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Selection Model in Functional Linear
Regression Models for Scalar Response
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Abstract

The so-called Functional Linear Regression model consists in explaining
a scalar response by a regressor which is a random function observed on a
compact subset of R: in this context, the “parameter” of linear model is a
function of the weights.

In order to estimate this functional coefficient some estimators such as
Functional Principal Component Regression Estimator, Smooth Principal Com-
ponent Regression Estimator, Penalized B-Splines Estimator, have been in-
troduced in literature. We focus our attention on the Functional Principal
Component Regression Estimator and in particular on the connected dimen-
sionality problem.

Our aim is to apply and compare some different selection methods, which
have been proposed in the classical regression field. These methods are illus-
trated and compared by the means of simulations.

1 Introduction

In many statistical frameworks we have to face problems involving data that are
curves, or more exactly, collections of discrete observations effected on curves: these
data are classified as “functionals”. For example we can think of longitudinal data
analyzed in meteorology, in medicine and biology, in economy and/or finance, or the
spectrometric data observed in chemometrics, or the digitalized signals analyzed in
the signals analysis.

Many techniques for the analysis of data with functional nature which allows the
variability exploration in samples of curves and let the research of common struc-
tures among the curves or groups of them have been introduced; for an exhaustive
presentation of these methods, see the monograph of Ramsay and Silverman, 1997.

A very interesting application consists in the possibility of constructing regres-
sion models through which we describe the relation between a real variable and an
explanatory variable having functional nature. Such a model is termed as functional
regression model. Several examples can be found in literature: Hastie and Mallows
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(1993) propose some application to quantitative chemistry, Marx and Eilers (1996)
illustrate a phonemes classification by means of the log-spectra of a sequence of
spoken syllables, Ramsay and Silverman (1997) describe the estimation of the total
annual precipitation in some Canadian weather station from the temperature curves
measured during the year, Cardot et al. (1999b) propose a forecasting model in or-
der to explain winter wheat yield as a linear function of the duration of the crop and
climatic variations, Ferraty and Vieu (2002) illustrate the prevision of fat content
in some meet samples from the respective spectrometric curves.

Formally in the functional regression model the link between a real random
variable (r.v.) Y and a functional random variable X = {X(t), t ∈ T }, where T is
the interval of observation, is described by the relation

Y = µ+ Ψ(X) + ε (1.1)

where µ is a real constant, Ψ is a real operator and ε is a zero mean random variable
with finite variance, which we assume non-correlated with X.

In this paper we consider the special case where X is a r.v. mapping in H =
L2(T ), the separable Hilbert space of square integrable functions defined on T ⊂ R,
T compact. In this framework Ψ is a real-valued linear continuous operator. By the
Riesz Representation Theorem, there exists a unique function ψ ∈ H such that

Ψ(x) =

∫

T

ψ(t)x(t)dt, x ∈ H, (1.2)

Hence model (1.1) may be rewritten as

Y = µ+

∫

T

ψ(t)X(t)dt+ ε. (1.3)

Model (1.3) is a generalization of the linear regression model to the case of an infinite
number of regressors. Many authors dwell upon the estimation of the functional
coefficient ψ and/or the operator Ψ: in some cases criteria are based on functional
bases expansion of the ψ function. We mention for example the Penalized Splines
Estimators studied in Marx and Eilers (1999) and in Cardot et al. (1999b and
2002), and the Fourier Basis Expansion Estimators treated in Ramsay and Silverman
(1997).

In this work we use the estimation method introduced by Cardot et al. (1999a)
and based on Principal Component Regression (PCR). This technique consists in
a mean square estimation of regression models whose regressors are the k principal
components of X, obtained from the k eigenfunctions associated to the k largest
eigenvalues of the covariance operator of X. An important problem to solve is the
determination of the parameter k that represents the dimension of the subspace on
which we project the observations.

In order to introduce the notations we will use in the following and to clarify
the model and the estimator, we devote Section 2 to a quick presentation of the
functional linear model and to the discussion of the above mentioned Functional
PCR Estimator.

In Section 3 we dwell upon to some selection criteria that have been proposed
in the classical regression tools. These methods are applied to the problem of the
optimal dimension choice and they are compared through simulation in Section 4.
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2 Functional Linear Regression Model and

Functional PCR Estimator

Let H = L2
T be the Hilbert space of square integrable functions defined on a compact

set T ⊂ R, provided of the inner product < ·, · > defined for all f, g ∈ H as
< f, g >=

∫
T
f(t)g(t)dt.

