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Bandwidth Estimation in the Sampling
Theorems

Tibor Pogány1

Abstract

The spectral representations of the Shannon-Kotelnikov sampling cardinal
series expansion (SCSE) of non - bandlimited (NBL) stochastic signals were
presented in some earlier papers by the author . This result gives the main
tool in deriving the optimal value of the bandwidth in the approximation of
the NBL stochastic signal by a sampling series of a BL signal such that it
possesses the same spectral process .

In this paper the Brown abasing error upper bound is extended to the NBL
multidimensional stochastic processes and to the NBL homogeneous random
fields . The magnitude of the derived bound is ordered under some smoothness
condition upon the random field . Finally some statistical interpretations and
methods are presented in the Shannon-Kotelnikov discretization procedure for
the stochastic signals .

Keywords : Weakly stationary scalar and multidimensional processes ; Ho-
mogeneous random fields ; Sampling cardinal series expansion ; Spectral repre-
sentation ; Aliasing error ; Bandlimited and non-band-limited signals ; Brown's
upper bound .
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1 Preliminaries, some definitions
Let us define a weakly stationary (WS) random signal {S(t)l t E R'"}, ES(t) = 0,
DS(t) := EIS(t) J z < oo, on the fixed probability space (Il, .F,P) . The following
cases of these signals shall be considered :

1 . weakly stationary scalar random processes (WSSP),

2. WS vectorial random processes (WSVP) and

3. homogeneous random fields (HRF) .
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As a main characteristic of the WS signals the correlation function shall be in-
troduced . Namely, the correlation function of the WSSP {X(t) l t E R} is Kx(t) :=
EX(t)X'(0), where ' denotes the complex conjugate. The role of the correlation
function for the p-dimensional WSVP X(t) = (X1(t), . . .,Xp(t)) plays the so-called
correlation matrix K(t) = (Kim(t))pxp where Kim(t) = EXi(t)X;,,(0) is the cross-
correlation function of the WSSPs X,(t) and Xm(t) for all 1 < j # m < p, moreover
j = m gives the correlation (or auto-correlation) function ofthe considered coordi-
nate in the WSVP X(t) . In fact, if Kim(t) # 0 then X,(t) and X_(t) are stationarily
correlated processes . Finally, the correlation function of the homogeneous random
field { f'(x)Ix E R°} has been defined as K(x) := Q(x)C'(0) .

According to the well-known Bochner-Khintchine theorem there exists the Fourier-
Stieltjes integral representation :

K(t) = fR e1t"dF(A) .

	

(1)

The WSSP process which correlation function possesses the above representation
is non-band-limited (NBL), i .e . there is no interval of a positive Lebesgue measure
such as dF(A) = 0 on it .

By using the Bochner - Khintchine theorem

Kjm(t)

	

J
R

e tadF,m(,\),

	

(2)

K(x) = JR. e1(a " )dlr (a)

	

(3)

we can get the Fourier-Stieltjes representations of the cross-correlation function of
WSSPs X3(t) and X_(t) and the correlation function of the HRF ~(x) . Here(a,b)
denotes the usual inner product E?=1 a,b; of the q-dimensional vectors a, b. In all
these integrals F, .F denote the spectral distribution functions of the considered WS
signals .

If, on the other hand, dF(.X) = 0 (d.9A) = 0) outside of the interval [-a,a],
then the considered process is band-limited (BL) to the given bandwidth a > 0 and
[-a,a] is the sampling support interval . More precisely,

w

	

WSSP
a = wo = min(wi,wm )

	

WSVP
W = (w1 i . . .-' WO

	

HRF

Consequently the sampling interval [-a, a] becomes a q-dimensional rectangle in the
HRF case . So the Fourier-Stieltjes representations of the correlation function for the
BL signals are

K(t)
= f-.

e'tadF(A)

	

(4)

Kim (t) = f7e`tadFim(A)

	

(5)

K(x) = f a

	

e` (A T)d~'(A)

	

(6)
X i~ t l-w~ ,wil



Bandwidth Estimation in the Sampling Theorems

	

87

The important consequences of these facts are the following spectral representations
of the NBL signals, namely

X ( t ) = JR e'tadZ(A)

	

(7)

X(t) = J ettAdZ(A)

	

(8)

OX) = Jq
e'las>dZ( .\)

	

(9)

where Z(A) is the spectral process of the WSSP X(t) ; Z(A) = (Z1(A), . . .,ZP(A))
and Z(A) = Z(A1i . . .,A) is the spectral field of the HRF t(x) . All spectral signals
are with orthogonal increments .

