately large samples (15 propensity score 

studies are performed). The main aims of such studies are: (i) to provide an 

example of observed data where our research questions are causal in some vague 

sense but the nature of the data does not allow us to formulate the intervention as 

defined in Section 2.1. thus, we cannot estimate causal effects of “treatment” 

versus “control” but only conditional associations; (ii) to show the unreliability of 

model-based approaches (e.g., regression analysis) when estimating conditional 

associations with small samples. 

A major part of this section was published in the Slovenian Journal of Public Health, 

co-authored with Kamin and Steiner (2013).  
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6.2.1 Propensity Score Study 

The main research questions of our study are: (i) How do different states of the 

cultural capital (i.e., institutionalised, objectified and incorporated) associated 

with the self-assessed health
16

? (ii) Do objectified and incorporated cultural 

capital associated with self-assessed health if we condition on institutionalised 

cultural capital, i.e., on education levels (i.e., do objectified and incorporated 

cultural capital explain something in addition to the institutionalised cultural 

capital)? (iii) Is there a difference between women and men in how cultural 

capital is associated with their self-assessed health?  

We are aiming to estimate conditional associations between a binary variable Z , 

which denotes here two different levels of cultural capital that a person can 

possess (i.e., low versus high level of cultural capital) and Y , which represents the 

self-assessed health given the observed covariates, X , on which we are 

conditioning to obtain a balanced study design (i.e., group of respondents with low 

level of cultural capital is comparable to the group of respondents with high level of 

cultural capital). 

We conceptualise cultural capital according to the theory of the French 

sociologist Pierre Bourdieu (Bourdieu 1986), who operationalises cultural capital 

in three mutually dependent states: (i) institutionalised cultural capital, which 

represents formal education and qualifications; (ii) incorporated cultural capital, 

which stands for embodied knowledge, cognitive abilities, skills, taste, and 

competencies; and (iii) objectified cultural capital, which represents material 

forms and representations of knowledge, social recognition, and cultural goods.  

                                                           
16 The self-assessed health is a good subjective measure for the (objective) health status. Its 

relationship with morbidity and mortality is well-researched and proves to be a good measure for 
the health status: self-assessed poor health is related to higher risk of poor health outcomes (i.e., 
higher mortality and morbidity) (Idler and Benyamini 1997) 
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DATA 

The data were collected between 1st of December 2009 and 15th of February 

2010. The target population comprises to adults aged 18 years or older with a 

permanent address either in Ljubljana or Maribor (Kamin, et al. 2013).  

Units were randomly sampled from the Central Population Register of Slovenia. 

Simple random sampling was used for this type of population, as recommended 

by the Slovenian Statistical Office, based on the prior experience of their 

sampling professionals. 820 face-to-face interviews were successfully completed. 

(...) The collected data have been weighted based on gender and age via 

poststratification adjustment using raking method [ (Lavrakas 2010)]. 

The survey data consist of 105 variables. For our analyses we selected three 

types of variables: (i) self-assessed health as our dependent variable (...); (ii) 

variables related to cultural capital states in order to construct cultural capital 

indexes; and (iii) variables that serve as covariates for balancing group 

differences between units belonging to different cultural capital levels (low vs. 

high).  

The variables that were selected to control for group differences are the following: 

respondent’s gender, age and nationality, the job of respondent’s father when the 

respondent was 15 years old, education of respondent’s father, the job of 

respondent’s mother when the respondent was 15 years old, education of 

respondent’s mother, the political party to which the respondent relates, the 

political orientation (i.e., left, right, middle) and the residence location (i.e., 

Maribor, Ljubljana). These variables appear as substantively interesting because 

they are related to both the self-assessed health and the cultural capital states 

(Kamin, et al. 2013). 

The aim was to investigate conditional associations between different cultural 

capital states and self-assessed health, thus, three different cultural capital indexes 

were constructed: objectified, incorporated and overall cultural capital. The 
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selection of variables to create the three indexes follows Bourdieu’s theory (1986) 

(Kamin, et al. 2013).  

The institutionalised cultural capital includes only one variable – education, 

which denotes the highest educational degree attained. The objectified cultural 

capital index includes six variables: possession of a number of: (i) books; (ii) 

original music LPs and CDs; (iii) Music in mp3; (iv) original Art; (v) possession of 

PC (yes/no); and (vi) access of Internet connection in the household (yes/no). 

According to the theory, these variables represent material forms and 

representations of knowledge, social recognition and cultural goods. The 

incorporated cultural capital index includes 3 variables: (i) self-reported foreign 

language skills (English, Ex-Yugoslavian, Other); (ii) self-assessed competencies 

of Internet use (scale from 1 to 7); and (iii) self-assessed knowledge about art 

(five levels of agreement: I don’t agree at all, I don’t agree, neither-neither, I 

agree, I completely agree). All of these variables are intrinsic to a person (i.e., 

they present embodied knowledge, perceptions, cognitive abilities, skills, and 

competencies). The overall cultural capital index consists of all variables included 

in the incorporated and objectified cultural capital index, and the 

institutionalised cultural capital. The institutionalised cultural capital is 

represented by a three-level education variable: (i) low educational level (11 or 

less completed schooling years) (ii) middle education (between 12 and 14 

completed schooling years) and (iii) high education level (15 and more completed 

schooling years). 

Some observations in our data set were missing due to item-nonresponse. 

However, none of our variables contained more than 10% missing values. The 

majority of variables had less than 5% missing values. We imputed the few 

missing values in our data set [according to Rubin’s theory (1987; 1996)] using 

chained equations as implemented in the R-package mice (van Buuren and 

Groothuis-Oudshoorn 2011), which uses linear regression for continuous 
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variables, logistic regression for dummy variables and polytomous [(unordered)] 

regression for discrete variables with more than 2 levels. 

[After imputing the missing values,] we constructed the objectified, incorporated 

and the overall cultural capital indexes by first transforming all the continuous 

variables to a zero-to-one scale (with minimum of 0 and maximum of 1), and 

then by taking the average value of all the variables included in the index. For 

each continuous index, we then created a dummy variable, indicating a low vs. 

high cultural capital status, where the cut-off point was defined by the median 

value of each index, respectively.  

We used these dichotomous cultural capital indexes as dependent variables for 

estimating propensity scores. Table (…) [6.3] shows mean values and standard 

deviations for low and high levels of cultural capital indexes, as well as 

standardised mean differences, which indicate the difference between the two 

groups in terms of the underlying continuous indexes.  

As we can see [from Table 6.3], by switching from low to high cultural capital 

there is a shift of 1.49 standard deviations (SD) in the objectified cultural capital, 

1.64 standard deviations in the incorporated cultural capital and 1.63 standard 

deviations in the overall cultural capital. This information helps when 

interpreting the conditional comparison estimates (i.e., the estimates obtained 

by estimating conditional associations) for cultural capital and self-assessed 

health presented later in Tables (…) [6.4, 6.5 and 6.6]. 
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Table 6.3: Descriptive statistics for objectified, incorporated and overall cultural 
capital (CC) 

Cultural 

Capital (CC) 

Mean for 
low CC 

Standard 
deviation 
for low CC 

Mean for 
high CC 

Standard 
deviation 

for high CC 

Standardised 
mean 

difference 

Objectified  
CC 

0.24 0.15 0.50 0.07 1.49 

Incorporated 
CC 

0.34 0.11 0.62 0.09 1.64 

Overall  
CC 

0.30 0.12 0.60 0.09 1.63 

Source: Kamin, et al. 2013, 111. 

Once the database required for estimating conditional associations was obtained, 

the self-assessed health variable was removed from the database in order to follow 

the design phase procedure of propensity score methods (i.e., no outcome variable 

in sight). 

The design phase of this propensity score study was performed using propensity 

score matching adjustment by using optimal full matching algorithm (Hansen and 

Klopfer 2006) with a calliper of 0.1 standard deviations of the logit of the 

propensity score. The optimal full matching algorithm exhausts the complete 

dataset; thus, we discarded only the units for which propensity score logit values 

were outside the specified caliper (Kamin, et al. 2013). 

PROPENSITY SCORE ESTIMATION AND COVARIATE BALANCE EVALUATION 

In order to balance the study design and obtain comparable cultural capital 

groups on the observed covariates (i.e., the 10 covariates that were selected) we 

first estimated, for each cultural capital index, the respondents’ propensities for 

being in the high vs. low group (for the three-valued education variable, we 

estimated the propensity scores for all three group comparisons).  

Propensity scores were estimated using logistic regression. The specification of 

logistic models used to estimate propensity scores is included in the footnotes 

when displaying results of the estimated conditional associations (Tables 6.4 – 6.6). 
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The balance diagnostics were performed graphically by depicting levels of 

quantitative balance diagnostics measures, such as, standardised difference in 

means and variance ratios. Figure 6.1 shows such a balance plot of observed 

covariates before and after the employment of propensity score matching for the 

objectified cultural capital group. The balance diagnostics for propensity score 

studies for other cultural capital states show analogous graphical depictions (i.e., 

study designs after adjusting for imbalances in covariates are sufficiently balanced), 

thus, we are not including their graphs. 

The dashed horizontal and vertical lines in Figure 6.1 denote the “acceptable” 

levels of covariate balance (i.e., there are negligible differences in covariate 

distributions between the groups) where the absolute value of the standardised 

mean difference should be smaller than 0.1, and the variance ratio should not be 

smaller than 0.5 or bigger than 2. The red cross indicates covariate (im)balance in 

the propensity score logit. 

