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Abstract

This paper starts with a discussion of the ’optimality’ of sequential ran-
domized designs for comparing two treatments and introduces the concept of
“desirable” proportion of allocations to one of the treatments. The problem
is finding a randomized design which converges to the desirable one almost
certainly and also forces the procedure towards the desirable proportion even
for small samples. When balance is optimal we show that Efron’s Biased Coin
Design (1971) and the class of Wei’s designs (1978) are asymptotically desir-
able and propose extensions of the above mentioned algorithms that converge
almost surely to any desired proportion, when the value is known. The Ad-
justable Biased Coin Design of Baldi Antognini and Giovagnoli (2003) also
converges to balance and the convergence is faster than the other procedures.

1 Introduction

Assume we want to carry out a clinical trial to compare the efficacy of two drugs.
Suppose also that subjects arrive sequentially at an experimental site and are as-
signed immediately to either treatment. In the great majority of experiments two
requirements are:

1. the need for some form of possible restricted randomization to protect against
several types of bias, including selection bias arising from being able to guess
the next treatment allocation;

2. some type of optimality: for example, assuming a linear homoscedastic model
a common optimality criterion is to seek to minimize the variances of the
estimated treatment effects and this translates into a request for balance.
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A classical statistical problem is finding a sequential randomized design which
converge to the ’optimal’ one almost certainly. However, since in many cases we do
not know when the experiment is going to stop, there is a need for ad hoc designs
that work sufficiently well for small samples too.

As regards balance, the problem was brought to the fore in an authoritative paper
by Efron (1971) who proposed his - by now widely known - BCD (Biased Coin De-
sign). Several authors have extended his suggestion to more complex algorithms, e.g.
Wei (1978), Atkinson (1982), Smith (1984a, 1984b). However, for ethical reasons
the experimental purpose may be optimizing the expected number of successfully
treated patients, leading to the Play-the-Winner strategy (Zelen, 1969) or random-
ized Play-the-Winner (Wei and Durham, 1978). In the sequel we suppose that no
major ethical issue is at stake, so that the main concern is maximum precision of
our results. We shall not consider prognostic factors either. This paper starts with a
discussion, in Section 2, of “goodness” of designs for comparing two treatments. Sec-
tion 3 describes how a randomized sequential experiment forces to use a conditional
inference setting and we introduce the concept of “desirable” procedure namely one
that assigns a desired proportion of allocations of the two treatments. Section 4
deals with the problem of finding a randomized design which converges almost cer-
tainly to the desirable proportion when this proportion is known, and also forces
the procedure towards such an allocation for small samples too. This allows us to
use non-adaptive sequential procedures: in this case the randomized design is ancil-
lary (Cox and Hinkley, 1975) which, by the ancillarity principle, provides a further
justification for a conditional inference setting. Therefore in Section 4 we propose
a generalization of a convergence theorem for randomized sequential designs and
use it in Section 5 to show that when balance is desirable Wei’s design (1978) and
Efron’s Biased Coin Design (1971) are asymptotically desirable. Section 6 discuss
some extensions for a general desirable proportion. Finally, Section 7 shows how the
Adjustable Biased Coin Design proposed by Baldi Antognini and Giovagnoli (2003)
converges to the desirable proportion more rapidly than all the other coin designs
considered so far.

2 Optimal designs for the allocation of two treat-

ments

Let T1 and T2 be the treatments to compare. Suppose we allocate either of them
sequentially to the experimental units, observing each time an outcome Z. The
allocation at step k may depend, in a deterministic or radomized way, on the past
allocations and/or on the past observations of the outcomes up to step k − 1. Let
δk = 1 if the k-th unit is allocated to T1, 0 otherwise. Also, N1 (k) and N2 (k)
will denote the number of the first k observations that are allocated to T1 and to
T2, respectively; hence N1 (k) =

∑k

i=1 δi and N2 (k) =
∑k

i=1(1 − δi) = k − N1 (k);

πk = k−1
k

∑

i=1

δi will be the proportion of allocations to T1 (symmetrically, 1−πk to T2)

after k observations. Let Xk, Yk be the potential responses to the two treatments,
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assume that {(Xk, Yk)}k∈N
are i.i.d. and the distributions of X and Y depend on

the vector parameters θ1, θ2 respectively

Xi ∼ Lθ1
(X) and Yi ∼ Lθ2

(Y ) ∀i ≥ 1.

