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Normal Approximation by Stein’s

Method

Martin Raič1

Abstract

The aim of this paper is to give an overview of Stein’s method, which has
turned out to be a powerful tool for estimating the error in normal, Poisson
and other approximations, especially for sums of dependent random variables.
We focus on the normal approximation of random variables posessing decom-
positions of Barbour, Karoński, and Ruciński (1989), which are particularly
useful in combinatorial structures, where there is no natural ordering of the
summands. We highlight two applications: Nash equilibria and linear rank
statistics.

1 Introduction

In 1970, Stein introduced a powerful new technique for estimating the rate of con-
vergence of sums of weakly dependent random variables to the standard normal
distribution. His approach was subsequently extended by Chen (1975) to the Pois-
son approximation. The general approach is presented in Stein’s (1986) monograph,
along with the specializations relevant for normal and Poisson approximation. An
overview of normal approximation by Stein’s method is given in Rinott and Rotar
(2000). In the present paper, we give a somewhat different presentation: we pay
greater attention on the derivation of the method and highlight a different concept
of weak dependence.

A comprehensive presentation of the Poisson approximation is given in Barbour,
Holst, and Janson (1992). Further extensions have been made, among others, to
approximation by binomial and multinomial (see Loh, 1992), uniform (see Diaconis,
1989) and gamma distribution (see Luk, 1994).

Stein’s method can be readily extended to multivariate and functional settings.
Thus, the Poisson approximation can be extended to approximation by a Poisson
process (see Barbour, Holst, and Janson, 1992; and Barbour and Xia, 2000). Exten-
sions to multivariate normal and Brownian motion approximation are presented in
Götze (1991) and Barbour (1990). Further extensions to measure valued processes
have also been undertaken (see Reinert, 1995).
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Stein’s method can also be refined to approximations admitting higher rates of
convergence than approximations by the ‘classical’ limit distributions such as nor-
mal and Poisson. Barbour (1986) considers Edgeworth expansions for sums of in-
dependent random variables. Schneller (1989) derives Edgeworth expansions of the
first and the second order for linear rank statistics. In the case of the Poisson ap-
proximation, refinements involving compound Poisson approximation (see Barbour,
Chen, and Loh, 1992), compound Poisson process approximation (see Barbour and
Månsson, 2002) and approximation by the Poisson–Charlier signed measure (see
Barbour and Čekanavičius, 2002) have been considered.

A remarkable feature of Stein’s method is that it can be applied in many cir-
cumstances where dependence plays a part. Stein (1986) discusses applications to
Latin rectangles, random allocations, the binary expansion of a random integer and
isolated trees in random graphs. More applications to random graphs are given in
Barbour, Karoński, and Ruciński (1989). As already mentioned, Stein’s method is
applicable to linear rank statistics (see Bolthausen, 1984; Schneller, 1989; Barbour,
Holst and Janson, 1992; Bolthausen and Götze, 1993; and Goldstein and Reinert,
1997). Other areas of application include the analysis of DNA sequences (see Arratia,
Gordon, and Waterman, 1990), additive functionals of correlated Gaussian random
variables or components of a multinomial random vector (see Dembo and Rinott,
1996), matrix correlation statistics (see Barbour and Eagleson, 1986), extreme value
theory (see Smith, 1988), dissociated statistics (see Barbour and Eagleson, 1985),
patterns and runs (see Chryssaphinou and Papastavridis, 1988), reliability theory
(see Godbole, 1993), random fields (see Takahata, 1983), spacings and the scan
statistics (see Glaz, Naus, Róos, and Wallenstein, 1994; and Dembo and Rinott,
1996), antivoter model, U -statistics (see Rinott and Rotar, 1997) and many others.

The paper is organized as follows. In Section 2, we give an outline of the method.
In Section 3, we consider sums of independent random variables and derive Stein’s
method for normal approximation. The results of Section 3 are extended in Section
4 to dependent random variables posessing a certain kind of dependence structure.

All the estimates in Sections 3 and 4 are given for sufficiently smooth or Lipschitz
test functions. In particular, one can derive estimates of the form:

∣

∣

∣

∣

E f(W ) − 1√
2π

∫ ∞

−∞

f(z) e−
1
2
z2

dz

∣

∣

∣

∣

≤ εM1(f) (1.1)

where M1(f) is the Lipschitz constant of the function f and where ε is small. In
other words, the error in normal approximation is estimated in the Wasserstein L1

metric, naturally arising from Stein’s method. However, in a statistical context, it
is more natural to consider the Kolmogorov distance:

δ := sup
w∈R

∣

∣P(W ≤ w) − Φ(w)
∣

∣ (1.2)

In general, we only have δ = O(
√
ε) (Cf. Section 5). However, one can often show

that δ = O(ε), but only at the cost of much greater effort. In Section 5, we derive
bounds in the Kolmogorov distance comparable to the bounds derived in Section 4
for two cases: for sums of independent random variables (i. e., we prove the classical



Normal Approximation by Stein’s Method 73

Berry–Esséen theorem) and for bounded random variables posessing the dependence
structure from Section 4. Finally, in Section 6, we illustrate the whole approach with
two examples: Nash equilibria and linear rank statistics.

2 A general approach

Let W be a random variable whose distribution we want to approximate. In other
words, for test functions f from a suitable linear space F , we would like to approx-
imate:

E f(W ) ≈ N f (2.1)

where N : F → R is a linear functional which is easier to compute as the expectations
on the left-hand side. In order to estimate the error in (2.1), the main idea of Stein’s
method is to find an easily computable linear operator A from a linear space G to
F , such that EAg(W ) is small in some sense for all g ∈ G.

In order to find A, Stein (1986) suggests to first find an exchangeable pair
(W,W ′). Then the operator:

A0g(w) := E
[

g(W ′) − g(W )
∣

∣W = w
]

(2.2)

obviously satisfies EA0g(W ) = 0, so that A can be sought as an approximation to
A0. More generally, one can take an exchangeable pair (X,X ′) and a linear operator
T0 mapping G into the space of antisymmetric functions; then define:

A0g(w) := E
[

T0g(X,X
′)
∣

∣ W = w
]

(2.3)

Notice that (2.3) reduces to (2.2) when taking X = W , X ′ = W ′ and T0g(w,w
′) =

g(w′) − g(w).
Once we have found A, one way of finding N and estimating the error in (2.1)

is to find a projector P (in the space F) with kerP ⊆ imA and to solve the Stein

equation:
Ag = f − Pf (2.4)

leading to:
E f(W ) = EPf(W ) + EAg(W ) (2.5)

Consequently, N f := EPf(W ) is a good approximation to E f(W ) provided that
EAg(W ) is small. Clearly, this only makes sense if Pf is such a function that
EPf(W ) is easier to compute as E f(W ). In fact, Pf can usually be chosen to be
a constant, so that we can identify N f ≡ Pf . This is because one can choose A0

and A with images of codimension one.
Another way to obtain an approximation to E f(W ) together with the error

estimate is to observe that A may be an infinitesimal generator of a Markov process
(or at least an operator semigroup). Indeed, in view of (2.2), the exchangeable pair
(W,W ′) can be extended to a stationary Markov chain with generator A0. Now
suppose that A generates an operator semigroup Pt, t ≥ 0 with P = limt→∞Pt.
Then it follows from the Dynkin formula (see Ethier and Kurtz, 1986) that:

Pf − f =

∫ ∞

0

APtf dt (2.6)
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Similarly as before, EPf(W ) is a good approximation to E f(W ) if the expectations
EAPtf(W ) are sufficiently small and tend to zero sufficiently fast when t → ∞.
Moreover, if Ptf converges to Pf sufficiently fast, observe that:

g = −
∫ ∞

0

(Ptf − Pf) dt (2.7)

solves (2.4) (note that AP = 0).
Remark. If A generates an ergodic Markov process with stationary distribution

ν, we have N f = Pf =
∫

f dν, so that ν approximates the distribution of W .
Remark. Using (2.6), we need not find an explicit solution g to the Stein equation

(2.4); in view of (2.6), EPtf(W ), t ≥ 0, is a path from E f(W ) to N f , and the
error in the approximation is estimated using bounds on the derivative along the
path. This is known as continuation method in numerical analysis (see Allgower and
Georg, 1990).