Figure 6.1: Balance plots for objectified cultural capital: initial imbalance in 

observed covariates (left plot) and balance in observed covariates after matching 

(right plot). (Categorical variables are included as 0/1 indicator variables). 

 

From Figure 6.1 we can see how heavily imbalanced observed covariates between 

the two groups are in the original study design – the left plot in Figure 6.1 shows 
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that, respondents in the high and low objectified cultural capital group 

considerably differ in several observed covariates. Using such a design for 

estimating conditional associations can potentially result in severely biased 

(unrealistic) conditional comparison estimates. 

After matching respondents with low and high objectified cultural capital on the 

estimated logit of the propensity scores, nearly all covariate differences between 

the low and high objectified cultural capital groups have been removed (right plot 

in Figure 6.1). ”All standardised mean differences are close to zero (within 0.1 

standard deviations) and for most covariates, the variance ratios between the low 

and high objectified cultural capital groups are within 4/5 and 5/4. Thus, the plot 

indicates a good balance in the observed covariates [(i.e., a balanced study 

design)]” (Kamin, et al. 2013, 112-113). 

ESTIMATION OF CONDITIONAL ASSOCIATIONS 

Once the study design was balanced (i.e., the design phase was completed), 

conditional associations were estimated by using weighted least-squares regression 

with an additional regression covariate adjustment as stated in (Kamin, et al. 2013, 

113): 

,agesexlocationstatecapitalculturalhealthassessed-Self 43210 εβββββ +++++=
 

with individual case weights derived from the matching structure. We included 

covariates sex, age and the residence location (i.e., Maribor, Ljubljana) in order 

to remove residual imbalances (i.e., the imbalances left after employing 

propensity score matching), and to increase the precision of our estimates. 

RESULTS 

As mentioned before, several propensity score studies were conducted to 

investigate conditional associations between different states of cultural capital and 

self-assessed health. 



163 
 

Conditional comparison estimates between the self-assessed health and 

institutionalised, objectified, incorporated, and overall cultural capital, 

respectively 

Table 6.4 presents the conditional comparison estimates between self-assessed 

health and different levels of institutionalised cultural capital (i.e., education), 

respectively. The estimates refer to comparisons of low vs. high education level, 

low vs. medium education level and medium vs. high education level. Table 6.5 

presents: (i) the conditional comparison estimate between self-assessed health and 

objectified cultural capital; (ii) the conditional comparison estimate between self-

assessed health and incorporated cultural capital; and (iii) the conditional 

comparison estimate between self-assessed health and overall cultural capital 

(Kamin, et al. 2013, 113). 

Table 6.4: Conditional comparison estimates between self-assessed health and 

institutionalised, objectified, incorporated and overall cultural capita, respectively  

 
Estimate 

Std. 
Error 

p -value n Preserved 
(effective n) 

Low vs. high institutionalised  
CC17 

0.44 0.09 0.000 419 70.64% 
(n=295) 

Low vs. medium institutionalised  
CC18  

0.19 0.07 0.006 620 93.4% 
(n=579) 

Medium vs. high institutionalised 
CC19  

0.11 0.07 0.120 599 88.16% 
(n=528) 

Source: Kamin, et al. 2013, 113 
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The first investigation with respect to the conditional comparison estimates for 

different levels of institutionalised cultural capital and self-assessed health are 

significantly positive for the low vs. high contrast and the low vs. medium contrast, 

but insignificantly positive for the medium vs. high contrast. “This means that an 

individual with higher institutionalised cultural capital assesses his/her health as 

being better than an individual with a lower level of institutionalised cultural 

capital” (Kamin, et al. 2013, 113).  

Table 6.5: Conditional comparison estimates between self-assessed health and 

institutionalised, objectified, incorporated and overall cultural capita, respectively 

 Estimate 
Std. 

Error 
p -value n Preserved 

(effective n) 

Objectified CC (OCC)20 0.21 0.06 0.000 819 
96.1% 
(n=787) 

Incorporated CC (ICC)21 0.06 0.06 0.370 819 87.2% 
(n=714) 

Cultural capital (institutional + 
objectified + incorporated CC) (CCI)22 

0.36 0.06 0.000 819 88.5% 
(n=724) 

Source: Kamin, et al. 2013, 113. 

The conditional comparison estimate for objectified cultural capital and the self-

assessed health is significantly positive (0.21) (Kamin, et al. 2013, 113).  
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Individuals that possess more objectified cultural capital assess their health 

better than individuals with less objectified cultural capital. However, from a 

subject-matter point of view, the average 0.21 increase on the 5-point scale of 

self-assessed health represents only a moderate effect, given that the contrast 

between the low and high objectified cultural capital status is rather strong (1.49 

standard deviations) as Table 6.3 shows; the 0.21 increase then translates into 

an effect size of 0.15 standard deviations). The conditional comparison estimate 

for incorporated cultural capital and self-assessed health is positive but small 

and also insignificant. 

The conditional comparison estimate for overall cultural capital, which includes all 

three states of cultural capital (i.e., institutionalised, objectified and incorporated), 

and the self-assessed health of an individual is significantly positive (0.36) (Kamin, 

et al. 2013, 114).  

Individuals that possess more cultural capital, assess their health better than 

individuals with less cultural capital. However, from a subject-matter point of 

view, the average of 0.36 increase on the 5-point scale of self-assessed health 

represents only a moderate effect (effect size of 0.23 standard deviations) 

because the contrast between the low and high overall cultural capital status is 

rather strong (1.6 standard deviations as Table (…) [6.3] shows). 

Conditional comparison estimates between self-assessed health and objectified 

cultural capital, and incorporated cultural capital, respectively within each level 

of institutionalised cultural capital 

The previous section presented the conditional comparison estimates for each 

cultural capital index without controlling for the other cultural capital indexes. 

Thus, the positive conditional association between objectified cultural capital and 

self-assessed health, and the positive but insignificant conditional association 

between incorporated cultural capital and self-assessed health might be due to 

objectified and incorporated cultural capital’s correlation with institutionalised 

cultural capital rather than the objectified and incorporated cultural capital on their 
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own. Hence, the second analysis controls for the institutionalised cultural capital 

(education variable), when estimating conditional associations between the self-

assessed health and objectified cultural capital, and between the self-assessed 

health and incorporated cultural capital (Kamin, et al. 2013, 114). 

A stratification approach was used to conduct a separate propensity score analysis 

with optimal full matching in each of the three levels of institutionalised cultural 

capital. By stratifying on the educational levels, the effect of education was 

removed from both the objectified and incorporated cultural capital. Tables 6.6 and 

6.7 show the results from the stratification analyses (Kamin, et al. 2013, 115). 

Table 6.6: Conditional associations between self-assessed health and objectified 

cultural capital investigated within each level of institutionalised cultural capital 

 Estimate 
Standard 

Error 
p -value n Preserved 

(effective n) 

Low institutionalised CC level 
– objectified CC23 

0.18 0.14 0.20 220 67.7% 
(n=148) 

Medium institutionalised CC 
level – objectified CC24 

0.13 0.07 0.08 400 91.75% 
(n=367) 

High institutionalised CC – 
objectified CC25 

0.22 0.15 0.15 199 61.8% 
(n=122) 

Source: Kamin, et al. 2013, 114 
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Objectified cultural capital shows a positive conditional association with the self-

assessed health even after controlling for levels of institutionalised cultural capital. 

The conditional comparison estimate of the objectified cultural capital and self-

assessed health for the low level of institutionalised cultural capital is 0.18, for the 

medium level 0.13, and for the high level it is 0.22 (Table 6.6).  

However, the conditional comparison estimates for the low and medium levels of 

institutionalised cultural capital are somewhat smaller than the conditional 

comparison estimates for objectified cultural capital and self-assessed health, when 

we are not controlling for the education (0.21, see Table 6.4). At the same time, the 

three estimates (Table 6.6) are no longer significant, which is likely due to the 

reduced sample sizes within each educational stratum. Nonetheless, the pattern of 

results across the three educational levels suggests, that objectified cultural capital 

is associated with self-assessed health in addition to education. 

Table 6.7 shows results for the incorporated cultural capital, where the conditional 

comparison estimate of the incorporated cultural capital and self-assessed health 

decreases, as the educational level increases. For the low educational level, the 

estimate amounts to 0.27, for the medium level to 0.20, and for the high 

educational level the conditional comparison estimate is slightly negative (-0.07).  
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Table 6.7: Incorporated cultural capital investigated within each level of 

institutionalised cultural capital 

 Estimate 
Standard 

Error 
p -value n Preserved 

(effective n) 

Low institutionalised CC level 
– incorporated CC26 

0.27 0.15 0.07 220 67.2% 
(n=147) 

Medium institutionalised CC 
level – incorporated CC27 

0.20 0.08 0.01 400 89.3% 
(n=357) 

High institutionalised CC level 
– incorporated CC28 

-0.07 0.13 0.60 199 82.9% 
(n=164) 

Source: Kamin, et al. 2013, 114 

However, the conditional comparison estimate for incorporated cultural capital and 

self-assessed health is significant for the medium educational level, but 

insignificant for the low and high educational levels, which is likely the 

consequence of the reduced sample sizes29. 

Thus, if we compare these results to the results where we are not controlling for 

the education levels (i.e., conditional comparison estimates for incorporated 

cultural capital and self-assessed health are insignificant – see Table 6.4), we can 

conclude that incorporated cultural capital is associated with self-assessed health, 

but only for persons with a medium, and maybe for persons with a low educational 

level. (Note that results from Table 6.4 and 6.7 are not fully comparable because 

the underlying sample sizes differ.) 
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 In order to obtain a balanced design some units were discarded. 
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Gender-specific analysis  

A gender-specific analysis was performed in order to investigate possible 

differences between women and men in conditional comparison estimates for 

different cultural capital states and self-assessed health (Kamin, et al. 2013, 115). 

