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Intraclass and Interclass Correlation
Coefficients with Application

Lada Smoljanović1

Abstract

In the paper a review and a comparison of estimates and tests of intraclass
and interclass correlation coefficients is presented .

1 Introduction
Rosner (1982) pointed out that the basic unit for statistical analysis in ophthal-
mological studies is the eye rather than person . Sometimes, one eye is used as the
treated eye and the other as the control. In this case standard methods of estima-
tion and hypothesis testing are valid. But if the purpose is to compare two different
types of people on some finding in an ocular examination such as a comparison of
intraocular pressures in persons in different age groups, their values from the two
eyes are highly correlated and the above statistical methods are not valid .

One of the appropriate methods for such a design is given by a nested mixed
effects analysis of variance (ANOVA) and appropriate extensions to multivariate
methods in ophthalmology with application to other paired-data situations .

The methods have implications for otolaryngological data, dental data as well as
in the analysis of familial data.

An assessment of the degree of resemblance among family members with respect
to some biological or psychological attribute such as weight, differences in the skin,
arm length or blood pressure, is of particular interest to geneticists .

1 .1 Intraclass correlation model in ophthalmologic studies
Suppose we have g groups of persons and we wish to compare them with respect
to some ocular finding y (for example intraocular pressure) . This is presented by
Rosner (1982) . The model used is given by

Y,ik=h+ai+Pij+eijk

	

i=1, . . .,g; j=1, . . .,Pi ; k=1, . . .,Nij

where there are Pi persons in the ith group i = 1, . . . , g ; P = E Pi and each person
contributes Nij eyes, Nij = 1 or 2, i = 1, . . . , g ; j = 1, . . . , Pi ; Qij - N(0, ape) is the
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effect of persons within groups, ei,k - N(O,a2 ) is the effect of eyes within persons
which considered to be random effect, µ and {ai} are constants .

But there exists a difficult problem due to the unbalanced nature of the design
whereby different persons contributed either one or two eyes to the analysis. A
reasonable approximate method for this problem is given by (Searle, 1971 :367) .

The test procedure is to test the hypothesis Ho : all a; are equal versus H1
some of the ai are unequal .

The test statistic A = MSG/MSP which follows an F9_ l ,p_ 9 distribution un-
der Ho , where MSG is mean square between groups and MSP is mean square
between eyes within persons and appropriate intraclass correlations p is given by
p* = Qa2 /(op2 + o,*2 ) where ape = max{O, MSP - (MSE/N)}, 0*2 = MSE .

But if we assume that two eyes from the same person are independent random
variables then we have an ordinary one-way ANOVA model .

1 .2 Constant R method
Rosner (1982) assumed this model where Y,k = 1 if the k th eye of the j th person in
the i th group is affected, and 0 otherwise, i = 1, . . . , g ; j = 1, . . . , Pi ; k = 1, 2 and
P(Y,k = 1) = I\i, P(Y,k = lI}J( 3_k) = 1) = R), for some positive constant R.
The constant R is a measure of dependence between two eyes of the same person .

The primary aim is to test Ho : A1 = A2 = . . . = A9 = A versus H1 : A, # a, for
at least one pair (r, s) .

Rosner estimated "the effective number of eyes per person" under this model by

e*

	

2A (1 - a* )	
A* (1 - ,A*) + (R* - 1)A*2

Let Pi; denote the number of persons in the i th group with j affected eyes,
i = 1, . . .,g ; j = 0, 1,2 then

E(Pil+2Pi2 )
2N

	

'

R*

	

4N E Pi e

(E Pil + 2E Pi2 ) 2

An appropriate test is given by

T =
~'(le*

	

PP(A ; - A * )2 .

Rosner presented the extensions of these methods such as multiple regression
method and he related the value of a normally distributed outcome variable Y, for
the j th subunit of the i th primary unit (i = 1, . . . , n ; j = 1, . . . , ti) to the values
of k independent variables Xij 1 , . . . , Xi;k, where Xi; k denotes the k th independent
variables for the j th subunit of the i th primary unit :

Y,=/jo+ErkXi,k+ei,

where var(ei,) = a2 , p(ei,,eik) = p; i = 1, . . .,n ; j # k = 1, . . .,ti and our aim is to
test the hypothesis Ho : 13k = 0, all other /i # 0 versus Ho : all Qi # 0 .
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2 Estimation of the degree of resemblance among
family members

One of the aims of the analysis of familial data is to estimate the resemblance among
the members of a family . Usually we face two distinct problems :

•

	

to estimate the resemblance among the children themselves, the problem of
estimation of intraclass correlation

•

	

to estimate the resemblance among parents and their children, the problem of
estimation of interclass correlation

3 Estimation of intraclass correlation
We denote the score of i th family's offspring by Xii i = 1, . . . , k ; j = 1, . . . , n i ,
where k is the total numbers of families studied and ni is the position in the family
and N = En; is the total number of observations .

We assume that size of family offspring are not necessarily the same in each
family, since that problem has been most frequently encountered in practice .

3 .1 Method of components of variance
Donner (1979) suggested to use analysis of variance :

X, =P+ai+e13
where p is the grand mean of all observations in the population, the family effects
{ai } are identically distributed with mean 0 and variance oA , the residual errors
{eii } are identically distributed with mean 0 and variance a .' and {a;}, {e ;} are
completely independent . The variance of X, is given by oX = oA + o.2 .

The proportion of the variation among groups is also known as
20A

Pcc = "'A + oe
Since family size n; differs among families it is obvious that no single value of n ;
would be appropriate in the formula . We therefore use an average n ; ; this is not a
simple n, the arithmetic mean of the n i 's but

1

	

k
n o = n - (k - 1)N ~(n ` - n)2

which is an average usually close to, but always less then n, unless sample size are
equal when n o = n .