From (4-6) it follows that

X(t) = L:euAdz(A)

	

i (10)

wp
X(t) =

	

J w e'tAdZ1(A), . . ., I e tA dZP(A)
1
'

wt

l

	

w

	

/p
(11)

Ox) = I

	

e'(as)dZ(A),

	

(12)
x;=t[-w,,w,l

for BL signals and Z(A), Z(A) has the same meaning as in the relation (7-9) .
The connection between the stochastic signals X(t), X(t) and 1;(x) and their

deterministic correlation functions K(t), K(t) and )C(x) are given by

dF(A) = EIdZ(A)12 (13)
dFim (A) = EdZZ (A)dZZ(A) (14)
d.F(A) = EldZ(A)I2 .

	

(15)

2 Sampling cardinal series expansions
Consider an NBL WSSP {X(t)It E R} and the given bandwidth w > 0. The
sampling cardinal series expansion (SCSE) of the signal X(t) with respect to the
bandwidth w reads as follows :

Xw(t) :_

	

X(w)sinc(wt-n7r)

	

(16)

where
sinc(u)

	

u-1 sin(u)

	

u # 0

	

(17)1

	

u=0
Accordingly, the vectorial SCSE Xw(t) of the p-dimensional WSVP {X(t) = (X1 (t),

,XP (t))It E R} is introduced in the paper Pogány, Peruničic (1992) as

Xw(t) := \X(;)(t), . . .,X(;)(t)) ,

	

(18)
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where Xw;~(t)(t) denotes the SCSE to wk of Xk(t), k = l,p, i .e.

X kl(t) X(wk)sinc(wk i -nrr) .

Finally the SCSE f rv (x) of the NBL HRF ((x) with respect to the vectorial band-
width W is given by

q +_

	

q

~W(x) :_ ~~ f(
m~

, . . .,
wq

) x 'llsinc(wixj -njir) .

	

(19)

In fact, if the WS signal is BL to the bandwidth w > 0 then it is also BL to
any larger bandwidth w > > w, Belyaev (1959) . So it makes no sense to consider the
SCSE of a BL signal with respect to any greater bandwidth then the initial one . (Of
course it is possible to introduce an SCSE for a BL process (with tighter bandwidth
then the initial one), but we are not interested in this point of view here). Now
if we consider BL WS signals when the given initial bandwidth coincides with the
SCSE-bandwidth, then the following classical results hold :

X(t) = X,(t)
X(t) = X, (t)

V-) _ %w(x)

(20)
(21)
(22)

where the equalities are used in the mean-square sense . But these results are valid
only under some continuity conditions upon Z(A), Z(A) and Z(A) at the end points
(or vertices) of the sampling interval [-a,a], consult Balakrishnan (1957), Beutler
(1961), Pogány (1989 ; 1991 a; 1991 b) and (Wong 1971 :105-106) for more details .

3 The problem
Consider an NBL WS random signal . There are only few realistic problems in
the measurement procedures in the frequency domain as well as in the time do-
main. More precisely speaking the concept of the band-limitation and the duration-
limitation cannot happen simultaneously . Therefore it is of importance to approxi-
mate NBL signals with BL signals on the same probability space, i .e . with the signal
possessing the same spectral signal that the nominal one, Slepian (1976) . Therefore
we have the following

WSSP-PROBLEM . Derive the bandwidth w > 0 in the mean-square approxima-
tion

X(t) =
JR e``adZ(A) '2'* 1'° e'~ adZ(,\) = X , ( t)

W

so that the so-called aliasing error (AE) C! (t) satisfies :

c! (t) := EIX(t) -X,,,(t)I2 < e 2

	

(23)
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where e > 0 is the given approximation error level.