Table 6.8: Conditional comparison estimates for the self-assessed health and 

overall cultural capital, objectified, and incorporated cultural capital, respectively 

when controlling for sex 

  
Estimate 

Standard 
Error 

p -value n Preserved 
(effective n) 

Women – overall CC 30 0.34 0.08 0.000 450 74% (n=333) 
Men – overall CC  0.23 0.10 0.015 369 82% (n=301) 

Women – objectified CC 31 0.21 0.08 0.008 450 91% (n=409) 
Men – objectified CC  0.16 0.09 0.080 369 79% (n=291) 

Women – incorporated CC 32 0.19 0.08 0.020 450 90% (n=405) 
Men – incorporated CC  -0.08 0.08 0.370 369 90% (n=332) 

Source: Kamin, et al. 2013, 115 

Table 6.8 indicates that for women, the conditional comparison estimates for the 

self-assessed health and overall cultural capital, objectified, and incorporated 

cultural capital, respectively are significantly positive. For males, only the 

conditional comparison estimate of self-assessed health and overall cultural capital 

is significantly positive, whereas the conditional comparison estimate of self-
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assessed health and objectified, and the incorporated cultural capital, respectively 

are insignificant.  

We also made an attempt to investigate conditional associations between the self-

assessed health and different cultural capital states within each level of education 

(i.e., institutionalised cultural capital) for the gender-specific analysis. 

Unfortunately, due to very small samples and group ratios, we were unable to 

obtain a sufficient balance on observed covariates for those designs. Hence, 

conditional associations could not be reliably estimated. Table 6.9 presents small 

sample sizes and corresponding group ratios with which we could not obtain a 

balanced design. 

Table 6.9: Small sample sizes and group ratios with which we could not obtain a 

balanced design 
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Men

Men  

Low institutionalised  
CC level – objectified CC 

7.1
35

59
==R  7.3

27

99
==R  

Medium institutionalised  
CC level – objectified CC 

8.0
95

79
==R  3.4

27

117
==R  

High institutionalised  
CC – objectified CC 

3.0
77

24
==R  4.0

68

30
==R  

However, if we would use a model-based approach (e.g., regression methods) 

instead, we would not be aware of the fact, that obtained estimates of conditional 

associations with such small samples (in combination with not sufficiently large 

group ratios) are heavily relying on extrapolation, and are thus less trustworthy. In 

this sense, the use of propensity score methods safeguards us, because the main 

aim of the methods is to balance a study design first, and only once a balanced 

design is obtained, we proceed with the estimation of desired quantities. 
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6.2.2 Conclusion 

The results suggest that cultural capital is associated with self-assessed health: 

“persons with a high CC [cultural capital] assess their health better than persons 

with low CC [cultural capital], even after controlling for many background 

characteristics” (Kamin, et al. 2013, 115). 

The uniqueness of this application is twofold. First, it provides an example of 

observed data, where the nature of data does not allow us to estimate causal 

effects of “treatment” versus “control” because the intervention cannot be 

formulated as defined in Section 2.1 (i.e., the level of cultural capital, that a 

respondent possesses, is what it is, and there is no intervention that could at 

particular point of time change the level of respondents’ cultural capital (from high 

to low or vice versa).  

Second, the initial covariate imbalances in this study design are much larger in 

comparison to what we investigated with our theoretical simulation studies. 

Additionally, ratios between the units with low level of cultural capital and units 

with high level of cultural capital are much smaller than the group ratios that would 

be required (based on the results of our theoretical simulation study) for balancing 

a study design. Thus, many of units had to be discarded from our sample in order 

to obtain comparable groups (i.e., balanced design). Consequently, the application 

includes small and moderately large samples. Thus, it shows how important it is, 

particularly when dealing with small samples, to use propensity score methods to 

estimate a valid conditional associations, because the estimates will be more 

trustworthy (i.e., the estimates can be obtained only if a study design is balanced, 

whereas with regression analyses, the estimates can always be obtained due to 

linear extrapolation). 
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Chapter 7 

Conclusion 

This thesis defines propensity score methods in terms of their implementation and 

usage with observational study designs. The methods can be used when estimating 

causal effects or conditional associations from observed data. In Section 2.1 we 

provide the definition of what is causal and based on this definition, we offer a 

definition for conditional association. In Section 6.2 we provide an example of the 

observed data where only conditional associations can be investigated, and further 

show the importance of the design-based approach (i.e., the foundation of 

propensity score methods) for obtaining trustworthy estimates of desired 

quantities (e.g., causal effects or conditional comparison estimates). 

Propensity score methods that are founded on the design-based approach consist 

of two important parts: (i) the design phase, which is “outcome free” and consist of 

balancing and balance assessment tools with which we balance a study design with 

respect to observed covariates, and; (ii) the analysis phase, which uses the 

outcome data to perform additional statistical adjustments when estimating causal 

effects or conditional associations. The analysis phase also consists of sensitivity 

analyses, which should always be performed when estimating causal effects from 

observational data. 

The model-based approach requires the outcome data in the process of balancing a 

study design and, thus, removes the imbalances in a study design simultaneously 

with the estimation of desired quantities. However, such an approach is 

problematic because it relies on strong assumptions: the outcome model, through 

which we balance a study design and estimate desired quantities, is correctly 

specified. 
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Additionally, we show that the model-based approach is even more untrustworthy 

when the observational data involves small samples. Our Real Data Set 2 

application (Section 6.2) shows that for some instances, when sample sizes are 

small, group ratios small and initial imbalances severe, we are not able to obtain a 

balance design that is required for reliable estimation of desired quantities. Thus, 

we should not proceed with the analysis phase of propensity score methods, but 

accept the fact that, due to insufficient sample sizes, desired quantities (i.e., causal 

effects or conditional comparison estimates) cannot be reliably estimated.  

In contrast, the model-based approach would not give us any warning, but it would 

simply provide us with some estimates that would rely on extrapolation, and then 

it is up to the investigator to decide how much to trust the obtained estimates. This 

approach certainly gives a lot of room for unhealthy data manipulation (i.e., 

obtaining estimates that one would like to see). 

Furthermore, the study of small sample properties with propensity score methods 

reveals many findings, previously unknown to the research society, which employs 

these methods, for estimation of causal effects in observational designs. We would 

like to note here that all our simulation study findings regarding small and 

moderately large samples in propensity score methods are applicable to causal 

inference in observational designs when the assignment mechanism is strongly 

ignorable and SUTVA is satisfied. Yet, these results can be directly applicable to 

conditional association inference without having to consider either of the above 

mentioned assumptions. 

Our findings evidently show that propensity score methods perform differently 

when small samples are used, in comparison to moderately large samples. By 

examining theoretical properties of propensity score methods and by incorporating 

the findings of the previous research, with regard to sample size concerns in 

propensity score studies for estimating causal effects, we conclude that propensity 

score matching adjustment is often the most suitable approach to be used when 

dealing with small samples. Propensity score matching adjustment method is also 
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one of the most widely applied adjustment method for removing initial covariate 

imbalances in observational designs. Yet, the method greatly relies on having a 

pool of control units that is moderately larger from the pool of treated units, in 

order to balance a study design with respect to observed covariates. 

In accordance with the aim of our study: to find how well propensity score 

methods perform in cases of small samples, and what are the smallest possible 

treated samples with which the methods can effectively remove initial covariate 

imbalances from observational designs, we carried out a variety of simulation 

studies examining different scenarios. The range of simulation scenarios includes 

simulations performed for small and moderately large treated samples. Our results 

of the moderately large treated sample study, with respect to the minimum 

required group ratios, show consistency with the results obtained by Rubin and 

Thomas (1996). Such a consistency increases the reliability of our simulation results 

obtained for small treated samples. 

Primarily, the simulation studies examined how factors, such as the number of 

observed covariates and the level of initial covariate imbalances in a study design 

impact the sample size requirements for propensity score methods to remove 

initial covariate imbalances from observational design. The sample size 

requirements are examined by studying different sizes of treated samples and 

different levels of group ratios, which define the number of control units per 

treated unit, and hence reveal the required size of a control sample. 

Furthermore, we studied the differences of the results obtained when propensity 

score matching adjustment method is performed with true versus estimated 

propensity scores. In this sense, we examine a deviation in results between a 

“perfect scenario” and a “real world scenario”. Additionally, we also examined 

possible differences in performance of the methods when the two main matching 

algorithms (i.e., greedy versus optimal matching algorithm) are used with 

propensity score matching. 
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The analyses of simulated data are performed descriptively and by the analysis of 

variance. The results show that small samples behave somehow differently, when 

using propensity score methods, from moderately large treated samples. Yet, small 

samples perform as good as moderately large treated samples in removing initial 

covariate imbalances from observational designs, but under different conditions 

than moderately large treated samples. The success of a propensity score study 

(i.e., the successful removal of initial covariate imbalances) with small treated 

samples primarily depends on a sufficiently large pool of control units. However, 

the required size of a control group depends also on the number of observed 

covariates and the level of initial covariate imbalances. 

The level of the minimum required group ratio (i.e., ratio between the samples of 

control and treated units) with small treated samples predominantly depends on 

the treated sample size, on the number of observed covariates and on the level of 

the initial imbalances in covariates between the treated and control groups (e.g., 

the initial bias). The smaller the treated samples, the more observed covariates and 

the larger the initial covariate imbalances (i.e., the more heterogeneous the two 

groups are), the larger are the group ratios required to balance a study design. 