3 Stein’s method for the normal approximation

Let X1, X2, . . .Xn be independent random variables with sum W . Without loss of
generality, we can assume that EXi = 0 for all i and that var(W ) = 1. Moreover,
let X ′

1, . . .X
′
n be independent copies of X1, . . .Xn. Taking Wi := W − Xi and

W ′
i := Wi +X ′

i, the pair (W,W ′
i ) is clearly exchangeable. In way of (2.2), define:

S1i := g(W ′
i ) − g(W ) (3.1)

Excheangability implies that ES1i = 0. According to Section 2, we shall seek
the Stein operator Ag(W ) as an approximation to E(S1i | W ). Denote X ∼ Y
for random variables with E(X | W ) = E(Y | W ). Assuming that g is twice
continuously differentiable, Taylor’s expansions of W ′

i centered at Wi and of Wi

centered at W with remainders in integral form yield:

S1i =
(

g(W ′
i ) − g(Wi)

)

+
(

g(Wi) − g(W )
)

∼
∼ g′(Wi)X

′
i − g′(W )Xi + U1i

(3.2)

where:
U1i := (1 − θ)g′′(Wi + θX ′

i)X
′
i
2
+ θg′′(Wi + θXi)X

2
i (3.3)

and where θ is uniformly distributed over [0, 1] and independent of all other variates.
By independence, g′(Wi)X

′
i ∼ 0. Adding over i, we obtain:

n
∑

i=1

S1i ∼ −g′(W )W +

n
∑

i=1

U1i (3.4)

Now write:
U1i = U2i +Ri (3.5)

where:

U2i := (1 − θ)g′′(W )X ′
i
2
+ θg′′(W ′

i )X
2
i ∼ 1

2

[

g′′(W )X ′
i
2
+ g′′(W ′

i )X
2
i

]

(3.6)
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The remainder Ri can be estimated in the following way: for every sufficiently
smooth f , define:

Mr(f) :=















sup
x,y∈R

x6=y

∣

∣

∣

∣

f (r−1)(x) − f (r−1)(y)

x− y

∣

∣

∣

∣

; f ∈ C(r−1)(R)

∞ ; otherwise

(3.7)

Using the inequality xy2 ≤ 1
3
x3 + 2

3
y3 holding for all x, y ≥ 0, we find that:

|Ri| ≤M3(g)(1 − θ)|Xi||X ′
i|2 + θ(1 − θ)|X ′

i|3 + θ|X ′
i||Xi|2 + θ2|Xi|3 ≤

≤M3(g)
[

(

θ2 + 1
3
θ + 1

3

)

|Xi|3 +
(

−θ2 + 2
3
θ + 2

3

)

|X ′
i|3
]

∼
∼M3(g)

(

5
6
|Xi|3 + 2

3
|X ′

i|3
)

(3.8)

Now we turn to U2i. For the first term, we have by independence:

g′′(W )X ′
i
2 ∼ σ2

i g
′′(W ) (3.9)

where σ2
i = EX ′

i
2 = EX2

i = var(Xi). To handle the second term, we shall apply a
minor correction to S1i. In view of (2.3), define:

S2i :=
1

2

[

g′′(W ′
i )X

2
i − g′′(W )X ′

i
2
]

(3.10)

By exchangeability, we have ES2i = 0. Combining (3.9) and (3.10), we obtain:

U2i ∼ σ2
i g

′′(W ) + S2i (3.11)

Collecting (3.2), (3.4), (3.5) and (3.11), we finally find:

n
∑

i=1

(S1i − S2i) ∼ Ag(W ) +

n
∑

i=1

Ri (3.12)

where:

Ag(w) := g′′(w) − g′(w)w (3.13)

Now since the expectations of S1i and S2i vanish, the absolute values of expectations
of the two terms on the r. h. s. of (3.12) must be equal. Consequently,

|EAg(W )| ≤ M3(g)
n
∑

i=1

(

5

6
E |Xi|3 +

2

3
E |X ′

i|3
)

=
3

2

n
∑

i=1

E |Xi|3 (3.14)

Remark. The expression on the right-hand side is typically small. In particular,

if all random variables Xi are identically distributed, i. e. Xi
d
= n−1/2X, where X

can be any random variable with EX = 0 and var(X) = 1, we have
∑n

i=1 E |Xi|3 =
n−1/2

E |X|3.
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Having found A and derived (3.14), there are two possibilities to approximate the
distribution of W as described in Section 2. The first one is to solve the Stein equa-
tion (2.4), which in our case reduces to an ordinary differential equation. Writing
h := g′, we have in fact to find a solution to the equation:

h′(x) − h(x)x = f(x) − Pf (3.15)

with M2(h) = M3(g) <∞. First observe that every function f with Mr(f) <∞ for
some r is of polynomial growth in the following sense:

Definition. A function f : R → R is of polynomial growth if its norm defined
by:

‖f‖r := sup
x∈R

|f(x)|
1 + |x|r (3.16)

is bounded for some r ≥ 0.
Now suppose that a function h of polynomial growth solves:

h′(x) − h(x)x = f(x) (3.17)

in weak sense, i. e. h is absolutely continuous on every finite interval and (3.17)
holds for almost all x ∈ R. Clearly, f must be Lebesgue integrable on every finite
interval and:

h(x) = e
1
2
x2

(

h(0) +

∫ x

0

f(z)e−
1
2
z2

dz

)

(3.18)

Since h is of polynomial growth, we have:

lim
x→∞

e−
1
2
x2

h(x) = lim
x→−∞

e−
1
2
x2

h(x) = 0 (3.19)

Therefore,
∫ ∞

−∞

f(z) e−
1
2
z2

dz = 0 (3.20)

where the integral is taken to be the limit of the Lebesgue integrals over finite
intervals, and h satisfies:

h(x) = e
1
2
x2

∫ x

−∞

f(z) e−
1
2
z2

dz = −e 1
2
x2

∫ ∞

x

f(z) e−
1
2
z2

dz (3.21)

Having established necessary conditions for a solution to (3.17) to be of polynomial
growth, we now turn to sufficient conditions. Define:

N f := Pf :=

∫ ∞

−∞

f(z)φ(z) dz (3.22)

where φ denotes the standard normal density:

φ(z) :=
1√
2π

e−
1
2
z2

(3.23)
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Lemma 3.1 Let f : R → R be a measurable function of polynomial growth. Then

the function:

h(x) = e
1
2
x2

∫ x

−∞

(f(z) −N f) e−
1
2
z2

dz = −e 1
2
x2

∫ ∞

x

(f(z) −N f) e−
1
2
z2

dz (3.24)

is the unique solution of polynomial growth to (3.15); in fact, for every r ≥ 1, there

is a constant Cr, such that:

‖h‖r−1 ≤ Cr‖f‖r (3.25)

Moreover,

M2(h) ≤ 2M1(f) (3.26)

Proof. For the first part, it only remains to prove (3.25). That estimate can
be derived by the observation that for every x ≥ 0 and r ≥ 1,