We consider a r.v. (X, Y ) defined on the probability space (Ω,A, IP) and taking
values into the measurable space (R × H, BR ⊗ BH). We assume moreover that
Y ∈ L2

R
and X ∈ L2

H .
Let m(·) be the conditional mean of Y given X, i.e.

m(x) = IE (Y |{X(t) = x(t), t ∈ T }), x ∈ H.

When it is linear we can write

m(x) = µ+ < ψ, x >= µ+ Ψ(x), x ∈ H.

In general, since we cannot assume a linear specification for m(.) we consider an
approximation of it, which may be obtained as a solution of the least square problem

(µ, ψ) = arg min
(α,ξ)∈R×H

IE [(Y − α− < ξ,X >)2].

Existence and unicity of the solution are discussed in Cardot et al. (2003).
The covariance operator of X and the cross-covariance operator between X and

Y are defined respectively as:

Γ(x) = IE [< (X − IE (X)), x > (X − IE (X))] , x ∈ H

∆(x) = IE [< (X − IE (X)), x > (Y − IE (Y ))] , x ∈ H

These two operators are related by ∆ = ΨΓ. Since the operator Γ is nuclear (Dauxois
et al., 1982), its inverse is not bounded when H has infinite dimension: to solve this
drawback the idea proposed at first by Bosq in the ARH models (Bosq, 1991 and
2000) and used in Cardot et al. (1999a), consists of projecting X’s observations on
a finite k−dimensional subspace Hk of H.

The basic tool is the Karhunen-Loeve decomposition of a second order random
function:

X =

∞∑

j=1

< X, vj > vj =

∞∑

j=1

X̃jvj

where vj are the orthonormal eigenfunctions of Γ, sorted according to the decreasing
sequence of associated eigenvalues λj. We note that this decomposition, truncated
at order k < ∞, gives the best linear representation of X in the sense that it
maximizes the explained variance: in practice it is a Principal Component Analysis,
which we call “Functional”. In this context the real r.v. X̃j plays the role of the
j−th principal component of X.

As proven by Cardot et al. (2003), the operator Ψ has the following approxima-
tion

ΨPCR(.) =

k∑

j=1

∆vj

λj

< vj, · >



54 Aldo Goia

and equivalently we have

ψPCR =
k∑

j=1

∆vj

λj

vj.

In order to estimate Ψ (or equivalently ψ) we consider an i.i.d. sample (Xi, Yi)i=1,...,n

drawn from the r.v. (X, Y ).
Define

Γn(x) =
1

n

n∑

i=1

< (Xi −X), x > (Xi −X), x ∈ H

∆n(x) =
1

n

n∑

i=1

< (Xi −X), x > (Yi − Y ), x ∈ H

the empirical versions of Γ and ∆, where X = {n−1
∑n

i=1Xi(t), t ∈ T } and Y =
n−1

∑n

i=1 Yi.

Let {v̂j, λ̂j}j=1,2,... be the eigenelements of Γn, with λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂n = 0, and

let IPk be the orthogonal projection on Ĥk, the space spanned by {v̂j}j=1,...,k. The
PCR estimators of Ψ and ψ are given respectively by

Ψ̂PCR(.) = ∆nIPk(IPkΓnIPk)
−1 =

k∑

j=1

∆nv̂j

λ̂j

< v̂j, . >

and

ψ̂PCR =

k∑

j=1

∆nv̂j

λ̂j

v̂j.

Thus this method consists in an ordinary least square regression of the response r.v
Y on the k variables X̃j, the first k principal components of X. Under suitable
conditions on k and on the spectrum of Γ and Γn, Cardot et al. (1999a) have proven
the almost sure (and in probability) convergence for the PCR estimator.

As Cardot et al. (2003) point out, the technique gives a rough estimation of
the function ψ, also when sample size n is large. In order to solve this problem
the authors introduce a second step in the estimation procedure, consisting in a
smoothing of ψ̂ by means of a B-spline approximation.