On the contrary, the level of the required group ratio with moderately large treated 

samples mainly depends on the level of the initial covariate imbalances, whereas 

the number of observed covariates, at least those that we have investigated             

( 3020,15,10,=p ), has a negligible impact on the required group ratio with 

moderately large treated samples. The fact that the number of observed covariates 

plays such a major role with small treated samples has to do with the estimation of 

propensity scores. The more observed covariates we have, and the smaller the 

overall sample is, the harder is to estimate propensity scores with high enough 

precision, so that they would act as good balancing scores in the process of 

removing covariate imbalances from observational design.  

 



176 
 

Estimating propensity scores with high enough precision is not the only issue that 

small treated samples are facing. With very small overall samples 50≤n , group 

ratio 2=R  and by having 10 observed covariates, the logistic regression used for 

estimating propensity scores resulted in extreme values of 0 and 1 (i.e., we 

estimate that the probabilistic part of the strong ignorability assumption is 

violated); thus, it might not be wise to proceed with a propensity score study.  

However, according to our results, the “success” of logistic regression (i.e., logistic 

regression not resulting in extreme values of 0 and 1) primarily depends on the size 

of the treated group and the number of observed covariates. With 30 observed 

covariates, an overall sample size 104=n  and the group ratio 12=R  (i.e., 8=tn

and 96=cn ), logistic regression resulted in extreme values of 0 and 1 for all 

investigated levels of the initial squared bias and in all the simulation replications.  

In contrast, with 30 observed covariates, an overall sample size 120=n  and the 

group ratio 3=R  (i.e.,
 

30=tn  
and 90=cn ) the logistic regression was “not 

successful”33 in only 10 per cent of simulation replications but merely for the 

strongest selection mechanism 5.12 =B . These findings are confirmed also by the 

results obtained with ANOVA where the treated sample size appears as the most 

influential factor in the small treated sample study (Table 5.21). 

Although the simulation study’s findings demonstrate that small treated samples 

(as small as 8=tn ) can perform as good as moderately large treated samples     

(i.e., tn  of 200 or 500) in removing covariate imbalances from observational 

designs, as long as the group ratio is sufficiently big and the treatment assignment 

mechanism is strongly ignorable, the treatment effect estimates with small treated 

samples are obviously much less precise.  
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 The logistic regression resulting in extreme values of 0 and 1. 
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The lack of precision in treatment effect estimates for small treated samples is, as 

expected from the basic standard error calculations, due to larger standard errors 

in comparison to the standard errors of treatment effect estimates with 

moderately large treated samples. The treatment effect standard errors with small 

treated samples can be many times bigger (up to 15 times bigger) than those 

obtained with moderately large treated samples. 

However, large standard errors in small sample studies are not solely a 

consequence of the small treated samples used, but are affected also by the 

number of observed covariates. Hence, the estimated treatment effect’s standard 

errors in small treated sample studies increase with an increasing number of 

observed covariates, even though the overall sample size increases with an 

increasing number of observed covariates, due to an increase in the minimum 

group ratio required to balance a study design. Thus, the number of observed 

covariates with small treated samples does not have an impact only on the 

required group ratio, but it affects also standard errors of treatment effect 

estimates. Although these conclusions are founded based on the simulation 

standard errors of estimated treatment effects, we believe that the use of standard 

error estimators, as proposed by Imbens 2004; Rubin and Thomas 1996; Schafer 

and Kang 2008, would likely not change these findings. Nevertheless, the 

investigation of appropriately estimated treatment effect standard errors, in cases 

of small samples, is beyond the scope of this thesis. 

Additionally, our simulation results also show that the choice of a matching 

algorithm (i.e., greedy versus optimal) matters more with small treated samples 

than with moderately large treated samples. Yet, these results might be due to the 

fact that small treated samples require substantially larger pools of control units 

than moderately large treated samples; hence, closer matched pairs can be 

obtained with optimal matching algorithm when using small treated samples. 

Moreover, the use of different matching algorithms has a tiny effect on the 

minimum required group ratio for removing covariate imbalances from 
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observational designs with small treated samples (i.e., optimal matching algorithm 

on average requires smaller group ratios for removing covariate imbalances than 

the greedy matching algorithm), whereas this effect is negligible for the cases of 

moderately large treated samples. Besides, the simulation results with small 

treated samples also show on average smaller treatment effect standard errors 

when optimal matching algorithm is used, whereas this is not the case for 

moderately large treated samples. 

The results of the simulation study extensions show that the correlation between 

the observed covariates and the outcome variable does not play a role in 

propensity score study when the treatment assignment mechanism is strongly 

ignorable. Also different class of the outcome variable (binary versus continuous) 

does not play a role in removing covariate imbalances from observational designs, 

according to the balance diagnostics used and described in Section 4.3.2. Yet, an 

additional regression adjustment, in the case of a binary outcome variable, has to 

be performed differently from the one performed in the case of a continuous 

outcome variable. Because it is unclear how to perform additional regression 

adjustment in the most optimal way, when the outcome variable is binary, and 

because such an investigation is beyond the scope of this thesis this would be our 

first recommendation for the future research of small sample properties in 

propensity score methods. 

The Real Data Set 1 application (Section 6.1), which is based on the Lalonde data 

(1986), shows a high level of consistency with the results obtained with our 

theoretical simulation study (with respect to the small treated samples and 

minimum required group ratios) and the simulation study using real data. Hence, 

the application supports our conclusions regarding the performance of propensity 

score methods with small samples.  
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Future research on this topic should also include mixed types of covariates 

(continuous and discrete), investigate other important matching estimators like 

Mahalanobis distance matching on originally observed covariates, and use different 

types of response surfaces (e.g., parallel or non-linear). Additionally, future 

research should investigate the selection of variables for estimating propensity 

scores with small samples and how to estimate appropriately treatment effect 

standard errors in cases of small samples. 
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Povzetek disertacije v slovenskem 

jeziku 

Klasične statistične metodologije za vzročno sklepanje so bile razvite v 

eksperimentalnih študijah in njihova uporaba v opazovalnih študijah ni 

priporočljiva. Pred razvojem metod nagnjenja (propensity score methods) je bilo v 

opazovalnih študijah, pri razlagi povezav med različnimi dogodki, dolgo časa 

priporočljivo uporabljati le opisno statistiko, kajti kakršnokoli vzročno sklepanje bi, 

zaradi narave podatkov (neslučajna selekcija enot, katerim obravnava je ali ni 

dodeljena), ne podalo zaupanja vrednih ocen (Cochran 1965). 

Pod definicijo »opazovalne študije« razumemo vse ne-eksperimentalne študijske 

zasnove (t.j., anketiranje), študijske zasnove kjer obravnava (treatment) ni slučajno 

dodeljena enotam (t.j., kvazi-eksperimentalne študije (Shadish, et al. 2002)) in 

študijske zasnove kjer popolno slučajenje (randomisation) obravnavanega stanja 

(treatment condition) spodleti, t.j., kršena (broken) slučajna zasnova poskusa 

(Barnard, et al. 2003). Glavna razlika med opazovalnimi študijami in slučajno 

zasnovo poskusa je tako v procesu selekcije (selection procedure) – kako je 

obravnava dodeljena posamezni enoti – kakšen je proces, ki narekuje, kateri enoti 

je obravnava dodeljena in kateri enoti ni dodeljena. 

Pri slučajni zasnovi poskusa je proces dodeljevanja obravnav enotam kontroliran s 

strani raziskovalca. Tako raziskovalec poskuša zagotoviti, da so enote, katerim so 

dodeljene različne obravnave, primerljive (imajo enake karakteristike – njihove 

porazdelitve sospremenljivk so identične). Ta primerljivost je zagotovljena z 

naključnim dodeljevanjem različnih obravnav enotam, kajti slučajenje 

(randomisation) lahko v večini primerov zagotovi, da obravnava, uporabljena pri eni 

enoti, ne vpliva na izid (outcome) pri drugi enoti, pri kateri obravnava je ali ni bila 

dodeljena. Pomembna lastnost slučajnega dodeljevanja obravnav enotam je tako 
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stroga neodvisnost med mehanizmom dodeljevanja34 (assignment mechanism) in 

izidom. 

Tako so opazovane in neopazovane sospremenljivke, pri slučajni zasnovi poskusa, 

primerljive med skupinama, katerima so dodeljene različne obravnave (t.p., 

porazdelitve opazovanih in neopazovanih sospremenljivk, med obravnavano in 

kontrolno skupino35, so v povprečju enake). Takšna študijska zasnova je statistično 

uravnotežena (statistically balanced), glede na porazdelitve sospremenljivk med 

obema skupinama. Možna neuravnoteženost, v porazdelitvi sospremenljivk med 

skupinama, je tako zgolj naključna in ni posledica sistematične izbire (systematic 

selection procedure), ki bi lahko povzročila pristranskost ocen vzročnih učinkov 

(Rosenbaum 2002, 21). 

V opazovalnih študijah je proces dodeljevanja obravnave le delno kontroliran s 

strani raziskovalca, ali sploh nekontroliran. Tako slučajenje (naključna dodelitev 

različnih obravnav enotam) ni izvedljivo, kar običajno vodi v neprimerljivost enot, 

katerim je dodeljena različna obravnava (porazdelitve opazovanih sospremenljivk 

med obravnavano in kontrolno skupino so v povprečju različne – statistično 

neuravnotežena študijska zasnova). V takšnih primerih zahteva ocenjevanje 

vzročnih učinkov poseben pristop: da bi lahko nepristransko ocenili vzročne učinke, 

moramo iz študijske zasnove najprej odpraviti pristranskost. 