∫ ∞

x

zr e−
1
2
z2

dz =

∫ ∞

0

(u+ x)r e−
1
2
(u+x)2 du ≤

≤ 2r−1

∫ ∞

0

(ur + xr)e−
1
2
(u+x)2 du ≤

≤ 2r−1e−
1
2
x2

∫ ∞

0

(

ure−
1
2
u2

+ xre−ux
)

du ≤

≤ e−
1
2
x2

[

2
3(r−1)

2 Γ

(

r + 1

2

)

+ 2r−1xr−1

]

(3.27)

For the second part, see Stein (1986). �

The operator semigroup approach can also be used to our advantage. Observe
that the operator A generates the Ornstein–Uhlenbeck semigroup (see Rogers and
Williams, 1994):

Ptf(x) :=

∫ ∞

−∞

f
(

e−tx +
√

1 − e−2tz
)

φ(z) dz (3.28)

Lemma 3.2 For a measurable function f : R → R of polynomial growth, the inte-

gral:

g(x) = −
∫ ∞

0

(

Ptf(x) −N f
)

dt (3.29)

exists for all x ∈ R and solves:

g′′(x) − g′(x)x = f(x) −N f (3.30)

Moreover, g′ is of polynomial growth, coincides with h defined in (3.24) and:

M3(g) = M2(h) ≤ min

{
√

2π

4
M2(f),

1

3
M3(f)

}

(3.31)
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Proof. In view of (2.7), write:

Ptf(x) −N f = Ptf(x) −NPtf =

∫ ∞

−∞

[

Ptf(x) − Ptf(y)
]

φ(y) dy =

=

∫ ∞

−∞

∫ x

y

d

ds
Ptf(s) ds φ(y) dy

(3.32)

In order to evaluate d/dxPtf(x), write:

Ptf(x) =

∫ ∞

−∞

f
(

e−tx +
√

1 − e−2t z
)

φ(z) dz =

=

∫ ∞

−∞

f
(
√

1 − e−2tu
)

φ

(

u− 1√
e2t − 1

x

)

du

(3.33)

Differentiation yields:

d

dx
Ptf(x) = − 1√

e2t − 1

∫ ∞

−∞

f
(
√

1 − e−2tu
)

φ′

(

u− 1√
e2t − 1

x

)

du =

= − 1√
e2t − 1

∫ ∞

−∞

f
(

e−tx +
√

1 − e−2t z
)

φ′(z) dz

(3.34)

Since f is of polynomial growth, ‖f‖r is bounded for some r ≥ 0. An easy calculation
shows that ‖d/dxPtf(x)‖r is also bounded. Using (3.32), one can then check that:

∫ ∞

0

‖Ptf −N f‖r+1 dt <∞ (3.35)

Hence the integral on the r. h. s. of (3.29) exists for all x ∈ R. Moreover, since
Pt, t ≥ 0, is a continuous operator semigroup on the space of all functions ψ with
‖ψ‖r+1 < ∞, it follows from Dynkin formula that Ag = f − N f , where A is the
infinitesimal generator of the semigroup. Notice that Ag coincides with the l. h. s.
of (3.30) provided that g ∈ C(2)(R) with g′′ being of polynomial growth.

Now suppose that f ∈ C(1)(R) and that f ′ is of polynomial growth. Differentia-
tion of (3.29) together with (3.34) yields:

g′(x) = −
∫ ∞

0

d

dx
Ptf(x) dt =

∫ ∞

0

1√
e2t − 1

f
(

e−tx +
√

1 − e−2t z
)

φ′(z) dz dt

(3.36)

g′′(x) =

∫ ∞

0

e−t

√
e2t − 1

f ′
(

e−tx +
√

1 − e−2t z
)

φ′(z) dz dt (3.37)

implying the desired properties of g. Hence g solves (3.30). Moreover, it follows from
(3.36) that g′ is of polynomial growth; in fact, one can easily check that ‖g ′‖r ≤
Cr‖f‖r for some Cr independent of f . Since h is the unique solution to (3.15) being
of polynomial growth, g′ must coincide with h.

Now choose some r ≥ 1 and consider the space of all functions f with ‖f‖r <∞.
Since the operators mapping f to g′ and to h are bounded with respect to the norm
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‖·‖r and coincide on the dense subspace of all functions f , such that f ′ is continuous
and of polynomial growth, g′ coincides with h and therefore g solves (3.30) for every
function f of polynomial growth.

Finally, in order to derive (3.31), observe that by differentiating (3.29) and (3.37)
and noting that every Lipschitz function is differentiable almost everywhere and
satisfies the fundamental theorem of calculus (see Rudin, 1987):

g′′′(x) = −
∫ ∞

0

e−3t

∫ ∞

−∞

f ′′′
(

e−tx +
√

1 − e−2t z
)

φ(z) dz dt =

=

∫ ∞

0

e−2t

√
e2t − 1

f ′′
(

e−tx +
√

1 − e−2t z
)

φ′(z) dz dt

(3.38)

The estimate (3.31) obviously follows. �

The operator semigroup is important because it can be readily extended to mul-
tivariate and functional settings. In the d-variate setting, we simply replace φ by
the d-variate standard normal density and A by:

Ag(w) := ∆g(w) − 〈∇g(w), w〉 (3.39)

For extensions to the functional setting, see Barbour (1990).

In the multivariate setting, the estimate (3.31) remains unchanged and the proof
can more or less be obtained by rewriting the proof of (3.31), where g is defined
analogously to (3.29) and where Mr(f) are suitable generalizations of the r. h. s.
of (3.7). On the other hand, M3(g) cannot be estimated in terms of M1(f). In fact,
it turns out by straightforward calculation that for the function f : R

2 → R defined
by:

f(x, y) := max{min{x, y}, 0} (3.40)

the corresponding function g is twice continuously differentiable, but
∂2g/∂x ∂y is not Lipschitz.

However, we can go one step further by observing that we only need ∇g, not g.
Hence, instead of seeking the solution g to the equation Ag = f −N f , it suffices to
find a vector field h satisfying:

div h(w) − 〈h(w), w〉 = f(w) −
∫

Rd

f(x)φ(x) dx (3.41)

Open problem. Let m ≥ 2. Is there a constant Cm, such that for every
Lipschitz function f : R

m → R, there is a vector field h satisfying (3.41) and such
that the Lipschitz constant of its second partial derivatives is bounded by Cm? If
yes, how rapidly does Cm grow with m?

To summarize the results of the whole section, we state the following results
implied by Lemmas 3.1 and 3.2, describing the behavior of the solutions to the Stein
equation:
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Corollary 3.3 For every function f : R → R with finite M1(f), M2(f) or M3(f),
there is a solution h to (3.15) satisfying:

M2(h) ≤M(f) := min

{

2M1(f),

√
2π

4
M2(f),

1

3
M3(f)

}

(3.42)

provided that the quantity on the r. h. s. is finite.

Having examined solutions to the Stein equation, we can now bound the error in
the normal approximation: in order to approximate the distribution of any random
variable W (not necessarily a sum of independent random variables), we only need
to estimate

∣

∣E[h′(W ) − h(W )W ]
∣

∣ in terms of M2(h); then we apply Corollary 3.3,
which has been proved once and for all.

Notice that bounds in terms of M(f) imply weak convergence: any sequence
of probability measures µn satisfying

∣

∣

∫

f dµn − N f
∣

∣ ≤ εnM(f), where εn → 0,
converges weakly to the standard normal distribution.