At stage k exactly one of Xk, Yk is observed and the observed response Zk can be
represented by Zk = δkXk + (1 − δk)Yk, with a probability model

Lθ(Zk|δk) =

{

Lθ1
(X) if δk = 1

Lθ2
(Y ) if δk = 0

, ∀k ≥ 1 (2.1)

where θ = (θ1, θ2) ∈ Θ ⊆ R
t. In many instances there is a given proportion π∗ (to

T1) which can be regarded as optimal by the experimenter. For example, assuming
a linear homoscedastic model for the responses X and Y , if we are interested in
estimating the difference between the mean responses with maximum precision, a
balanced design (i.e. π∗ = 1/2) minimizes the variance of the OLS estimated differ-
ence; in case of heteroschedasticity of the observations, let σ1 and σ2 be the standard
deviations corresponding to the two treatments, the proportion which minimizes the
estimated difference variance is π∗ = σ1/(σ1 +σ2) (the so-called Neyman allocation),
which may be unknown or known on the basis of some previous experiment. For
independent binary responses let p1 and p2 denote the success probabilities corre-
sponding to the two treatments, if we take the pj (j = 1, 2) to be the unknown
parameters and we are interested in estimating the difference between the two suc-
cess probabilities, then the proportion which minimizes the estimated difference

variance is unknown, π∗ =

√

p1(1 − p1)
√

p1(1 − p1) +
√

p2(1 − p2)
, because of its dependence

on the parameters.
In this paper the word optimal is taken in Kiefer’s sense (see Silvey, 1980) to

refer just to some inferential aspect. This is not the only way to decide that a
given proportion is optimal from the experimenter’s point of view: there may be
ethical reasons for assining one treatment more often than the other, i.e. urn de-
signs (Bandyopadhyay and Biswas, 2000), two-armed bandit problems (Berry and
Fristedt, 1985) etc... It is not however the viewpoint of the present paper, where we
said that the aim of the experiment is inference without ethical issues regarding the
subjects’ health being involved.

According to Kiefer’s theory, to find the optimal design we may look at the
average Fisher information matrix. Let L (θ|·) denote the likelihood function, under
the hypothesis of independence of the observations conditionally on the design we
obtain

M (θ) =
1

n

n
∑

i=1

E [I (θ|δi)] =
1

n

n
∑

i=1

E

[

E

(−∂2 log L (θ|Zi, δi)

∂θi∂θj

|δi

)]

where I (θ|δi) is the conditional Fisher information. The expected value inside the ( )
brackets is taken with respect to the conditional models, namely (2.1), while that in [
] refers to the distribution of the design δ(n). So, to calculate M (θ) we must know all
the process

{

Z(n), δ(n)
}

: even in the simplest cases this turns out to be prohibitive.



6 Alessandro Baldi Antognini

In the contest of the sequential allocation of two treaments several authors (see for
instance Robbins, Simons and Starr (1967), Eisele (1994), Melfi, Page and Geraldes
(2001)) adopt a conditional inference approach, assuming the sequence of allocations
as predetermined. The (conditional) average Fisher information

M
(

θ|δ(n)
)

=
1

n

n
∑

i=1

I (θ|δi) =
1

n

n
∑

i=1

E

[−∂2 log L (θ|Zi, δi)

∂θi∂θj

|δi

]

(2.2)

is well known to be asymptotically equal to the inverse of the asymptotic variance-
covariance of MLE’s conditional on the design. Thus, (2.2) is a measure of the
precision of our ML estimates.

3 Sequential randomized designs and desirable

proportion

Suppose now that subjects arrive sequentially at an experimental site and are as-
signed immediately to either treatment. We may want to decide each assignment on
the basis of the outcome of the previous ones. We may also want introduce a com-
ponent of randomization in the assignments to protect against several types of bias,
including selection bias. Let {=n, n ≥ 1} be an increasing sequence of σ-algebras
such that (Xk, Yk) is =k-measurable for every k and let:

Z(n) = (Z1, Z2, . . . , Zn) and δ(n) = (δ1, δ2, . . . , δn) ∀n ≥ 1.