WSVP-PROBLEM . Derive the bandwidth w > 0 in the meansquare approxima-
tion X(t) s: X..(t) so that the cross-aliasing error satisfies

IEw"xk1(t) := I E(X3(t) _ X(7)(t))(Xk(t) -xwk)(t)'I < e 2 ,

	

(24)

for the given e > 0, 1 < j, k < p .

HRF-PROBLEM. Derive W = (wl , . . . , wy) in the mean-square approximation
~(x) ~ ~w (x), so that

E,{,, (t) := EI~(x) -fw(x)I 2 < e 2 ,

for the given e > 0 .

There will be no difficulties in recognizing when ( .) w(t) denotes the BL WS
process, vectorial process or field and when it denotes its sampling cardinal series
expansion to the bandwidth w, in the further exposition of the matter (in fact these
quantities are equal to each other, see (20-22) .

4 Some earlier results

Before solving our principal problems, we shall give some earlier results in the mean-
square AE upper bound ordering . Therefore these results will be listed in brief
manner .

The WSSP X (t) possesses the mean-square derivative of the order r if its 2 th
moment M2,.(X) is finite, i .e .

M2'(X)

	

f A 2rdF(p) - IK(2' )(0)I < oo .

	

(26)

It is well-known that the Cauchy-Schwarz inequality applied to the cross-spectral
distribution function Fik( .1) of the j th and k th coordinates in WSVP X(t) results
in

IdFik(A)I 2 < dFii(A)dFkk( .) .

	

(27)

Using this inequality we can show that the existence of the derivatives of coordinate
WSSPs in X(t) is sufficient for the existence of the cross-moment

IMX"Xk(t)I := I fR A'A'dF'i,k(A)I < oo .

Similarly to the above definition we introduce the mean-square mixed derivative
of the order Iri = E~=1 ri of a HRF ~(x). This derivative exists if the 2Ir1 th mixed
moment of the considered field is finite, in other words if

M211(4) = J
A2frid .F(A) =_ l a*1 JC(O)I < 00 .

	

(28)

(25)
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THEOREM 1 (Brown, 1978) Let X (t) be a NBL WSSP, w > 0. Then we have

£w(t) < 4
J

	

dF(a),

	

(29)
IA I>w

where the constant 4 is sharp .

THEOREM 2 (Pogany, 1993) Let X(t) be an r -fold differentiable NBL WSSP.
Then we have

£w(t) < 4w-2, IK (2r) (0)I .

	

(30)

THEOREM 3 (Pogany-Peruničic, 1992) Let X(t), Y(t) be stationarily cor-
related NBL WSSPs. Then X,,,1(t) and Y.-(t) are also stationarily correlated iff
w' = w" . It also holds

I£wy(t)I 2 < £w(t)£w(t) .

	

(31)

THEOREM 4 (Pogany, 1993) Let e(x) be a NBL HRF, W > t. Then if l: (x) is
Is I =

E;=,
s; -fold differentiable HRF we have

where a 17151

	

ai'' . . . a 7 9 .

5 Bandwidth estimation

In solving the PROBLEM we use the results of chapter 4 . The approach will be
robust, but very clear and simple . At first, by means of the Brown's theorem we
can formulate for the given mean-square approximation error level e the following

SOLUTION 1 . Let X(t) be an r -fold differentiable NBL WSSP, and let e > 0 be
the given error level in the sense of the relation (23) . Then

w > (2/e)1/rIK(2r)(0)I1/2r

	

(33)

With the help of the foregoing evaluation (33) and the variant of the Cauchy-
Schwarz inequality (28) let us consider two stationarily correlated r-, s-fold differ-
entiable NBL WSSPs X(t) and Y(t) respectively . For both of these processes we
have the evaluation (33) . Also w= = w, = w .