For sums of independent random variables, (3.14) together with Corollary 3.3
yields:

Theorem 3.4 For independent random variables X1, . . .Xn with sum W and with

EXi = 0 and var(W ) = 1, we have for every sufficiently smooth f ,

∣

∣E f(W ) −N f
∣

∣ ≤ 3

2
M(f)

n
∑

i=1

E |Xi|3 (3.43)

The estimate in (3.43) is analogous to the one in the Berry–Esséen theorem,
except that it is based on smooth or Lipschitz test functions. A proof of the Berry–
Esséen theorem by means of Stein’s method will be given in Section 5. However, the
main strength of Stein’s method is that it is readily applicable to sums of dependent

random variables. This will be done in the next section.

4 A CLT for decomposable random variables

As we have seen in the previous section, the distribution of a random variable W
will be close to the standard normal if the Stein expectation:

E
[

h′(W ) − h(W )W
]

(4.1)

is small with respect to M2(h). In order to estimate (4.1) for sums of dependent
random variables, several techniques have been developed. All of them are based
on constructing auxiliary random variables W ∗ on a joint probability space with W ,
having certain properties and being close to W . This is called “auxiliary random-

ization” by Stein; the idea appears under the name of “coupling” in other contexts
(see e.g., Lindvall, 1992 and references therein).

The properties of W ∗ that can be used to our advantage can be quite different.
Stein (1986) chooses W ∗, such that its conditional expectation with respect to W is
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a linear function of W (inspired by the fact that this is true if the joint distribution
of (W,W ∗) is bivariate normal). This idea was subsequently extended by Rinott
and Rotar (1997).

Another idea is to construct W ∗ with a certain distribution depending on the
distribution of W . Baldi, Rinott, and Stein (1989) (see also Dembo and Rinott,
1996; and Goldstein and Rinott, 1996) propose the size-biassed coupling : for non-
negative W , W ∗ is chosen so that P(W ∗ ∈ dw) = w P(W ∈ dw)/EW , or, in other
words, E f(W ∗) = E f(W )W/EW . Another approach is the so called zero biassed

coupling proposed by Goldstein and Reinert (1997), where for W with EW = 0,
E f ′(W ∗) = E f(W )W (although the same construction had in fact already been
used by Chen and Ho (1978) and Stein (1986) to prove the classical Berry–Esséen
theorem).

In most applications, the random variable to be approximated can be regarded
as a sum of weakly dependent random variables. For W =

∑

i∈I Xi, the Stein
expectation takes the form:

E h′(W ) −
∑

i∈I

E h(W )Xi (4.2)

One way of evaluating E h(W )Xi is to examine the conditional distribution of W
given Xi. In particular, it is often useful to construct auxiliary random variables
being close to W and having the conditional distribution of W given Xi = x. This
allows us, for instance, to construct good size biassed couplings.

Observe that the conditional distribution of W given Xi will be close to its un-
conditional distribution if W can be written as a sum of two random variables, the
first one independent of Xi and the second one being small. This elegant and pow-
erful approach was already introduced by Stein (1972), but considerably simplified
by Barbour, Karoński, and Ruciński (1989). In fact, it can be used in most of the
applications of normal approximation by Stein’s method that have been studied. In
particular, it extends the concept of local dependence (see Chen, 1978; Chen, 1986;
Stein, 1986; Arratia, Goldstein, and Gordon, 1990; Rinott, 1994; and Goldstein and
Rinott, 1996). We shall take a closer look at local dependence at the end of this
section.

Following Barbour, Karoński, and Ruciński (1989), suppose that W is a random
variable decomposed in the following way:

W =
∑

i∈I

Xi (4.3)

EXi = 0, i ∈ I; var(W ) = 1 (4.4)

W = Wi + Zi, i ∈ I, where Wi is independent of Xi (4.5)

Zi =
∑

k∈Ki

Zik, i ∈ I (4.6)

Wi = Wik + Vik, i ∈ I, k ∈ Ki

where Wik is independent of the pair (Xi, Zik),
(4.7)
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and where I and Ki are index sets. We also assume that:

∑

i∈I

(

E |Xi|2
)1/2

<∞,
∑

i∈I

∑

k∈Ki

E |Xi| |Zik| <∞ (4.8)

The following theorem is a slight modification of the result derived by Barbour,
Karoński, and Ruciński (1989):

Theorem 4.1 For every random variable W decomposed as in (4.3)–(4.7) and every

function f : R → R, we have:

∣

∣E f(W ) −N f
∣

∣ ≤ M(f)

[

1

2

∑

i∈I

E |Xi|Z2
i +

+
∑

i∈I

∑

k∈Ki

(

E |XiZikVik| + E |XiZik|E |Zi + Vik|
)

] (4.9)

where M(f) is as in (3.42) and where N f is as in (3.22).

Remark. If the Xi’s are independent, we can set Zi := Xi, Ki := {0} and
Vi0 := 0, and Theorem 4.1 yields (3.43).

Proof of Theorem 4.1. By Theorem 3.1, it suffices to estimate:

E

[

h′(W ) − h(W )W
]

=
∑

i∈I

E

[

h′(W ) EXiW − h(W )Xi

]

(4.10)

Taylor’s expansion of W centered at Wi yields:

E h(W )Xi = E h(Wi)Xi + E h′(Wi)XiZi + ρ1i (4.11)

where:

|ρ1i| ≤
1

2
M2(h) E |Xi|Z2

i (4.12)

By independence, the first term on the r. h. s. of (4.11) vanishes, while the
second term can be rewritten in the following way, using Taylor’s expansion and
independence:

E h′(Wi)XiZi =
∑

k∈Ki

E h′(Wi)XiZik =

=
∑

k∈Ki

E h′(Wik)XiZik + ρ2i =

=
∑

k∈Ki

E h′(Wik) EXiZik + ρ2i

(4.13)

where:

|ρ2i| ≤M2(h)
∑

k∈Ki

E |XiZikVik| (4.14)



Normal Approximation by Stein’s Method 83

Finally, for the first term of (4.10), we have:

E h′(W ) EXiW = E h′(W ) EXiZi =
∑

k∈Ki

E h′(W ) EXiZik

=
∑

k∈Ki

E h′(Wik) EXiZik + ρ3i

(4.15)

where:
|ρ3i| ≤M2(h)

∑

k∈Ki

E |XiZik|E |Zi + Vik| (4.16)

Combining (4.11), (4.13), (4.15) and adding over i, only the remainders survive, so
that:

E
[

h′(W ) − h(W )W
]

=
∑

i∈I

(

ρ3i − ρ1i − ρ2i

)

(4.17)

which, together with Theorem 3.1, proves the desired result. �

Now we turn to locally dependent random variables according to Rinott’s (1994)
definition:

Definition. Let I be an index set. A graph Γ with the vertex set I is said to
be a dependence graph for a collection of random variables Xi, i ∈ I, if for any two
disjoint subsets K,L ⊂ I which are not connected by an edge of Γ, the collections
{Xk : k ∈ K} and {Xl : l ∈ L} are independent.

The following theorem is useful for finite dependence, i. e. the case where the
maximum degree of the dependence graph is finite.

Theorem 4.2 Let Γ be a dependence graph for a collection Xi, i ∈ I with EXi = 0
and var(W ) = 1, where W =

∑

i∈I Xi. Then we have:

∣

∣E f(W ) −N f
∣

∣ ≤ 7

2
M(f)(D + 1)2

∑

i∈I

E |Xi|3 (4.18)

where D denotes the maximum degree of Γ.