Ločimo med dvema takšnima pristopoma: (i) pristop na osnovi načrta zasnove 

(design-based approach) – temelj metod nagnjenja; in (ii) pristop na osnovi modela 

(model-based approach). Razvoj teh pristopov je motiviran glede na dejstvo, da je 

večina študijskih zasnov opazovalnih, ker slučajne zasnove poskusov ne samo, da so 

stroškovni zalogaj, ampak v večini primerov niso izvedljive.  

                                                           
34

 Mehanizem dodeljevanja nam poda informacijo o tem, katerim enotam je obravnava dodeljena in 
katerim ni. 
35

 Obravnavana skupina (treatment group) je skupina enot, kateri je obravnava (treatment) 
dodeljena. Kontrolna skupina (control group) je skupina enot, katerim obravnava ni dodeljena. 
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1. Vzročnost in razvoj metod nagnjenja 

Ideja vzročnosti je zelo stara in gre nazaj v čas velikih filozofov kot so Platon, 

Aristotel, Hume, Mill in drugi. Glede na Hulswita (2002) je bil Platon tisti, ki je prvi 

formuliral princip vzročnosti s stavkom: «vse kar se zgodi oziroma spremeni, se 

spremeni zaradi nekega vzroka; nič se ne more zgoditi brez vzroka«. Ti zgodnji 

filozofi tako gledajo na vzročnost s perspektive, da je potrebno najti vzrok učinka, ki 

ga vidimo.  

Nasprotno pa statistična družba gleda na vzročnost z drugega zornega kota: enote 

so manipulirane z neko znano intervencijo (vzrok je znan) in cilj je nepristransko 

oceniti učinek, povzročen s takšno intervencijo. Vzrok je tako predstavljen z aktivno 

intervencijo, ki je dodeljena nekaterim enotam v določenem času, zato da lahko 

raziščemo, kako drugače bi se te enote obnašale od enot, ki niso bile manipulirane s 

to isto intervencijo. Tako ocena učinka intervencije predstavlja vzročni učinek 

oziroma učinek obravnave (treatment effect), t.j., učinek, povzročen z dodelitvijo 

specifične obravnave – intervencije – nekaterim enotam. Oba strokovna izraza (t.j., 

vzročni učinek in učinek obravnave) se tako izmenično uporabljata. 

Razvoj metod vzročnega sklepanja v opazovalnih študijah se je resno začel šele v 

sedemdesetih in začetku osemdesetih let z delom Rubina (1974; 1977; 1978; 1980), 

Rosenbauma in Rubina (1983a), Holland-a in Rubin-a (1988), Angrista, Imbensa in 

Rubina (1996), in Rosenbauma (2002). Osnova njihovih del temelji na slučajni 

zasnovi poskusov in je tako nadaljevanje idej del Neymana (1923), Fisherja (1925), 

Kempthorneja (1952), Cochrana in Coxa (1957), in Coxa (1958). 

Neymanova notacija možnih izidov je temelj razvoja metod vzročnega sklepanja v 

opazovalnih študijah. Osnovni cilj je odgovoriti na vzročno vprašanje: kakšen bi naj 

bil izid (outcome) obravnavane skupine, če le-ta ne bi bila obravnavana, in vice 

versa.  
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Vzročni učinek je tako definiran kot razlika med obema hipotetično dobljenima 

izidoma:  

)0()1( YY −=τ , 

kjer τ  označuje vzročni učinek, )1(Y  je možni izid za enote, katerim obravnava je 

dodeljena, in )0(Y  je možni izid za enote, katerim obravnava ni dodeljena. 

V sedemdesetih, Rubin (1974, 1975, 1978) razširi Neymanovo notacijo možnih 

izidov na opazovalne študije s tem, ko v notacijo možnih izidov tudi formalno vključi 

informacijo o mehanizmu dodeljevanja (assignment mechanism). Glede na Rubinov 

velik znanstveni prispevek, se tako okvir možnih izidov pogosto imenuje Rubinov 

model vzročnosti (Holland 1986) – osnova metod nagnjenja – dandanes najbolj 

razširjene metode za ocenjevanje vzročnih učinkov v opazovalnih študijah. 

2. Cilji doktorske disertacije 

Razvoj metod nagnjenja je v zadnjih desetletjih rezultiral v jasnih smernicah 

ocenjevanja vzročnih učinkov z velikimi vzorci, vendar pa vprašanje »kako velik« 

vzorec je potreben za »uspešno implementacijo«36 metod nagnjenja, ostaja 

neodgovorjeno. Majhni vzorci so pogosti v družbenih vedah (npr., izobraževanje: 

število študentov v razredu, število šol; medicina: število bolnikov z redko 

boleznijo), zato je osvetlitev delovanja metod nagnjenja z majhnimi vzorci zelo 

pomembna (Shadish in Steiner 2010).  

Cilj prvega izvirnega prispevka k razvoju področja metod nagnjenja je tako raziskati 

vlogo velikosti vzorca v metodah nagnjenja in pri tem preučiti, s pomočjo 

simulacijske študije, kako dobro delujejo metode nagnjenja z malimi vzorci in kaj so 

najmanjši možni vzorci, ki še omogočajo uspešno odstranitev pristranskosti iz 

študijske zasnove. 

                                                           
36

 »Uspešna implementacija« pomeni, da smo uspeli uravnotežiti študijsko zasnovo, glede na 
opazovane sospremenljivke, tako uspešno, da je možna preostala neuravnoteženost (residual 
balance) brezpomembna. 
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Poleg tega, doktorska disertacija podaja še dva izvirna prispevka: (i) natančna 

definicija metod nagnjenja, s pomočjo katere pripomoremo k razjasnitvi literature s 

področja metod nagnjenja, na podlagi katere so metode tako pogosto napačno 

uporabljene; (ii) razširitev uporabne vrednosti metod nagnjenja tudi na opazovalne 

študije, kjer narava podatkov ne omogoča ocenjevanja vzročnih učinkov, zato lahko 

ocenjujemo le pogojne asociacije, glede na sospremenljivke za katere raziskovalec 

meni, da so bistvenega pomena. 

Doktorska disertacija ob koncu poda tudi dve aplikativni študiji. Namen prve 

aplikativne študije je preveriti, kako aplikativni so rezultati naše simulacijske študije 

v praksi. Namen druge aplikativne študije je predstaviti realne podatke, kjer ni 

mogoče zanesljivo oceniti vzročnih učinkov, zato ocenimo le pogojne asociacije 

glede na izbor sospremenljivk, ki so v kontekstu študije v našem največjem 

interesu.  

3. Metode nagnjenja 

Metode nagnjenja so bile primarno razvite z namenom ocenjevanja vzročnih 

učinkov v opazovalnih študijah. V doktorski disertaciji razširimo uporabno vrednost 

metod tudi na opazovalne študije, kjer raziskovalna vprašanja morda so vzročna, 

vendar pa narava podatkov ne omogoča ocene vzročnih učinkov. V teh primerih so 

lahko metode nagnjenja uporabljene z namenom ocenjevanja pogojnih asociacij, 

glede na sospremenljivke za katere raziskovalec meni, da so bistvenega pomena. 

Da bi lahko enostavneje razumeli naravo podatkov, ki ne omogoča ocenjevanje 

vzročnih učinkov, podamo najprej definicijo o tem kaj je vzročno, in glede na to 

definicijo potem izpeljemo definicijo za pogojne asociacije. 

Ko ocenjujemo vzročne učinke obravnav (treatment) v. neobravnav (control) 

moramo biti zmožni definirati (1) intervencijo, ki bi lahko bila dodeljena vsem 

»obravnavanim« enotam in jih tako spremeniti v »neobravnavane« enote (npr., 

namesto zdravila damo placebo), in (2) podobno intervencijo, ki bi lahko bila 
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dodeljena vsem »neobravnavanim« enotam in jih tako spremenila v 

»obravnavane« enote (npr., namesto placebo damo zdravilo). Vse te resnične ali 

hipotetične verzije (1) in (2) morajo voditi v iste možne izide obravnavanih enot, 

)1(Y , in neobravnavanih enot )0(Y , zato da sta izpolnjeni naslednji dve 

predpostavki : (i) obravnava, dodeljena eni enoti, ne sme vplivati na izid druge 

enote, ne glede na to, če je drugi enoti obravnava bila dodeljena ali ne (Cox 1958); 

in (ii) za vsako enoto obstaja samo en tip obravnave oziroma neobravnave37. Vse 

meritve, ki so narejene oziroma vsaj določene preden je intervencija (1) ali (2) 

dodeljena posamezni enoti, predstavljajo osnovne sospremenljivke (baseline 

covariates), in vse meritve, ki so narejene po dodelitvi intervencije, predstavljajo 

spremenljivko izida (outcome variable). 

Ko nam narava opazovalnih podatkov ne dopušča prepričljivo formulirati 

intervencije, kot smo jo definirali zgoraj, ne moremo ocenjevati vzročnih učinkov 

obravnave v. neobravnave. V takšnih primerih lahko zato ocenjujemo le pogojne 

asociacije med dihotomko Z  in drugo spremenljivko ,Y  pogojno na 

sospremenljivke X , ki so izbrane s strani raziskovalca kot posebej zanimive. Primer 

takšnih podatkov je ocenjevanje učinka statusa manjšin na vključenost v 

izobraževalni sistem. Na primer, če imamo dve skupini študentov (npr., 

kavkazijskega in afriškega izvora) je pri tem nemogoče spremeniti raso kavkazijcev v 

raso afričanov in vice versa, zato lahko v tem primeru ocenjujemo samo pogojne 

asociacije. 