A sequential randomized design consists of a sequence of random variables δ1, ..., δn, ...
where δn depends on the history of the process

{

Z(n), δ(n)
}

. The design can be rep-
resented by δ1 and the sequence of conditional probabilities:

Pr (δk+1 = 1|=k) = Pr
(

δk+1 = 1|δ(k), Z(k)
)

∀k ≥ 1.

For any fixed sample size n, by (2.1) it follows that

M
(

θ|δ(n)
)

= diag (πni (θ1) , (1 − πn)i (θ2)) , (3.1)

where

i (θ1) = E

[−∂2 log L (θ1|X)

∂θ1h∂θ1k

]

and i (θ2) = E

[−∂2 log L (θ2|Y )

∂θ2h∂θ2k

]

are the Fisher information matrices generated by an observation on T1 and T2,
respectively. Thus the (conditional) average Fisher information at step n depends
on the design only through the proportion πn and we can write M (θ|πn). In the
theory of optimal designs, an optimality criterion is a real function φ which measures
“lack of precision” of the experiment. Accordingly, it is taken to be a continuous,
bounded and strictly convex function defined on the variance-covariance matrices of
the parameters estimates; extending the definition to the present setting we take φ
to be defined on the set of all t × t non-singular square matrices.
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Definition 1 The proportion φπ
∗(θ) ∈ (0; 1) of allocations to T1 is said to be desir-

able, if it is φ−optimal in the Kiefer sense, for conditional inference, namely if and
only if:

φπ
∗(θ) = arg max

π∈(0;1)
φ [M (θ|π)] . (3.2)

We recall that:

1. M (θ|π) is obtained replacing πn in (3.1) with a generic π ∈ (0; 1).

2. Since a sequential randomized design is a stochastic process, for any given
sample size n, N1 (n) and N2 (n) are random variables.

Definition 2 A sequential randomized design is said to be asymptotically desirable
if and only if:

lim
n→∞

N1 (n)

n
= φπ

∗(θ) almost certainly ∀θ ∈ Θ.

4 Asymptotically desirable designs for a known

proportion

From now on we will drop the reference to φ. In general π∗(·) is a known function
of the unknown population parameters. However in some cases the conditional
information matrix may not depend on the parameters of interest, or the adopted
criterion may be such that this dependence cancels in (3.2). An example is D-
optimality where, for the previous assumptions:

π∗(θ) = arg max
π∈(0;1)

det M (θ|π) =
1

2
∀θ ∈ Θ.

Thus the desirable proportion may be known a priori

π∗(θ) = π0 ∀θ ∈ Θ.

When π∗(θ) is unknown because of its dependence on θ, a natural approach is the
use of adaptive algorithms, namely to let δk+1 depend on the previous allocations
and observations

{

Z(k), δ(k)
}

. Otherwise it does not seem necessary to use adaptive
procedures.

Suppose now that the desirable proportion is a known constant π0 and let

P
(

δk+1 = 1|δ(k), Z(k)
)

= Φπ0

(

δ(k)
)

, ∀k ≥ 1

be our non-adaptive sequential algorithm. The most natural procedure - in the
absence of further experimental aims - consists in assigning at each step treatment
T1 with probability π0, independently from the previous allocations:

Φπ0

(

δ(k)
)

= π0 ∀k ≥ 1, (4.1)
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This algorithm represents a generalization of the completely randomized design when
π0 = 1/2. In this case δ1, δ2, . . . , δn, . . . is a sequence of indipendent and identically
distributed random variables and by the strong law of large numbers the design
generated by (4.1) is asymptotically desirable:

lim
n→∞

N1 (n)

n
= π0 a.s.

However, since in many cases we do not know when the experiment is going to stop,
there is a need for ad hoc designs that work sufficiently well for small samples too.
Thus it may seem natural to impose that the desing at each step be as close as
possible to the desirable proportion π0, however this would imply a deterministic
decision through out, which is adverse to the randomization demands. In a sequen-
tial setting, the compromise consists in considering a randomized design which at
each step is, with a high probability, near the desirable proportion: this allows us
to stop the experiment at any time and find ourselves, with very high probability,
in an excellent setting for inferential purposes.