Proof. In order to satisfy (4.5)–(4.7), define Ki to be the set of all vertices
adjacent to i with respect to Γ (including i itself) and put:

Zik := Xk, Vik :=
∑

l∈Kk\Ki

Xl (4.19)

Theorem 4.1 yields:

∣

∣E f(W ) −N f
∣

∣ ≤M(f)

[

1

2

∑

i∈I

∑

k∈Ki

∑

l∈Ki

E |XiXkXl|+

+
∑

i∈I

∑

k∈Ki

∑

l∈Kk\Ki

E |XiXkXl| +
∑

i∈I

∑

k∈Ki

∑

l∈Ki∪Kk

E |XiXk|E |Xl|
] (4.20)

The proof is now completed by applying the inequality xyz ≤ 1
3
(x3 + y3 + z3)

(x, y, z ≥ 0) and straightforward calculation. �
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5 Berry–Esséen theorem

In this section, we shall estimate the error in normal approximation in the Kol-
mogorov metric, i. e. for a given random variable W , we shall estimate:

sup
w∈R

∣

∣P(W ≤ w) − Φ(w)
∣

∣ (5.1)

where:

Φ(w) :=

∫ w

−∞

φ(z) dz (5.2)

and where φ is as in (3.23). In other words, we take the following test functions:

fw(x) :=

{

1 ; x ≤ w
0 ; x > w

(5.3)

Unfortunately, the results of the previous section cannot be applied directly because
the first derivative of the solution hw to the Stein equation:

h′w(x) − hw(x)x = fw(x) − Φ(w) (5.4)

given by (3.24) is not continuous, let alone Lipschitz or smooth. One way to over-
come this obstacle is to use the zero bias transformation mentioned in Section 4:
see Chapter IX in Stein (1986). However, this approach requires a deconvolution
procedure, which may cause problems and has remained limited to sums of i. i. d.
random variables.

Another useful idea is to approximate the functions fw by Lipschitz functions in
the following way:

fw,ε(x) :=







1 ; x ≤ w − ε
0 ; x ≥ w + ε

linear ; w − ε ≤ x ≤ w + ε
(5.5)

A straightforward calculation shows that:

P(W ≤ w) − Φ(w) ≤ E fw+ε, ε(W ) −N fw+ε, ε +
ε√
2π

P(W ≤ w) − Φ(w) ≥ E fw−ε, ε(W ) −N fw−ε, ε −
ε√
2π

(5.6)

where N is as in (3.22). Furthermore, defining hw,ε analogously to hw, Lemma 3.1
yields:

M2(hw,ε) ≤ 2M1(fw,ε) ≤
1

ε
(5.7)

Now suppose that:
∣

∣E
[

h′(W ) − h(W )W
]
∣

∣ ≤ δM2(h) (5.8)

Combining (5.6) and (5.7), we obtain:

∣

∣P(W ≤ w) − Φ(w)
∣

∣ ≤ δ

ε
+

ε√
2π

(5.9)
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and optimization over ε unfortunately only yields:

∣

∣P(W ≤ w) − Φ(w)
∣

∣ ≤ 2
4
√

2π

√
δ (5.10)

which is in most cases a crude bound. Typically, it can be shown that the l. h. s.
of (5.10) is of order O(δ), as for Lipschitz and smooth test functions. However, the
derivation of the latter requires a more delicate argument with the key observation
that h′w,ε has only one jump at w, but is Lipschitz on (−∞, w) as well as on (w,∞).
Alternatively, we can use the fact that h′′

w,ε is in fact only large on a small interval.
Hence, in view of (4.11), (4.13) and (4.15), the estimate of the l. h. s. of (5.10)
depends on proving a conditional concentration inequality for a perturbation of W .
More precisely, one has to prove that for a certain class of random variables X,
P(a ≤ X ≤ b) ≤ ε+ c(b− a) for all a < b, where ε and c are universal constants and
where ε is small. This can be done separately – by the zero bias transformation (see
Chen and Ho, 1978) or by a bootstrapping argument (see Chen, 1986; and Chen
and Shao, 2001). The other possibility is to refer back to normal approximation,
requiring an inductive (see Bolthausen, 1984; Götze, 1991; and Bolthausen and
Götze, 1993) or a bootstrapping argument (see Rinott, 1994; and Rinott and Rotar,
1996).

Rinott (1994) proves a central limit theorem for sums of bounded locally depen-
dent random variables. In the present paper, we first extend that result to random
variables with bounded decompositions in the sense of Section 4:

Theorem 5.1 Let W be a random variable decomposed as in (4.3)–(4.7). Suppose

that:

|Xi| ≤ Ai, |Zik| ≤ Bik, |Vik| ≤ Cik, |Zi + Vik| ≤ C ′
ik (5.11)

for some constants Ai, Bik, Cik and C ′
ik. Then:

sup
w∈R

∣

∣P(W ≤ w) − Φ(w)
∣

∣ ≤ 13.7
∑

i∈I

AiB
2
i +

∑

i∈I

∑

k∈Ki

AiBik(6.8Cik + 9.3C ′
ik) (5.12)

where Bi :=
∑

k∈Ki
Bik.

Proof. Similarly as in (4.17), we have:

∣

∣E fw,ε(W ) −N fw,ε

∣

∣ =
∑

i∈I

(

R3ih
′
w,ε − R1ih

′
w,ε −R2ih

′
w,ε

)

(5.13)

where fw,ε and hw,ε are as before, where:

R1ig = E
(

g(Wi + θ1Zi) − g(Wi)
)

XiZi

R2ig =
∑

k∈Ki

E
(

g(Wi) − g(Wik)
)

XiZik

R3ig =
∑

k∈Ki

E
(

g(W ) − g(Wik)
)

EXiZik

(5.14)
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and where θ1 is uniformly distributed over [0, 1] and independent of all other variates.
Notice that h′w,ε = gw,ε + fw,ε, where:

gw,ε(x) = hw,ε(x)x (5.15)

Now write:

gw,ε(x) − gw,ε(y) = hw,ε(x)(x− z) − hw,ε(y)(y − z) +

+
(

hw,ε(x) − hw,ε(y)
)

z
(5.16)

and notice that supx∈R
|hw,ε(x)| ≤

√
2π/4 and that M1(hw,ε) ≤ 1 (see Lemma 2 in

Chapter II of Stein, 1986). Choosing z = W , a straightforward calculation then
shows that:

|R1igw,ε| ≤
(

3

8

√
2π +

1

2
E |W |

)

AiB
2
i ≤

(

3

8

√
2π +

1

2

)

AiB
2
i (5.17)

noting that E |W | ≤ (EW 2)1/2 = 1. Similar estimates can be derived for R2igw,ε

and R3igw,ε. Summing up and adding over i, we obtain as a result:

∑

i∈I

3
∑

s=1

|Rsigw,ε| ≤ β1 :=
4 + 5

√
2π

8

∑

i∈I

AiB
2
i +

+
∑

i∈I

∑

k∈Ki

AiBik

(

Cik +
2 +

√
2π

2
C ′

ik

)

(5.18)

Now we shall estimate the most delicate part, i. e. Rsifw,ε. First observe that
because of the monotonicity of fw,ε,

|R1ifw,ε| ≤ E
(

fw,ε(W −Bi) − fw,ε(W +Bi)
)

AiBi

|R2ifw,ε| ≤
∑

k∈Ki

E
(

fw,ε(W −Bi − Cik) − fw,ε(W +Bi + Cik)
)

AiBik

|R3ifw,ε| ≤
∑

k∈Ki

E
(

fw,ε(W − C ′
ik) − fw,ε(W + C ′

ik)
)

AiBik

(5.19)

Now write:

fw,ε(x) − fw,ε(y) =

∫ 1

0

f ′
w,ε

(

(1 − θ)x+ θy
)