Since unbiased estimates of oe and oA are given by Sy, = MSW and SA =
(MSA - MSW)/no the analysis of variance intraclass correlation coefficient as

_ SA

	

MSA-MSW

	

F -1
rA

SA+SH, MSA-MSW+n0MSW no +F-1
where F = MSS, .



60

	

Lada Smoljanović

3.2 Common correlation model called also random effects
model

The other model is called "common correlation model" in which the observations
X,, are assumed to be distributed about the same µ and with same variance a2 in
such a way that X ;j and Xia in the same class have a common correlation p .

3 .3 Maximum likelihood estimator
Suppose we have

Xi

	

(X11, . . .,Xin;) ; Xi - N(µi,Ei), i = 1, . . .,k

µi=(µ, . . .,µ), Pat, a2, 7,1=1, . . .,ni, j01
k

	

k
L(X1i . . .,XkIµ,a2 ) = ( 2r)-N/2 fl IEiI-1/2eXP{-2 E(X1-µ1)T£'7 1 (X1 - µi)}

i=1

	

i=1
k

-21nL=N(1+1n or 2 +ln(2r))+(N-k)ln(1-p)+~1nWi
i=1

where Wi = 1 + (no - 1)p .
This expression may be numerically minimized with respect to p to yield the

maximum likelihood estimation rm .
It is interesting to note that for the case n i = n, i = 1, . . . , k we have ray =- rp

Pearson's correlation coefficient which is expressed by

k n n
rP=

	

1

	

E>>(Xij -X)(Xi1 - X)Nn(n - 1)S.2 i=1 j=1 1=1

A1

where X and Sx are mean and variance .
If one remembers the last research work (for example among the siblings for the

blood pressure) where p,, < 0 .5 (small value) and in the cases when we do not know
anything about intraclass correlation coefficient, in such case, we use the model of
"common correlation", i .e . rn .

Under the assumption that p,, has a large value (0 .8) we use the maximum
likelihood estimator .

4 Estimation of interclass correlation coefficients
Let us take for example a sample of measurements from k families and Xio, Xi1, . . . , Xini
representing measurements from i th family where X;0 is the mother's score (parent's
score in general) and X, 1 , . . . ,Xin, are the scores of her ni siblings .

Suppose we have

Xi = (Xio,Xi1, . . .,Xin,)^' N(µ,E), i= 1, . . .,k
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then

where

Each dependence arises for two reasons : the same mother will appear in as many
pairs as children possessed and there will be positive correlation among children
within the same family, i .e. pcc > 0 .

4.2 Sib-mean estimator
Falconer (1960) recommends pairing each mother's score (X io) with the mean of her
sibling's scores, i .g . Xic = E7 4 ,Xi;/n i

Ek	
P
		1(Xi0- Xm)(Xic- Xc)	
m =	

J>k1(Xio - Xm)2JEk1 (Xic - Xc)2

where
k

	

k
Xm = k Xio, Xc = k Xic

This estimator depends on sample size .

pi =

	

E! = E; l = Pmcamac, j = 1, . . .,ni

E =o c,

	

1= Pccoc, 7,1=1, . . .,ni ;j l

The intraclass correlation is denoted by pcc and the mother sib interclass corre-
lation is denoted by pmc .

4.1 Pairwise estimator
This method is performed by pairing each mother's score with each of her sibling's
scores and considering the collection of all such pairs over all families .

If we consider each of the pairs (Xi,Xii) as an independent observation from a
bivariate normal distribution N(A,E) where

Pmc =

amz

	

PmcOmac
A = ( Am, 11c),

	

E _ PmcQmac

	

Oc2

k1 ni(Xi0 -Xm)2JE 1 Ej=1(Xij - Xc)2

k
X

	

~ i=1 n 'Xi0 X = s=1~,=1X"m = ~'' k

	

,

	

c -

	

k
L:i=1 n ;

	

Ei=1 n i

~k1(Xio - Xm) Ej=1(Xii - Xc)
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4.3 Random-sib estimator

Biron (1977) selected one child randomly from those families having two or more
children and computed the parent-child correlation on the basis of the resulting
subsample only.

	~,i-1(Xio - Xm)V:j- Xc )
Pr =

k

	

2 ~k

	

*)2Vi=1(Xio - Xm) L+i=1(Xij -Xc

where X, denotes a random sibling from the i th family and

k

X: = k EX,j
i=1

4.4 Ensemble estimator

One solution to this problem (Rosner, Donner 1977) is to compute the expected
value of pT over all possible selections of members over all families . This solution
would be unwieldy, since it would require the computation of 11 k 1 ni distributed
correlations . But using some approximations we have

	Ei=1(Xio- Xm)(Xic _ )	

Pe -

JEk-1(X i0 - Xm) 2 'JEk1 >2"i(Xii - Xic) 2 /ni(1 - k) + Ek 1(Xic - Xc)2

5 Discussion

(Donner, Rosner 1977) compared the pairwise, sib-mean, random-sib and ensemble
estimators using, as the criterion of comparison, their mean square errors obtained
from Monte Carlo simulation .

The pairwise estimate has a lower mean square error than either sib-mean square
errors, which we utilized to compare the estimators under performing 100 iterations .
The pairwise estimator is more effective than ensemble estimator at low values of p.
and the ensemble estimator is more effective at high values of p«. For intermediate
values of p,,, the two estimator perform about equally well .

These methods can also be applied to other types of paired data, as in matched
studies with a variable matching ratio, where one has a continuous outcome vari-
able and wishes to control for other confounding variables while maintaining the
matching .
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