3 Model selection criteria

As we have seen in the previous section, in order to construct PCR estimator, the
functional linear regression model is approximated in an optimal way by using a
truncated Functional Principal Component Analysis. So we may write:

Y = µ+ Ψ(X) + ε ∼= µ+ Ψ

(
k∑

j=1

X̃jvj

)
+ ε

= µ+

k∑

j=1

X̃jΨ(vj) + ε = µ+

k∑

j=1

X̃qβj + ε,
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where the eigenfunctions vj may be estimated by v̂j. This is a regression model whose
explanatory variables are the first k principal components of X, ordered according
to the sequence of eigenvalues λj, that are the variances of principal componenents

(i.e. Var (X̃j) = λj).
In order to construct the estimator, we need to determine of the optimal dimen-

sion k: this is a problem of variables choice in a linear regression model, a very
important subject as the wide literature on the topic shows (for some analysis and
discussions about selection methods, see, for example, the monographs of Miller,
1990, McQuarrie and Tsai, 1998, and Burnham and Anderson, 2002). In this work
we focus our attention on some choice criteria widely used in the empirical analysis.

We consider the problem of model selection into a family of potential candidates,
indexed by h = 1, 2, . . . . Let θh = (µ, β1, β2, . . . , βkh

, σ2) be the vector of parameters
of the h−th regression model, and Θh ⊂ R

kh+2 the parameter space for θh. Denote
by dh = kh + 2 the dimension of Θh and by ph = kh + 1 the number of coefficients
in the candidate regression model.

We recall that in the PCR Estimation framework it is often suggested to order the
principal component according to the magnitude of correlation with the explained
variable Y , since the principal components with largest variability (ı.e. associated
to the largest eigenvalues) are not necessarily the most explanatory.

In our case, we can not adopt this approach since it could give some non con-
vergent estimators. In fact, one of the hypotheses ensuring the a.s. (and in prob-
ability) convergence of PCR estimators is that sequences of eigenvalues {λj}j=1,2,...

and {λ̂j}j=1,2,... decrease (Cardot et al., 1999a), and so principal components must
be ranged consequently.

So, for h = 1, the parameter is θ1 = (µ, σ2); for h = 2 we introduce the first

principal component X̃1 and we have to estimate θ2 = (µ, β1, σ
2). When h = 3 we

use the first two principal components X̃1 and X̃2, and so θ3 = (µ, β1, β2, σ
2). The

generic θh is constructed according to this rule.
In order to select the “good” regression model, some authors suggest to choose

model h which minimizes the quantity

−2 log(L(h)) + pen(h) (3.1)

where log(L(h)) is the log-likelihood computed for h−model and pen(h) is a penalty
term connected to the dimension of models. Under gaussian conditions for the noise
variable (ε ∼ N (0, σ2) with σ2 <∞) criteria (3.1) may be expressed by the operative
formula

n log(σ̂2
h) + δ(h) (3.2)

where σ̂2
h = n−1

∑n

i=1(Yi − Ŷ
(h)
i )2 is the ML estimator of σ2, and Ŷ

(h)
i is the esti-

mation of Yi obtained by using the h−model.
Of this nature are the criteria introduced by Schwartz (1978) called Bayesian

Information Criterion (BIC), in which δ(h) = dh logn and the Akaike’s Information
Criterion - AIC, (Akaike, 1973). In this work, we do not use the original AIC
with δ(h) = 2dh, instead we make use of the “corrected” version AICc proposed by
Hurvich and Tsai (1989) in which δ(h) = n(n+ph)/(n−ph−2) with n > ph+2. This
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choice is motivated by the results of Cavanaugh (1997) which proposes an unified
vision of AIC and AICc.

Similar to the previous methods are the criteria proposed by Hannan and Quinn
(1979) with δ(h) = 2dh log(logn), and the so-called Rice’s T (Rice, 1984), where
δ(h) = n log(1 − 2ph/n) with ph < n/2. The latter has been originally introduced
in the context of choice of bandwidth in the kernel regression framework and here
it has been adapted to the parametric case.

An other criterion that we consider is the one proposed by Shibata (1981) for
which the optimal ph minimizes the statistic

S(h) = σ̂2
h(n+ 2ph).

This criterion has been proposed for some gaussian model that can be specified by
an infinite number of parameters and so it may be used validly in our context.