(x− y) dθ =

=
y − x

2ε

∫ 1

0

1
(

w − ε ≤ (1 − θ)y + θx ≤ w + ε
)

dθ

(5.20)

Hence,

|R1ifw,ε| ≤
1

ε

∫ 1

0

P
(

w − ε ≤ W + (2θ − 1)Bi ≤ w + ε
)

dθ AiB
2
i (5.21)

Denoting:
δ := sup

w∈R

∣

∣P(W ≤ w) − Φ(w)
∣

∣ (5.22)
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the random variable W satisfies the following concentration inequality:

P(a ≤ W ≤ b) ≤ 2δ +
b− a√

2π
(5.23)

Therefore,

|R1ifw,ε| ≤ 2

(

1√
2π

+
δ

ε

)

AiB
2
i (5.24)

Analogously, we can estimate |R2ifw,ε| and |R3ifw,ε|. Collecting all three estimates
and adding over i, we obtain:

∑

i∈I

3
∑

s=1

|Rsifw,ε| ≤ 2

(

1√
2π

+
δ

ε

)

β2 (5.25)

where:
β2 := 2

∑

i∈I

AiB
2
i +

∑

i∈I

∑

k∈Ki

AiBik(Cik + C ′
ik) (5.26)

Combining (5.6), (5.13), (5.18) and (5.25), we obtain:

δ ≤ β1 +
2√
2π

β2 +
2δ

ε
β2 +

ε√
2π

(5.27)

Choosing ε := 4β2, we obtain:

δ ≤ β1 +
6√
2π

β2 +
δ

2
(5.28)

Therefore,

δ ≤ 2β1 +
12√
2π

β2 (5.29)

which, together with some numerical estimates, yields the desired result. �

For locally dependent and uniformly bounded random variables, we obtain the
following result:

Corollary 5.2 Let W := X1 + . . . + Xn be a sum of random variables with a

dependence graph of maximum degree D. As before, suppose that EXi = 0 and

var(W ) = 1. Furthermore, suppose that for all i, |Xi| ≤ B for some B > 0. Then

for all w ∈ R,
∣

∣P(W ≤ w) − Φ(w)
∣

∣ ≤ 40n(D + 1)2B3 (5.30)

This result is due to Rinott (1994). In fact, an estimate with the constant
27 instead of 40 follows easily from Theorem 2.2 in Rinott (1994), noting that
1 = var(W ) ≤ n(D+1)B2. Further extensions of Theorem (5.2) are given by Rinott
and Rotar (1996), where the results are formulated in the multivariate context. A
similar argument can also be applied to the antivoter model and degenerate U -
statistics (see Rinott and Rotar, 1997).

The constants obtained in (5.12) are relatively large and could be improved to
some extent. In particular, instead of the simple, crude estimates applied in (5.19),
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one could consider the absolute value of the conditional expectations given Xi and
Zik rather than the unconditional expectation of the absolute value. This variant of
the argument requires an additional assumption that the random variables Wik have
the same distribution as W . This causes no loss of generality: if Wik is independent
of (Xi, Zik), it is always possible to construct a random variable W ′

ik (on an extended
probability space) which is also independent of (Xi, Zik), has the same distribution
as W and is sufficiently close to Wik.

Apart from better constants, the approach mentioned above is also more flexible.
It can be, for instance, applied to certain random graph counts, such as the number
of isolated trees (see Barbour, 1982; Cf. Barbour, Karoński, and Ruciński, 1989),
where Theorem 5.1 does not work. Details may appear somewhere else.

It would also be interesting to consider the cases where the random variables
such as Xi and Zik are not bounded and to derive a Berry–Esséen type estimate
of the error in the CLT in terms of their third moments. In this case, the ‘boot-
strapping’ argument fails. Instead, one has to consider conditional distributions of
certain perturbations of W separately. This leads to a more complicated inductive
argument. Bolthausen (1984) uses this type of argument to prove the Berry–Esséen
theorem and to derive a combinatorial central limit theorem for linear rank statistics
(see Theorem 6.2). The same technique is used by Götze (1991) and Bolthausen and
Götze (1993) to derive a multivariate central limit theorem for independent random
vectors and approximately linear rank statistics, respectively.

In the general setting, the inductive approach turns out to be rather complicated.
For the sake of simplicity, we shall only demonstrate the method to prove the Berry–

Esséen theorem:

Theorem 5.3 Let X1, . . .Xn be independent random variables with sum W . Sup-

pose that EXi = 0 and var(W ) = 1. Then for all w ∈ R,

∣

∣P(W ≤ w) − Φ(w)
∣

∣ ≤ K

n
∑

i=1

E |Xi|3 (5.31)

where K is a universal constant.

Regarding possible extensions to dependent random variables, the main feature
of the inductive approach is that it is likely to give rise to results of the same quality
as Theorem 5.3. In particular, for local dependence, the following result seems likely
to be true:

Conjecture 5.4 Let W :=
∑

i∈I Xi be a sum of random variables with a dependence

graph of maximum degree D. As usual, suppose that EXi = 0 and var(W ) = 1.
Then for all w ∈ R,

∣

∣P(W ≤ w) − Φ(w)
∣

∣ ≤ K(D + 1)2
∑

i∈I

E |Xi|3 (5.32)

where K is a universal constant.
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Proof of Theorem 5.3. Given n ∈ N, let Kn be the greatest number K, such
that (5.31) holds for any sum of n independent random variables centered and scaled
as in Theorem 5.3. By Jensen’s inequality,

sup
w∈R

∣

∣P (W ≤ w) − Φ(w)
∣

∣ ≤ 1 =

(

n
∑

i=1

E |Xi|2
)3/2

≤ √
n

n
∑

i=1

E |Xi|3 (5.33)

so that, trivially, Kn ≤ √
n and is therefore finite. However, it has to be shown that

the constants Kn are uniformly bounded.
Similarly as in (4.11)–(4.15), we have:

E fw,ε(W ) −N f = E

[

h′w,ε(W ) − hw,ε(W )W
]

=

=

n
∑

i=1

E

[

h′w,ε(W )σ2
i − hw,ε(W )Xi

]

=

=
n
∑

i=1

E

[

h′w,ε(W )σ2
i − hw,ε(Wi)Xi − h′w,ε(Wi + θ1Xi)X

2
i

]

(5.34)

where σ2
i := var(Xi), Wi = W −Xi and where θ1 is uniformly distributed over [0, 1]

and independent of all other variates. Because of independence, the second term
vanishes, so that:

E fw,ε(W ) −N fw,ε =

n
∑

i=1

Rih
′
w,ε (5.35)

where:
Rig := E

[

g(W )σ2
i − g(Wi + θ1Xi)X

2
i

]

(5.36)

Again by independence, one can write:

Rig = R1ig − R2ig (5.37)

where:

R1ig := E

[

g(W ) − g(Wi)
]

σ2
i

R2ig := E

[

g(Wi + θ1Xi) − g(Wi)
]

X2
i

(5.38)

As in the proof of Theorem 5.1, observe that h′
w,ε = fw,ε + gw,ε, where gw,ε is as

in (5.15). The quantities Risgw,ε will be estimated similarly as in (5.16)–(5.17):
choosing z = Wi, we obtain:

|R1igw,ε| ≤
(
√

2π

4
+ E |Wi|

)

σ2
i E |Xi| ≤

4 +
√

2π

4
E |Xi|3

|R2igw,ε| ≤
(

√
2π

8
+

1

2
E |Wi|

)

E |Xi|3 ≤
4 +

√
2π

8
E |Xi|3

(5.39)

noting that E |Wi| ≤ (var(Wi))
1/2 ≤ (var(W ))1/2 = 1.