Kot že rečeno, so metode nagnjenja osnovane na podlagi pristopa na osnovi načrta 

zasnove (design-based approach). Njihova uporaba sestoji iz dveh pomembnih 

delov: (i) faza načrta, kjer poskrbimo za statistično uravnoteženo študijsko zasnovo, 

glede na opazovane sospremenljivke (brez uporabe informacij o izidu). Ta faza 

vključuje orodja za uravnoteženje študijske zasnove in orodja za ocenjevanje 

uravnoteženosti študijske zasnove; in (ii) faza analize, kjer uporabimo informacijo o 

izidu z namenom ocene vzročnih učinkov ali pogojnih asociacij. V fazi analize pa 

                                                           
37

 Te predpostavke so del SUTVA (Stable Unit Treatment Value Assumption) (Rubin 1990) 
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lahko izvedemo tudi dodatna statistična uravnavanja, in v primeru ocenjevanja 

vzorčnih učinkov, izvedemo tudi analizo občutljivosti (sensitivity analysis) dobljenih 

ocen. Analiza občutljivosti pa ni potrebna v primeru uporabe metod nagnjenja z 

namenom ocenjevanja pogojnih asociacij.  

Glavni cilj faze načrta, pri ocenjevanju vzročnih učinkov v opazovalnih študijah, je 

uspešna odprava pristranskosti iz študijske zasnove. Študijske zasnove, kjer je 

pristranskost prisotna, imenujemo neuravnotežene zasnove (unbalanced designs) 

zaradi neuravnoteženosti sospremenljivk med skupinama, katerima je dodeljena 

različna obravnava (npr., skupina enot, katerim je obravnava dodeljena ( 1=W ) – 

obravnavana skupina, in skupina enot, katerim obravnava ni dodeljena ( 0=W ) – 

kontrolna skupina). Raven pristranskosti je tako lahko ponazorjena z ravnjo  

neuravnoteženosti sospremenljivk med obravnavano in kontrolno skupino. 

Na drugi strani, je glavni cilj faze zasnove, pri ocenjevanju pogojnih asociacij v 

opazovalnih študijah, učinkovito kontrolirati sospremenljivke, ki jih raziskovalec 

izbere kot posebej zanimive. Pogojevati na X  pomeni poiskati enote z 1=Z  in 

enote z 0=Z , ki imajo identično vrednost X  oziroma enote z 1=Z , ki imajo 

enako distribucijo X  kot enote z 0=Z . Bolj kot je porazdelitev X  v 1=Z  enotah, 

v povprečju, podobna porazdelitvi X  v 0=Z enotah, bolj uspešno kontroliramo 

X  v tej študiji primerljivosti. V tem smislu uravnotežimo študijsko zasnovo glede 

na X , ker pa pri takšnih študijah ne moremo govoriti o mehanizem dodeljevanja, 

neuravnoteženost študijske zasnove, glede na ,X  ne sme biti razumljena kot 

pristranskosti. 

3.1 Faza načrta 

Faza načrta vsebuje orodja za uravnoteženje študijske zasnove in orodja za 

ocenjevanje uspešnosti uravnoteženja študijske zasnove. Orodja za uravnoteženje 

vsebujejo tehnike in metode za odpravo pristranskosti v študijski zasnovi pri 

ocenjevanju vzročnih učinkov, oziroma uravnovešenje študijske zasnove, glede na 

posebej zanimive sospremenljivke, pri ocenjevanju pogojnih asociacij. V obeh 
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primerih je cilj doseči uravnoteženo študijsko zasnovo, glede na opazovane 

sospremenljivke. Orodja za ocenjevanje procesa uravnavanja študijske zasnove 

(balance assessment tools), ki ocenjujejo uspešnost procesa uravnavanja študijske 

zasnove (kako uspešno sta obravnavana in kontrolna skupina uravnoteženi, glede 

na opazovane sospremenljivke) pa morajo biti uporabljena pred in med fazo načrta. 

Glavni element orodij uravnoteženja študijske zasnove je stopnja nagnjenja 

(propensity score) (Rosenbaum in Rubin 1983), ki je balansirana stopnja (balancing 

score) in tako pomembna komponenta v procesu uravnoteženja študijske zasnove 

(odprave pristranskosti pri ocenjevanju vzročnih učinkov, oziroma odprave 

neuravnoteženosti sospremenljivk, med dvema skupinama, pri ocenjevanju 

pogojnih asociacij). Stopnja nagnjenja, )(Xe , je definirana kot pogojna verjetnost, 

da je enota obravnavana 1=W , glede na opazovane sospremenljivke, X : 

)|1()( XWprXe == , 

kar pomeni, da sta W  in X  pogojno neodvisna glede na )(Xe  (Rosenbaum in 

Rubin 1983a). Nagnjenje je tako funkcija opazovanih sospremenljivk. Njen glavni cilj 

je v uravnoteženju obravnavane in kontrolne skupine glede na sospremenljivke. 

Tako enote v obravnavani in kontrolni skupini, ki imajo približno enako vrednost 

nagnjenja, rezultirajo v približno podobnih porazdelitvah njunih osnovnih 

sospremenljivk (Rosenbaum in Rubin 1985). Ko sta obe skupini (obravnavana in 

kontrolna) uravnoteženi, glede na osnovne sospremenljivke, je vzročni učinek 

razlika med izidi obeh skupin (enako velja v primeru ocenjevanja pogojnih 

asociacij). 

Ocene stopenj nagnjenja so verjetnosti za razvrstitev obravnave, pogojno na 

opazovane sospremenljivke. Tako na stopnje nagnjenja v glavnem vplivata dva 

dejavnika: izbira sospremenljivk za oceno modela nagnjenja in izbrana metoda za 

ocenjevanje stopnje nagnjenja. Pri ocenjevanju vzročnih učinkov Rubin in Thomas 

(1996) predlagata, da bi naj v model nagnjenja vključili vse sospremenljivke, 

povezane z izidom, četudi morda niso močno povezane z obravnavo. Rubin (1997) 
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nadalje predlaga, da tudi če je sospremenljivka samo šibko povezana z izidom in je 

hkrati povezana z obravnavo, mora biti vključena v model, saj bi se v nasprotnem 

primeru pristranskost povečala močneje, kot bi bila izguba učinkovitosti 

(efficiency), zaradi njene vključitve. Izguba učinkovitosti se zmanjša, ko vključimo 

spremenljivko, ki je povezana z obravnavo in nepovezana z izidom. V primeru 

ocenjevanja pogojnih asociacij, raziskovalec vključi v model nagnjenja 

sospremenljivke, za katere meni, da so bistvenega pomena za uspešno 

uravnoteženje študijske zasnove. V skladu s tem je raziskovalec dolžan ustrezno 

zagovarjati izbor sospremenljivk. 

Na podlagi izbranih sospremenljivk ocenimo stopnje nagnjenja, katerih glavni 

namen je v efektivni kontroli sospremenljivk. Stopnje nagnjenja so lahko ocenjene s 

pomočjo diskriminantne analize ali logistične regresije, pod pogojem, da 

sospremenljivke ne vsebujejo manjkajočih podatkov. V zadnjem času so se začele 

uporabljati tudi nekatere druge metode, kot so razvrstitveno drevo (classification 

tree) (Westreichab, in drugi 2010) in odborne metode (ensemble methods), kot so 

okrepljena regresija (boosted regression) (Mccaffrey, in drugi 2004) in slučajni gozd 

(random forest) (Siroky 2009). 

Na podlagi ocenjenih stopenj nagnjenja, uporabimo tako imenovane metode 

uravnavanja (adjustment methods), kot so usklajevanje (matching), 

subklasifikacija/stratifikacija (subclassification/stratification), ali uteževanje. Vloga 

teh metod je v uravnoteženju obravnavane in kontrolne skupine glede na 

sospremenljivke. 

Preden so možni izidi obeh skupin lahko primerjani in tako ocenjen vzročni učinek 

ali pogojna asociacija, je potrebno diagnosticirati kvaliteto uravnoteženosti 

študijske zasnove. Pogosto uporabljena tehnika, za takšno diagnostiko, je 

standardizirana razlika v povprečnih vrednostih sospremenljivk med obravnavano 

in kontrolno skupino (Rosenbaum in Rubin 1985). Tri preostale kvantitativne 

tehnike so: razlika v povprečnih vrednostih stopenj nagnjenja med obema 

skupinama, razmerje varianc stopnje nagnjenja obeh skupin, in razmerje ostankov 
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varianc sospremenljivk po uravnavanju (Rubin 2001). Poleg kvantitativnih tehnik pa 

je priporočljivo uporabiti tudi grafična orodja, kot so Q-Q diagrami ali grafikoni 

kvantilov (Ho in drugi 2007), ali grafična orodja, ki vključujejo tudi kvantitativno 

informacijo (Love 2002; Steiner in drugi 2011). 

3.2 Faza analize 

Faza analize vključuje oceno vzročnih učinkov ali pogojnih asociacij, dodatna 

uravnoteženja sospremenljivk z namenom odstranitve ostankov neuravnoteženosti 

sospremenljivk med skupinama (t.j., neuravnoteženost po dokončanju faze načrta), 

kot tudi analizo občutljivosti ocen vzročnih učinkov. Cilj analize občutljivosti je 

odgovoriti na vprašanje, kako bi se pridobljene ocene vzročnih učinkov lahko 

spremenile ob prisotnosti skrite pristranskosti (hidden bias), in kako obsežna bi 

morala biti skrita pristranskost, da bi spremenila naše zaključke glede ocen vzročnih 

učinkov. Analiza občutljivosti ni potrebna v primeru ocenjevanja pogojnih asociacij, 

ker v teh primerih ne govorimo o pristranskosti, ampak le o neuravnoteženi 

študijski zasnovi. 