The last approach we have considered is the classical Cross Validation consisting
of setting aside of data, usually one observation at a time, and making predictions
of these data by using the remaining ones. Let Ŷ

(h,−i)
i be the prediction of Yi based

on the other n− 1 observations. We choose a ph minimizing

1

n

n∑

i=1

(Yi − Ŷ
(h,−i)
i )2.

Since we treat linear models, it may be proved that it is equivalent to choose the
number of coefficients ph which minimizes the following PRESS statistic (Allen,
1974):

PRESS(h) =
1

n

n∑

i=1

(Yi − Ŷ
(h)
i )2/(1 − Πi)

2

where Πi is the i−th term of the principal diagonal of the projection matrix onto
the ph−dimensional subspace of R

n.

4 Numerical examples

This section is devoted to numerical simulations of the performances of the criteria
presented in Section 3: we make comparisons by using some different functional
coefficients with various sample sizes.

In practice we compare the relative empirical MISE calculated for each criterion,
defined as follows:

RMISE(c) =
1

M

M∑

m=1

∫
T
(ψ(t) − ψ̂

(c)
m (t))2dt∫

T
(ψ(t))2dt

where M is the number of simulations in each study case and ψ̂
(c)
m (t) is the estimation

of the functional coefficient obtained at the m−th simulation applying the c−th
selection method.

In our study we base simulations on the following operative conditions:
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1. X is a standard brownian motion defined on the set T = [0, 1] and whose
trajectories are discretized in 100 equispaced points,

2. sample sizes are n = 50, 100, 200, 500 and 1000,

3. parameters of functional linear regression models are

(a) µ = 2 for all models,

(b) functional coefficients defined on [0, 1] as follows

i. ψ1(t) = sin(.5πt) + .5 sin(1.5πt) + .25 sin(2.5πt),

ii. ψ2(t) = sin(4πt),

iii. ψ3(t) = sin(6πt),

iv. ψ4(t) = (sin(2πt2))
3
,

v. ψ5(t) = 1 − 48 t+ 218 t2 − 315 t3 + 145 t4,

vi. ψ6(t) = 0.3 exp(−64(t− .25)2) + 0.7 exp(−256(t− .75)2).

4. For each model we introduce noise variables which have gaussian, uniform and
centered gamma distribution. Their variability is controlled by the following
signal-to-noise ratio:

snr =
σ2

Ψ(X)

σ2
ε + σ2

Ψ(X)

,

where σ2
Ψ(X) = Var (Ψ(X)) and σ2

ε = Var (ε). In simulations we use srn = 65%,

85% and 95%, which allow respectively to some error variables with large
variance (σ2

ε/σ
2
Ψ(X) = 0.54), moderate variance (σ2

ε/σ
2
Ψ(X) = 0.18) and small

variance (σ2
ε/σ

2
Ψ(X) = 0.05).

5. The number of simulations for each setting of experimental factors is M = 500.

Since the eigenelements of the covariance operator for a standard brownian mo-
tion on [0, 1] are (see Ash and Gardner, 1975):

λj =
1

(j − 0.5)2π2
, vj(t) =

√
2 sin((j − 0.5)πt), t ∈ [0, 1] j = 1, 2, . . . ,

we may observe that the functional coefficient ψ1 is built matching the first three
eigenfunctions vj in an opportune way.

ψ2 and ψ3 are periodic functions which can not be decomposed into a finite sum
of eigenfunctions, the second one having a large amount of fine structure. ψ4 is more
general. ψ5 is a function which combines a less fine structure with a trend. ψ6 has
different degrees of curvature for different values of t. The shape of the functional
coefficients are shown in Figures 1, 2, and 3.

Tables 1, 2, 3, 4, 5, and 6 give RMISE values computed for the different func-
tional coefficients ψ1, ψ2, ψ3, ψ4, ψ5 and ψ6, under various error distribution hy-
potheses and using the selection criteria BIC (Schwartz), AICc (Hurvich and Tsai),
HQ (Hannan and Quinn), S (Shibata), T (Rice) and PRESS (Allen).
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Figure 1: Functional coefficients for simulations: (a) ψ1, and (b) ψ2.

0.0 0.2 0.4 0.6 0.8 1.0

−1
.0

−0
.5

0.
0

0.
5

1.
0

(c)

0.0 0.2 0.4 0.6 0.8 1.0

−1
.0

−0
.5

0.
0

0.
5

1.
0

(d)

Figure 2: Functional coefficients for simulations: (c) ψ3 and (d) ψ4.