90 Martin Raič

To estimate Rifw,ε, first write:

Rifw,ε = E
(

fw,ε(W ) − 1
2

)

σ2
i − E

(

fw,ε(Wi + θ1Xi) − 1
2

)

X2
i (5.40)

Since 0 ≤ fw,ε ≤ 1, we have:
|Rifw,ε| ≤ σ2

i (5.41)

On the other hand, Rifw,ε can be estimated by means of (5.20). Here we deviate
from the argument of (5.19). Instead of using boundedness (which is no longer
assumed), we consider, as already mentioned, conditional expectations, leading to:

|R1ifw,ε| ≤
1

2ε
E

[

P
(

w − ε ≤ Wi + θ2Xi ≤ w + ε
∣

∣ Xi, θ2
)

σ2
i |Xi|

]

|R2ifw,ε| ≤
1

2ε
E

[

P
(

w − ε ≤ Wi + θ1θ2Xi ≤ w + ε
∣

∣ Xi, θ1, θ2
)

|Xi|3
]

(5.42)

where θ2 is another random variable which is uniformly distributed over [0, 1] and
independent of everything else.

Now we shall apply the inductive hypothesis. Noting that var(Wi)
−1/2Wi is also a

sum of n−1 (and hence n) centered independent random variables and has variance
1 and using the definition of Kn, we have, similarly as in (5.23):

P(a ≤ Wi ≤ b) ≤ b− a√
2π

+ 2 sup
x∈R

∣

∣P(Wi ≤ x) − Φ(x)
∣

∣ =

=
b− a√

2π
+ 2 sup

x∈R

∣

∣P
(

var(Wi)
1/2Wi ≤ x

)

− Φ(x)
∣

∣ ≤

≤ b− a√
2π

+
2

(1 − σ2
i )

3/2
Knβ

(5.43)

where:

β =

n
∑

i=1

E |Xi|3 (5.44)

Combining (5.42) and (5.43), and using independence, we obtain:

|Rifw,ε| ≤
3

2

(

1√
2π

+
βKn

ε(1 − σ2
i )

3/2

)

E |Xi|3 (5.45)

which together with (5.41) implies:

|Rifw,ε| ≤
3

2
√

2π
E |Xi|3 + min

{

σ2
i ,

3βKn

2ε
E |Xi|3(1 − σ2

i )
−3/2

}

(5.46)

It can be shown that min
{

a, x(1 − σ2)−3/2
}

≤ x+
√

3/2 aσ, so that:

|Rifw,ε| ≤
3

2

(

1√
2π

+
βKn

ε

)

E |Xi|3 +

√

3

2
σ3

i (5.47)

Collecting (5.39) and (5.47) and taking some numerical estimates, we obtain:

|Rih
′
w,ε|
(

4.27 + 1.5
βKn

ε

)

E |Xi|3 (5.48)



Normal Approximation by Stein’s Method 91

Combining this with (5.6) and (5.35), we obtain:

sup
w∈R

∣

∣P(W ≤ w) − Φ(w)
∣

∣ ≤
(

4.27 + 1.5
βKn

ε

)

β +
ε√
2π

(5.49)

Taking the minimum over ε, dividing by β and taking the supremum over all sums
W of n centered independent centered random variables with var(W ) = 1, we find
that:

Kn ≤ 4.27 + 1.55
√

Kn (5.50)

Since Kn is finite, (5.50) implies Kn ≤ 8.9, As a result, we have proved that Theorem
5.3 holds with K = 8.9. �

Remark. The constant K = 8.9 is far from being optimal. It has been shown
by Van Beek (1972) that it can be reduced to 0.7975; the optimal constant is, to
the best of the authors’s knowledge, not yet known (but bounded from below by
(
√

10 + 3)/(6
√

2π) ≈ 0.409, which is the best asymptotic constant for the i. i. d.
case: see Bhattacharya and Ranga Rao, 1986). Although the calculations given
above can be improved to some extent, it seems unlikely that Van Beek’s bound
can be attained this way; the best constant obtained up to now by Stein’s method
is 4.1 and was obtained by Chen and Shao (2001). On the other hand, Van Beek’s
result was proved by an entirely different argument based on characteristic functions.
Those methods, however, do not seem amenable for the case of dependent random
variables in such a generality as, for instance, Theorem 4.1.

6 Applications

6.1 Nash equilibria

Consider a game with p players where the k-th player chooses a pure strategy ik ∈
{1, . . . s}. Denote by V

(k)
i the payoff of the k-th player with respect to the vector of

chosen strategies i = (i1, . . . ip). We say that i is a Nash equilibrium point if V
(k)
i ≥

V
(k)
j for all j = (i1, . . . ik−1, j, ik+1, . . . ip), j ∈ {1, . . . s}, and for all k ∈ {1, . . . p}.

Denote by N the number of Nash equilibria.
We shall consider games with random payoffs, such that the payoff vectors Vi =

(

V
(1)
i , . . . V

(p)
i

)

, i ∈ {1, . . . s}p =: I, are independent and identically distributed.
Rinott and Scarsini (2000) investigate asymptotic distribution of N under several
conditions on the distribution of Vi. In this paper, we focus on sufficient conditions
for convergence to the normal distribution.

Writing:

N =
∑

i∈I

Yi (6.1)

where:

Yi :=

{

1 if i is a Nash equilibrium point
0 otherwise

(6.2)

observe that Yi are locally dependent with respect to the dependence graph Γ, where
two strategy vectors are adjacent if they differ in at most two components. Clearly,
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the same holds for Xi := var(N)−1/2(Yi − EYi). Noting that Γ is a regular graph
with vertices of degree (s−1)p+

(

p
2

)

(s−1)2 ≤ (sp)2−1, Theorems 4.2 and 5.2 yield:

∣

∣E f(W ) −N f
∣

∣ ≤ 7

2
M(f)(sp)4sp var(N)−3/2Q

∣

∣P(W ≤ w) − Φ(w)
∣

∣ ≤ 40 (sp)4sp var(N)−3/2Q
(6.3)

where:
W := var(N)−1/2(N − EN) =

∑

i∈I

Xi (6.4)

and where Q is the probability that a particular strategy vector is a Nash point.
Now suppose that Vi is a multivariate normal vector with exchangeable compo-

nents, such that:

ρ :=
cov
(

V
(k)
i , V

(l)
i

)

var
(

V
(k)
i

)1/2
var
(

V
(l)
i

)1/2
> 0 (6.5)

Rinott and Scarsini (2000) show that var(N) ≥ c(ρ)spQ for some c(ρ) > 0, provided
that sp is large. Hence,

∣

∣E f(W ) −N f
∣

∣ ≤ C1(ρ)M(f)
(sp)4

sp/2Q1/2

∣

∣P(W ≤ w) − Φ(w)
∣

∣ ≤ C2(ρ)
(sp)4

sp/2Q1/2

(6.6)

for some C1(ρ), C2(ρ) > 0. The above result appears in Rinott and Scarsini (2000),
together with the study of asymptotic behavior of Q.