4. Vloga velikosti vzorca 

Glavni problem majhnih vzorcev na splošno, v statističnem sklepanju, so velike 

standardne napake. Tako je jasno, da je statistično sklepanje na podlagi majhnih 

vzorcev manj natančno, kot v primeru velikih vzorcev. To pa ni edini problem s 

katerim se soočamo, ko ocenjujemo vzročne učinke ali pogojne asociacije z 

metodami nagnjenja v primeru majhnih vzorcev.  

Da bi lahko odpravili neuravnoteženost v sospremenljivkah med dvema skupinama, 

moramo najprej oceniti stopnje nagnjenja. Cilj ocenjenih stopenj nagnjenja je v 

tem, da le-te predstavljajo uravnotežene stopnje (balancing scores). Manjši kot je 

vzorec, manj natančne so ocene stopenj nagnjenja, in ta natančnost se verjetno 

zmanjšuje, ko se število opazovanih sospremenljivk povečuje. Tako lahko 
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uravnoteženje študijske zasnove z manj natančnimi stopnjami nagnjenja rezultira v 

večjem ostanku neuravnoteženosti (neuravnoteženost v sospremenljivkah med 

skupinama po izvedbi faze načrta metod nagnjenja).  

Poleg tega so lahko opazovalne študije z majhnimi vzorci problematične tudi zaradi 

pomanjkanja prekrivanja (overlap) med porazdelitvijo sospremenljivk v 

obravnavani in kontrolni skupini, kot tudi v doseganju področja skupne podpore 

(common support). Slabo prekrivanje ali šibko doseganje področja skupne podpore, 

v primerih majhnih vzorcev, oteži proces uravnoteženja sospremenljivk med 

obravnavano in kontrolno skupino. 

Pri pregledovanju publikacij metod nagnjenja z majhnimi vzorci, je bil naš interes 

predvsem v publikacijah, ki raziskujejo, kako dobro lahko uravnotežimo študijsko 

zasnovo, glede na opazovane sospremenljivke, in katera metoda uravnavanja je 

najprimernejša v primeru majhnih vzorcev. Tri simulacijske študije, ki vključujejo 

majhne in velike vzorce (Rubin in Thomas 1996; Zhao 2004; Luellen 2007) 

potrjujejo, da je uspešna implementacija metod nagnjenja (t.j., pridobitev 

primerljivih skupin) odvisna od velikosti vzorca. Tako te raziskave kažejo na to, da 

se metode nagnjenja pri malih vzorcih obnašajo drugače pri velikih.  

Glede na teoretične lastnosti metod nagnjenja in glede na rezultate predhodnih 

raziskav o vlogi velikosti vzorca pri metodah nagnjenja smo sklenili, da je metoda 

usklajevanja večinoma najbolj primerna metoda uravnavanja v primeru majhnih 

vzorcev. Hkrati je metoda usklajevanja tudi najbolj pogosto uporabljena metoda 

uravnavanja pri ocenjevanju vzročnih učinkov z metodami nagnjenja.  

Da bi lahko raziskali, kako dobro delujejo metode nagnjenja z malimi vzorci in kaj so 

najmanjši možni vzorci, ki še omogočajo uspešno odstranitev pristranskosti iz 

študijske zasnove, smo izvedli vrsto simulacijskih študij za raziskovanje različnih 

scenarijev. 
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5. Simulacijska študija 

Niz simulacijskih študij vključuje majhne in srednje velike vzorce, različno število 

opazovanih sospremenljivk in različne stopnje začetne pristranskosti v študijskem 

načrtu (t.j., raven neuravnoteženosti študijske zasnove). Raziskujemo tudi različna 

razmerja med velikostjo vzorca kontrolne in obravnavane skupine. 

Simulacijska študija metod nagnjenja je izvedena tako z ocenjenimi stopnjami 

nagnjenja, kot tudi s pravimi stopnjami nagnjenja. Na tak način preučujemo razlike 

v rezultatih za scenarij, ki smo ga deležni v realnem svetu z opazovalnimi podatki, in 

za scenarij, ki bi ga bili deležni v primeru slučajnih poskusov. Hkrati pa preučujemo 

tudi razlike v rezultatih študije nagnjenja, ko uravnavanje študijskega načrta 

izvajamo z dvema različnima algoritmoma usklajevanja (t.j., optimalni in požrešni 

(greedy) algoritem). 

Analiza simulacijskih podatkov je narejena deskriptivno in z analizo variance. 

Rezultati kažejo, da je v primeru majhnih obravnavanih vzorcev mogoče 

uravnotežiti študijsko zasnovo enako uspešno, kot v primeru srednje velikih 

obravnavanih vzorcev. Vendar pa je uspeh študij nagnjenja (propensity score study) 

z majhnimi obravnavanimi vzorci (kako uspešno lahko uravnotežimo študijsko 

zasnovo), predvsem odvisen od velikosti skupine kontrolnih enot. Majhni 

obravnavni vzorci zahtevajo veliko večje razmerje med skupinama (t.j., med 

skupino kontrolnih enot in skupino obravnavanih enot) kot srednje veliki 

obravnavani vzorci. Hkrati, je pri majhnih obravnavanih vzorcih, zahtevano 

razmerje med skupinama, predvsem odvisno od velikosti skupine obravnavanih 

enot, števila opazovanih sospremenljivk in velikostjo začetne pristranskosti, 

oziroma ravni neuravnoteženosti študijske zasnove. 
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Manjši kot je vzorec skupine obravnavanih enot, več opazovanih sospremenljivk kot 

imamo in bolj kot je študijska zasnova neuravnotežena, glede na opazovane 

sospremenljivke, večja so zahtevana razmerja med skupinama (t.j., med kontrolno 

in obravnavano skupino). Po drugi strani pa ima število opazovanih sospremenljivk, 

pri srednje velikih vzorcih, le malenkosten vpliv na zahtevano razmerje skupin.  

Razlog, da število opazovanih sospremenljivk igra tako pomembno vlogo pri 

majhnih vzorcih obravnavane skupine, je v procesu ocenjevanja stopenj nagnjenja. 

Več kot imamo opazovanih sospremenljivk in manjši kot je vzorec obravnavane 

skupine, težje je natančno oceniti stopnje nagnjenja. 

Kakorkoli, natančna ocena stopenj nagnjenja ni edini problem majhnih vzorcev 

obravnavanih skupin. Pri zelo majhnih obravnavanih vzorcih 50≤tn  in majhnem 

razmerju med skupinama ,2=R  je logistična regresija, za ocenjevanje stopenj 

nagnjenja, v primeru z desetimi opazovanimi sospremenljivkami rezultirala v 

ekstremnih vrednostih 0 in 1. Tako za te primere ocenjujemo, da je predpostavka o 

strogi neodvisnosti kršena38. V takšnih primerih morda ni modro nadaljevati s 

študijo nagnjenja in ocenitvijo vzročnih učinkov ali pogojnih asociacij. 

Glede na dobljene rezultate sklepamo, da je »uspeh« logistične regresije (logistična 

regresija ne rezultira v ekstremnih vrednostih 0 in 1) primarno odvisen od velikosti 

obravnavane skupine in števila opazovanih sospremenljivk. S 30 opazovanimi 

sospremenljivkami in s celotnim vzorcem 104=n , ter razmerjem med skupinama 

12=R  (t.j., 8=tn in 96=cn ), logistična regresija rezultira v ekstremnih 

vrednostih, 0 in 1, pri vseh stopnjah začetne neuravnoteženosti (pristranskosti) 

študijske zasnove, ki jih preučujemo, in hkrati pri vseh simulacijskih ponovitvah. 

 

                                                           
38

 Predpostavka o strogi neodvisnosti ima dva kriterija: (i) v model nagnjenja za oceno stopenj 
nagnjenja morajo biti vključene vse sospremenljivke, povezane z obravnavo in izidom; in (ii) stopnja 
nagnjenja, e(X), mora biti na intervalu med 0 in 1. V primeru ocenjevanja vzročnih učinkov je 
potrebno »zadovoljiti« oba kriterija, medtem ko v primeru ocenjevanja pogojnih asociacij prvi 
kriterij odpade.  
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Na drugi strani, s 30 opazovanimi sospremenljivkami in s celotnim vzorcem 120=n  

in razmerjem med skupinama 3=R  (t.j.,
 

30=tn  
in 90=cn ), logistična regresija ni 

bila »uspešna« v samo desetih odstotkih simulacijskih ponovitev, vendar to le za 

najvišjo stopnjo začetne neuravnoteženosti študijske zasnove 5.12 =B . Te 

ugotovitve so podprte tudi z analizo variance, kjer rezultati kažejo, da je velikost 

obravnavane skupine najbolj vpliven faktor (Tabela 5.21). 