4.1 A general asymptotic result

Definition 3 Let g : [0; 1] → [0; 1]. A point x0 ∈ [0; 1] is a downcrossing of g (·) if:

∀x < x0 g(x) ≥ x0 and ∀x > x0 g(x) ≤ x0

Theorem 4 Suppose the set of discontinuities of function g : [0; 1] → [0; 1] is
nowhere dense and define a sequential design by Φπ0

(

δ(n)
)

= g
(

1
n

∑n

i=1 δi

)

. If the
point π0 ∈ (0; 1) is the only downcrossing of g (·), then

lim
n→∞

N1 (n)

n
= π0 a.s.

Proof. By Corollary 2.1 and Theorem 4.1 of Hill, Suddert and Lane (1980)

Corollary 5 Let D ⊆ R and h : D → [0; 1] be a non-increasing function with a
set of discontinuities nowhere dense and let k : [0; 1] → D be a continuous and
strictly increasing function. Define Φπ0

(δ(n)) = h ◦ k( 1
n

∑n

i=1 δi). If ∃d∗ ∈ D such
that h (d∗) = k−1 (d∗) ∈ (0; 1), then:

lim
n→∞

N1 (n)

n
= k−1 (d∗) a.s.

Proof. Let g = h ◦ k : [0; 1] → [0; 1] . Then g is a non-increasing function with
a nowhere dense set of discontinuities. Put x∗ = k−1 (d∗), we obtain x∗ = h (d∗) =
h ◦ k(x∗) = g(x∗). So g (·) has a single downcrossing at x∗

5 The special case of balance

It is well-known that in many cases the ’optimal’ proportion is π0 = 1/2, thus we
want to show first of all that the various biased coin designs that have been suggested
in the literature are asymptotically balanced.
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5.1 Wei’s Designs

Let Dn = N1(n) − N0(n) be the difference between the two groups after n assign-
ments. Let f : [−1, 1] → [0, 1] be a decreasing function such that f(−x) = 1− f(x).
Wei’s designs are defined by:

Φ 1

2

(

δ(k)
)

= f

(

Dk

k

)

∀k ≥ 1. (5.1)

A special cases is Efron’ s Biased Coin Design BCD(p), a sequential allocation rule
randomized by means of the hypothetical tossing of a biased coin with probability
p ∈

[

1
2
; 1

]

which at each step favours the treatment so far under-represented. Efron
suggests:

Φ 1

2

(

δ(k)
)

=







p if Dk < 0
1
2

if Dk = 0
1 − p if Dk > 0

∀k ≥ 1.

Thus BCD(p) is obtained putting f(x) = 1
2

+ sgn(x)(1
2
− p) in (5.1). Special cases

are also the two ”coin” designs proposed by Atkinson (1982):

Atkinson1 f(x) =
1 − x

2

Atkinson2 f(x) =
(1 − x)2

(1 − x)2 + (1 + x)2

Proposition 6 If the set of discontinuities of f (·) in (5.1) is nowhere dense, then:

lim
n→∞

Dn

n
= 0 a.s.

Proof. Now we let g = f ◦ k : [0; 1] → [0; 1] with k : [0; 1] → [−1; 1] and d∗

defined as above: k (x) = 2x − 1 and d∗ = 0. Since k (·) is continuous and strictly
increasing, g (·) is non increasing with a set of discontinuities nowhere dense. Then
by Corollary 5

lim
n→∞

N1 (n)

n
=

1

2
a.s.

Corollary 7 Efron’s Biased Coin Design is asymptotically desirable for π0 = 1
2
.

Proof. This follows since f (x) = 1
2

+ sgn(x)(1
2
− p) has just one point of

discontinuity

6 Possible extensions to a general desirable pro-

portion

Suppose now that the desirable proportion is any constant π0 ∈ (0; 1) and consider
the problem of finding a randomized design which converges to π0 almost certainly
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and also forces the procedure towards the desirable proportion for small samples
too. The designs proposed by Efron and by Wei can be extended as follows.