6.2 Linear rank statistics

Consider a random variable W of the following form:

W :=
n
∑

i=1

a(i, π(i)) (6.7)

where a(i, k) ∈ R, i ∈ Nn, k ∈ NN , N ≥ n and where π is a random mapping
drawn from the uniform distribution over all injections from Nn to NN ; for r ∈ N,
we denote Nr := {1, 2, . . . r}. Without loss of generality, we can (and will) assume
that for all i ∈ Nn,

n
∑

j=1

a(i, j) = 0 (6.8)

In addition, we shall assume that:

var(W ) =
1

N − 1

n
∑

i=1

N
∑

j=1

a(i, j)2 − 1

N(N − 1)

(

n
∑

i=1

a(i, j)

)2

= 1 (6.9)

Observe that the random variables π(i) are exchangeable and therefore cannot
posess the structure of local dependence. Nevertheless, decompositions (4.5)–(4.7)
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can still be constructed in the following way. Firstly, for any two finite sets I, J ⊂ N

of the same cardinality, let τI,J : N → N be the map which maps the r-th element
of I \ J to the r-th element of J \ I and vice versa; the other elements are left
unchanged. Thus τI,J maps the set I bijectively onto J and N \ I onto N \ J . The
following lemma is straightforward and is therefore left without proof.

Lemma 6.1 Let A,B ⊂ N with |A| ≤ |B| < ∞, where | · | denotes cardinality,

and let π be a uniformly distributed random injection A→ B. Then for any subset

I ⊂ A and any random set J ⊂ B drawn from the uniform distribution over {J ⊂
B : |J | = |I|} and independent of π, the random mapping:

τπ(I),J ◦ π : A \ I → B (6.10)

is independent of the family {π(i) : i ∈ I}.
Now let J1 and J2 be random sets drawn from the uniform distribution over all

subsets of NN with one, respectively two elements, independent of each other and
jointly independent of π. Using Lemma 6.1, observe that (4.5)–(4.7) can be satisfied
by putting:

Xi := a(i, π(i)), Wi :=
∑

k∈I\{i}

a
(

k, τ{π(i)},J1(π(k))
)

, Ki := Nn

Zii := a(i, π(i)), Zik := a(k, π(k)) − a
(

k, τ{π(i)},J1
(π(k))

)

; k 6= i

Wii := Wi, Wik :=
∑

l∈I\{i,k}

a
(

l, τ{π(i),π(k)},J2
(π(l))

)

; k 6= i

(6.11)

Theorem 6.2 For a random variable W satisfying (6.7)–(6.9), we have:

∣

∣E f(W ) −N f
∣

∣ ≤M(f)

[

3

2
+ 20

n

N
+ 24

( n

N

)2
]

1

N

n
∑

i=1

N
∑

j=1

|a(i, j)|3 (6.12)

sup
w∈R

∣

∣P(W ≤ w) − Φ(w)
∣

∣ ≤ K
1

N

n
∑

i=1

N
∑

j=1

|a(i, j)|3 (6.13)

for a universal constant K.

Remark. When N → ∞ and n remains fixed, the random variables a(i, π(i))
are almost independent; notice that the bound in (6.12) approaches the bound in
(3.43).

Remark. Extensions of Theorem 6.2 to to the multivariate and functional setting
have also been undertaken (see Bolthausen and Götze, 1993, and Barbour, 1990).

Proof of Theorem 6.2. We shall only prove (6.12); for the proof of (6.13), see
Bolthausen (1984). To prove (6.12), observe that for any distinct i, j, l ∈ Nn,

|Zik| ≤ 1(π(k) ∈ J1)
(

|a(k, π(i))| + |a(k, π(k))|
)

ZikZil = Vii = 0,

|Zi + Vik| ≤ |a(i, π(i))| + |a(k, π(k))|+

+

n
∑

l=1

1(π(l) ∈ J2)
(

|a(l, π(i))| + |a(l, π(k))| + |a(l, π(l))|
)

(6.14)
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Theorem 4.1 yields, after a straightforward calculation:

∣

∣E f(W ) −N f
∣

∣ ≤M(f)

[

∑

i∈Nn

(

E |Xi|3 + 2 E |Xi|2 E |Xi|
)

+

+
∑

i∈Nn

∑

k∈Nn\{i}

(

4 E |X2
i Zik| + 3 E |XiZ

2
ik| + 2 E |Xi|2 E |Zik| +

+ 2 E |XiZik(Zi + Vik)| + 2 E |XiZik|E |Zi + Vik|
)

]

(6.15)

The proof is now completed by noting that:

P(π(k) ∈ J1 | π) =
1

N
, P(π(l) ∈ J2 | π, J1) =

2

N
(6.16)

and applying the inequality xyz ≤ 1
3
(x3 + y3 + z3) holding for any x, y, z ≥ 0. �
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[30] Glaz, J., Naus, J., Róos, M., and Wallenstein, S. (1994): Poisson approxi-
mations for distribution and moments of ordered m-spacings. J. Appl. Probab.,
31, 271–281.

[31] Godbole, A.P. (1993): Approximate reliabilities of m-consecutive-k-out-of-n:
Failure systems. Statist. Sinica, 3, 321–328.

[32] Goldstein, L. and Reinert, G. (1997): Stein’s method and the zero bias trans-
formation with applications to simple random sampling. Ann. Appl. Probab.,
7, 935–952.

[33] Goldstein, L., and Rinott, Y. (1996): Multivariate normal approximations by
Stein’s method and size biased couplings. J. Appl. Probab., 33, 1–17.

[34] Götze, F. (1991): On the rate of convergence in the multivariate CLT, Ann.

Probab., 19, 724–739.

[35] Lindvall, T. (1992): Lectures on the coupling method. New York: John Wiley
& Sons.

[36] Loh, W.–L. (1992): Stein’s method and multinomial approximation. Ann. Appl.

Probab., 2, 536–554.

[37] Luk, M. (1994): Stein’s method for the gamma distribution and related statis-
tical applications. Ph. D. Thesis, Univ. Southern California.

[38] Reinert, G. (1995): A weak law of large numbers for empirical measures via
Stein’s method. Ann. Probab., 23, 334–354.

[39] Rinott, Y. (1994): On normal approximation rates for certain sums of depen-
dent random variables. J. Appl. Comp. Math., 55, 135–143.

[40] Rinott, Y. and Rotar, V. (1996): A multivariate CLT for local dependence
with n−1/2 log n rate and applications to multivariate graph related statistics.
J. Multivariate Anal., 56, 333–350.

[41] Rinott, Y., and Rotar, V. (2000): Normal approximations by Stein’s method.
Decis. Econ. Finance, 23, 15–29.



Normal Approximation by Stein’s Method 97

[42] Rinott, Y., and Rotar, V. (1997): On coupling constructions and rates in the
CLT for dependent summands with applications to the antivoter model and
weighted U -statistics. Ann. Appl. Probab., 7, 1080–1105.

[43] Rinott, Y., and Scarsini, M. (2000): On the number of pure strategy Nash
equilibria in random games. Games Econom. Behav., 33, 274–293.

[44] Rogers, L.C.G. and Williams, D. (1994): Diffusions, Markov Processes, and

Martingales. Volume 1: Foundations. Chichester: John Wiley & Sons.

[45] Rudin, W. (1987): Real and Complex Analysis. New York: McGraw-Hill.

[46] Schneller, W. (1989): Edgeworth expansions for linear rank statistics. Ann.

Statist., 17, 1103–1123.

[47] Smith, R.L. (1989): Extreme value theory for dependent sequences via the
Stein–Chen method for Poisson approximation. Stoch. Proc. Appl., 30, 317–
327.

[48] Stein, C. (1972): A bound for the error in the normal approximation to the
distribution of a sum of dependent random variables. Proceedings of the VIth

Berkley Symposium on Mathematical Statistics and Probability, Vol. II: Proba-

bility Theory, Berkeley: Univ. California Press, 583–602.

[49] Stein, C. (1986): Approximate Computation of Expectations. Hayward: IMS.

[50] Takahata, H. (1993): On the rates in the central limit theorem for weakly
dependent random fields. Z. Wahrsch. Verw. Gebiete, 64, 445–456.