Rezultati simulacijskih študij kažejo, da so majhni vzorci obravnavanih skupin (tako 

majhni kot 8=tn ) enako uspešni pri uravnoteženju študijske zasnove, kot srednje 

veliki vzorci (t.j., tn  of 200 or 500), če je le razmerje med skupinama pri majhnih 

vzorcih zadosti veliko in je predpostavki o strogi pogojnosti neodvisnosti 

zadoščeno. Vendar pa so ocene vzročnih učinkov ali pogojnih asociacij z majhnimi 

vzorci obravnavane skupine pričakovano veliko manj natančne v primerjavi s 

srednje velikimi vzorci. Pomanjkanje natančnosti v ocenah vzorčnih učinkov ali 

pogojnih asociacij pri majhnih obravnavanih vzorcih je v veliko večjih standardnih 

napakah, v primerjavi s standardnimi napakami ocen vzročnih učinkov srednje 

velikih vzorcev obravnavane skupine. Standardne napake ocen vzročnih učinkov z 

majhnimi vzorci so tako lahko več kot desetkrat večje v primerjavi s standardnimi 

napakami ocen vzročnih učinkov s srednje velikimi vzorci. Čeprav je to pričakovano 

dognanje, pa rezultati hkrati kažejo na to, da velikost standardnih napak z majhnimi 

obravnavanimi vzorci ni odvisna samo od velikosti obravnavane skupine, temveč 

tudi od števila opazovanih sospremenljivk. Več kot imamo opazovanih 

sospremenljivk, večje so standardne napake ocen vzorčnih učinkov, čeprav se z 

naraščanjem števila opazovanih sospremenljivk zahtevano razmerje med kontrolno 

in obravnavano skupino povečuje in je zato celoten vzorec vedno večji. 

Poleg tega, rezultati simulacijske študije kažejo, da izbira algoritma za izvedbo 

metode usklajevanja ne igra bistvene vloge, čeprav je ta vloga večja pri majhnih 

vzorcih, kot pri srednje velikih. Hkrati ima izbira algoritma usklajevanja le malo 

opazen učinek na zahtevano razmerje med skupinama (t.p., optimalen algoritem bo 

za uravnoteženje študijske zasnove pri majhnih vzorcih v povprečju zahteval 
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malenkostno manjše razmerje med skupinama, kot požrešni (greedy) algoritem). 

Hkrati pa imajo vzročni učinki ocenjeni z majhnimi obravnavanimi vzorci pri uporabi 

optimalnega algoritma v povprečju manjše standardne napake. 

Rezultati dveh dodatnih simulacijski študiji kažejo, na to da: (i) korelacijska 

struktura, med opazovanimi sospremenljivkami in spremenljivko izida, ne igra 

nobene vloge v študijah stopenj nagnjenja, ko je zadoščeno predpostavki pogojne 

neodvisnosti; in (ii) vrsta spremenljivke izida (t.j., zvezna ali dihotomna) ne vpliva na 

proces uravnoteženja študijske zasnove v fazi načrta metod nagnjenja (t.p., začetna 

neuravnoteženost študijske zasnove je lahko uspešno odpravljena ne glede na tip 

spremenljivke izida). Do razlik prihaja le v fazi analize metod nagnjenja, kjer podatki 

z dihotomno spremenljivko izida zahtevajo drugačen pristop pri odpravljanju 

ostankov neuravnoteženosti, kot podatki z zvezno spremenljivko izida. 

6. Aplikaciji 

V doktorski disertaciji predstavimo tudi dve aplikativni študiji. Prva aplikativna 

študija uporabi realne opazovalne podatke (Lalonde 1983) za katere so ocene 

vzročnih učinkov slučajnega poskusa znane. Na podlagi deskriptivne statistike 

rezultatov naše simulacijske študije, glede minimalno zahtevanih razmerij med 

skupinama pri majhnih obravnavanih vzorcih, izvedemo simulacijo na Lalondovih 

podatkih. Cilj takšne simulacijske študije je preveriti, kako aplikativni so rezultati 

naše teoretične simulacijske študije v praksi. 

Rezultati Lalondove simulacijske študije potrjujejo uporabnost rezultatov 

teoretične simulacijske študije, glede zahtevanih razmerij med skupinama pri 

določeni velikosti obravnavanega vzorca, ravni začetne neuravnoteženosti študijske 

zasnove in števila opazovanih sospremenljivk, vendar le v primeru, ko zadovoljimo 

predpostavko o strogi pogojni neodvisnosti. 

 



210 
 

Druga aplikativna študija predstavlja opazovalne podatke, kjer so raziskovalna 

vprašanja morda vzročna, vendar pa zaradi narave podatkov ne moremo 

nepristransko oceniti vzročnih učinkov, zato ocenjujemo le pogojne asociacije glede 

na izbor sospremenljivk, ki so v kontekstu študije v našem največjem interesu.  

Pogojne asociacije so v preteklosti bile ocenjevane predvsem s pristopom na osnovi 

modela, kjer z uporabo različnih regresijskih metod hkrati odstranimo 

neuravnoteženost v sospremenljivkah med skupinama in ocenimo pogojne 

asociacije. Ta aplikacija razkriva, kako je lahko v primeru majhnih vzorcev in velike 

ravni neuravnoteženosti sospremenljivk, ter majhnih razmerij med skupinama, 

ocenjevanje pogojnih asociacij s pristopom na osnovi modela varljivo, saj takšno 

ocenjevanje temelji v veliki meri na ekstrapolacijah.  

Uporaba metod nagnjenja nam v takšnih primerih signalizira že v fazi načrta, da 

kombinacija majhnih vzorcev in majhnih razmerij med skupinama, ter večje 

neuravnoteženosti sospremenljivk med skupinama, ne omogoča uspešno 

balansirati študijske zasnove. Ocenjevanje pogojnih asociacij v takšnem primeru ne 

bo podalo zaupanja vrednih rezultatov. 

7. Zaključek 

Doktorska disertacija najprej definira metode nagnjenja v smislu pravilne 

implementacije metod v opazovalnih študijah pri ocenjevanju vzročnih učinkov. 

Hkrati razširimo uporabnost metod tudi na ocenjevanje pogojnih asociacij in z 

aplikacijo pokažemo, kako je pristop na osnovi zasnove (temelj metod nagnjenja) 

veliko bolj zanesljiv način ocenjevanja pogojnih asociacij v primeru majhnih 

vzorcev, kot uporaba pristopa na osnovi modela (regresijske metode). 
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Raziskovanje uspešne implementacije metod nagnjenja z majhnimi vzorci, pri 

ocenjevanju vzročnih učinkov ali pogojnih asociacij, kaže na to, da se metode 

nagnjenja, v primeru majhnih vzorcev, obnašajo drugače, kot v primeru velikih 

vzorcev. V skladu s tem so zahteve pri uporabi metod nagnjenja z majhnimi vzorci 

drugačne, kot v primeru velikih vzorcev.  

Metoda usklajevanja se je izkazala kot najprimernejša metoda uravnavanja v 

primeru majhnih vzorcev, vendar pa za uravnoteženje sospremenljivk med 

skupinama majhni obravnavani vzorci zahtevajo veliko večje razmerje med 

skupinama (kontrolna skupina mora biti veliko večja od obravnavane), kot srednje 

veliki obravnavani vzorci. Ob pogoju, da je razmerje med skupinama v primeru 

majhnih obravnavanih vzorcev dovolj veliko, so le-ti sposobni enako učinkovito 

uravnotežiti skupini, glede na opazovane sospremenljivke. 

V prihodnjih raziskavah bi bilo smiselno razširiti raziskovanje majhnih vzorcev tudi s 

vključitvijo mešanih tipov sospremenljivk39 (zvezne in diskretne), raziskati drugo 

pomembno cenilko usklajevanja (usklajevanje z Mahalanobis razdaljo na originalnih 

opazovanih sospremenljivkah – brez uporabe stopenj nagnjenja), ter uporabiti 

različne vrste izidov (npr.: ne-paralelni izid, nelinearni izid40). Hkrati bi bilo v 

prihodnje smiselno raziskati tudi področje izbire sospremenljivk za ocenjevanje 

stopenj nagnjenja z majhnimi vzorci, in kako pravilno oceniti standardne napake 

vzročnih učinkov v primeru majhnih vzorcev. 

 

 

                                                           
39

 Vse sospremenljivke v simulacijski študiji so zvezne.  
40

 »Ne-paralelni izid« - funkciji izida obravnavane in kontrolne skupine sta različni. »Nelinearni izid« - 
funkcija izida ima nelinearno obliko.  
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8. Slovarček 

O metodah nagnjenja se v slovenski statistični literaturi še ni pisalo, zato je bilo 

potrebno posloveniti kar nekaj statistične terminologije, ki se uporablja na tem 

statističnem področju. Slovenjenje izraza »propensity score« je precej 

problematično, zato smo se odločili za izmenično uporabo terminov stopnja 

nagnjenja oziroma nagnjenje, ko govorimo o »propensity score«.  

Tabela 8.1: Slovarček 

Angleški izraz Slovenski izraz 

adjustment methods metode uravnavanja 

assignment mechanism mehanizem dodeljevanja 

baseline covariates osnovne sospremenljivke 

broken experimental design kršena zasnova poskusa 

common support  skupne podpore 

covariate sospremenljivka 

design based approach pristop na osnovi načrta zasnove 

matching usklajevanje 

model-based approach pristop na osnovi modela zasnove 

outcome variable spremenljivka izida 

potential outcomes  možni izidi 

potential outcomes framework okvir možnih izidov 

propensity score stopnja nagnjenja, nagnjenje 

propensity score methods metode nagnjenja 

Propensity score study Študija nagnjenja 

Rubin Causal Model - RCM Rubinov model vzročnosti - RMV 

sensitivity analysis analiza občutljivosti 

strong ignorability assumption predpostavka o strogi pogojni neodvisnosti 

treatment obravnava 

treatment condition obravnavano stanje 

treatment effect učinek obravnave 

unbalanced design neuravnotežena zasnova 
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