π0−BCD(a, b)

Possible extensions of Efron’s coin are:

Φ?
π0

(

δ(k)
)

=























a if
Dk

k
< 2π0 − 1

π0 if
Dk

k
= 2π0 − 1

b if
Dk

k
> 2π0 − 1

,

where 0 ≤ b ≤ π0 ≤ a ≤ 1.

Proposition 8 π0−BCD(a, b) is asymptotically desirable.

Proof. By Corollary 5

π0−Wei’s design

Let f : [−1, 1] → [0, 1] be a non-increasing function with the set of discontinuities
nowhere dense and such that f(−x) = 1−f(x). Define a new function f ? : [−1, 1] →
[0, 1] as:

f ? (x) =















2 (1 − π0) f

(

x − (2π0 − 1)

2π0

)

+ 2π0 − 1 if − 1 ≤ x ≤ 2π0 − 1

2π0f

(

x − (2π0 − 1)

2(1 − π0)

)

if 2π0 − 1 ≤ x ≤ 1

and let:

Φπ0

(

δ(k)
)

= f ?

(

Dk

k

)

∀k ≥ 1.

Observe however that by taking f(x) = 1
2

+ sgn(x)(1
2
− p) we obtain a special case

of the previously defined π0−BCD(a, b)

f ? (x) =

{

2π0 (1 − p) + 2p − 1 if − 1 ≤ x ≤ 2π0 − 1
2π0 (1 − p) if 2π0 − 1 ≤ x ≤ 1

Proposition 9 π0−Wei’s design is asymptotically desirable.

Proof. The set of discontinuities of f ? (·) is nowhere dense, f ? (·) is non increas-
ing and satisfying: f ? (2π0 − 1) = π0 ∀π0 ∈ (0; 1). Then the point π0 is the only
downcrossing of g (t) = f ? (2t − 1) ∀t ∈ [0, 1] and we can apply Corollary 5
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7 The Adjustable Biased Coin Design (ABCD)

The ABCD was proposed in Baldi Antognini and Giovagnoli (2003) and consists in
making Φπ0

(

δ(n)
)

a decreasing function of Dn, so that the tendency towards balance
is stronger the more we move away from it.

Let F (·) : R → [0, 1] be a non-decreasing function such that

F (−x) = 1 − F (x).

Such a function F (·) generates an ABCD letting:

Φ 1

2

(

δ(k)
)

= F̄ (Dk) ∀k ≥ 1.

Efron’s Biased Coin Design is obviously a special case. The Adjustable Biased Coin
Design possesses many desirable properties, for instance because of its greater flex-
ibility an ABCD can be chosen that turns out, for all n, to be less predictable and
more balanced than the other existing procedures (Baldi Antognini, Bodini and Gio-
vagnoli, 2002; Baldi Antognini and Giovagnoli, 2003). The ABCD is asymptotically
desirable for balance; in fact, a stronger result holds.

Theorem 10 Define Φ 1

2

(

δ(n)
)

= F̄ (Dn) as above, then:

lim
n→∞

Dn√
n

= 0 a.s.

Proof. See Baldi Antognini and Giovagnoli (2003).

8 Conclusions

The present paper deals with optimal (in Kiefer’s sense) sequential randomized de-
signs for parametric inference on two treatments. The problem is finding a random-
ized design which converges to the desirable one almost certainly and also forces the
procedure towards the desirable proportion even for small samples. When balance is
optimal we show that Efron’s Biased Coin Design (1971), the class of Wei’s designs
(1978) and the ABCD (Baldi Antognini and Giovagnoli, 2003) are asymptotically
desirable. I propose some extensions of the above mentioned algorithms that con-
verge almost surely to any desired proportion, when the value is known. A natural
extension of the Adjustable Biased Coin Design seems to be to take Φπ0

(

δ(k)
)

a de-
creasing function of the distance between Dk and 2π0 − 1. It is still unclear whether
the asymptotic desiderability of this design holds and what the performance for
small samples of the π0−ABCD is. These and other connected topics seems to be
worth investigating.
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