SOLUTION 2 . Let X(t) = (Xj(t), . . .,XX(t)) be a NBL WSVP and w1 = . . .

wp =_ w and e be the given error level. Then

_

	

(28i)

	

(2sk)

	

1/2 1/(s,+3k)
W > max 4 IK . . (0) Kkk (0) I ]

	

(34)1>;,k>p e2

£y~ (x) < 4W -21'I

if X;(t) possesses s; mean-square derivatives, j = l,p .

a21r1
ax21rIK(0)I >

	

(32)
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According to the result of the theorem 4 . we clearly get the bandwidth estimate
for the NBL HRF case . However, the WSSP and WSVP cases, the general solution
is not unique :

SOLUTION 3 . Let ~(x) be a NBL, Islfold differentiable HRF, e > 0 . Then we
have

w,'' >_ (4/ez ) IOzzl l I KC(0)I'

	

(35)
i=1

REMARK. We need some additional information about the relations between the
coordinate-bandwidths in B to order an optimal value of B . For instance, let us
know all of the coefficients {/33},q=, in the equality sequence

W1 = #2W2 = . . . = /3gwq E R+ .

	

(36)

Then (35) becomes

2 v 1/131 02131

	

1/21'I

W, >
Ce 11

a,sP'.)

	

(Iax zisI K(0) I)
Now, substituting (37) into (36) we easily get

2 q

	

a

	

1/131

	

a2lsl

	

1/21st
wk

	

Ce j=2

	

( X ,'°)l O 2 1I C()
,,=z

where k = 1,q, 31 - 1 . ∎

Few applications of the derived formulae to the wellknown Shannon-Kotelnikov
formula will be discussed in the next chapter .

6 Some statistical interpretations
It is more convenient, because of the applicational goals, to describe a random signal
{S(t)It E R'°} in a discrete form, for example, with a sequence {sj}FEZ of random
variables, or by a vector . Of course, this description must be 'sufficiently good in
some manner' to recognize the initial signal S(t) with the given accuracy, (Gulyás,
1986) .

One of the discretization techniques applied to the continuous time signals is the
Shannon-Kotelnikov formula or more precisely its variant for weakly stationary BL
random signals, proved by Balakrishnan ( 1957) for WSSP; and by Parzen (1956), for
BL HRF. We must outline here that Parzen did not give an exact proof, his approach
is mainly heuristic. (To avoid some continuity difficulties, closely connected to the
sampling sum convergence questions consult Pogány (1991 a). For NBL random
signals the paper Splettstösser (1981) give many informations .

The sampling discretization of a random signal S(t) means a sum representation

S(t) = 1: s n (P„(t), t E R' .

	

(39)
nEZ

(37)

(38)
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The system of functions {yon (t)lt E R'n } one choose according to a given value set
{s,, = S(t„)Il n E T C_ Rm}, where T is known . Otherwise, the coefficients s n could
be computed directly . Therefore the observed signal value set {s n } is the object
of statistical investigations and interpretations, since it is a sequence of random
variables .

One of the possible formulations of the Shannon-Kotelnikov sampling expansion
to w > 0 of a band - limited weakly stationary scalar, continuous time random
process {X(t)lr E R) gives the following result :

l .ii.m .

	

X (w) sinc(wt - nir) - X (t) I

	

(F+ + F- ) sin 2 (wt),

	

(40)
n--oo

where Ft are the masses of the spectral distribution function F(.) at the end points
+w of the sampling support interval [-w,w], Pogány (1991 b) . If the values Ff
are known by {X(n-")}°°___ one easily recognizes the nominal BL WSSP X(t) .

The coefficients X(w) are random variables (i .e . the split-values of the process
X(t;w)att= w) . BeforeX(t) will be measured at ti,nE{-N, . . .,-1,0,1, . . . ,M},
N,M E IN are given, we must order the bandwidth w, if X(t) is a BL WSSP. The
truncation error such as it originates from the duration - limited measurements
has very extended literature listed for example in Butzer, Splettstösser (1977), Jerri
(1977), so the discussion omits this side of the problem . By the reasons explained
in detailed above, for the given mean-square approximation error level eLO, at first
we order w using the relation (33) .

In the case of the WSVPs, (34) would be applied .
Finally, for NBL HRFs, (35) is convenient together with some additional restric-

tions upon the connections between the coordinate - bandwidths in W .
For the observation error in measuring the signal values S(w) consult Butzer,

Splettstößer (1977), Jerri (1977) .
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