As general observation, we can note that the properties of the selectors differ for
the various cases, but certain patterns emerge anyway, and in particular they are
linked to the sample sizes, the signal-to-noise ratio (snr in the follows) and to the
distribution of the noise variables.

It is clear that when the sample size increases, the performances of selectors
improve, since estimations are more accurate. In very small samples, with n = 50,
all approaches are unacceptable also when snr is large (snr = 0.95). However, in
some cases, we obtain very large RMISE values also when n ≥ 500 (for example,
see results in Table 6). Besides in general the criteria seem not to be equivalent also
for very large values of n (n = 1000). Analogously, selectors have different behaviors



Selection Model in Functional Linear Regression Models. . . 59

0.0 0.2 0.4 0.6 0.8 1.0

−2
−1

0
1

(e)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

(f)

Figure 3: Functional coefficients for simulations: (e) ψ5 and (f) ψ6.

when snr change: for each sample size, RMISE is reduced substantially when snr

increases.
Another general remark is that for any case, each selector tends to reproduce the

same behavior, for any error distribution. Thus, comments that may be done for
the gaussian cases can be repeated changing the distributions of the error variable,
both when the distribution law is symmetric (uniform case) and both when it is
asymmetric (centered gamma case). This may justify the use of methods defined in
gaussian context in more general cases.

In the following we propose a short discussion for each estimated model, in order
to supply some practical indication for the use of selection methods.

When we estimate the functional coefficient ψ1, BIC gives good results, con-
stantly for any distribution error and snr value. For example, with snr = 0.85 and
n ≥ 100 RMISE is smaller than 10%. The Shibata criterion is similar and some-
times better than BIC when the sample size is large (for n = 500 and snr = 0.85,
we have RMISE = 2.6% for the gaussian case and RMISE = 2.7% for the other
cases). The other criteria are not optimal, and in particular the one of Hannan and
Quinn behaves very badly. Anyway all these criteria seem to have the same behavior
for n ≥ 500, although they give worse performances compared to BIC and S: for
example, for n ≥ 500 and snr = 0.85, they supply RMISE that are 4 − 6 times
bigger than the best ones.

Cases of estimate of periodic functions ψ2 and ψ3 are rather similar with respect
to the behavior of the selectors: for n ≥ 200 the Shibata’s criterion is good with
RMISE ≤ 6% for snr = 0.85, and RMISE ≤ 3.5% when snr = 0.95, consistently
for any noise distribution. Hannan and Quinn criterion perform usually in a poor
way even if, for very large sample size and snr ≥ 0.85, it seems equivalent to the
other criteria.

The case of coefficient ψ4 confirms that the Shibata’s criterion is a good method
of selection for large sample under different error conditions and snr values: in fact,
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Table 1: ψ1(t) = sin((1 − .5)πt) + .5 sin((2 − .5)πt) + .25 sin((3 − .5)πt).

n BIC AICc HQ S T PRESS

Gaussian Error
snr = 0.65 50 0.3051 0.7514 9.1796 0.7544 0.8137 1.4909

100 0.1791 0.9235 2.8973 0.3775 1.0898 1.7138
200 0.1030 0.6501 1.2088 0.1988 0.6820 0.8321
500 0.0569 0.2901 0.3690 0.0703 0.2909 0.3097
1000 0.0421 0.1525 0.1726 0.0359 0.1525 0.1556

snr = 0.85 50 0.1795 0.4083 3.5345 0.5232 0.4416 0.7730
100 0.0749 0.3531 1.1757 0.1482 0.3814 0.5520
200 0.0537 0.2341 0.4274 0.0811 0.2502 0.3106
500 0.0282 0.0938 0.1154 0.0256 0.0940 0.0952
1000 0.0123 0.0674 0.0731 0.0121 0.0675 0.0678

snr = 0.95 50 0.0640 0.1201 1.3176 0.1789 0.1432 0.3127
100 0.0406 0.1073 0.3701 0.0733 0.1180 0.1844
200 0.0207 0.0815 0.1386 0.0239 0.0863 0.1037
500 0.0055 0.0328 0.0395 0.0074 0.0339 0.0370
1000 0.0025 0.0163 0.0187 0.0036 0.0163 0.0173

Centered Gamma Error
snr = 0.65 50 0.3006 0.8081 10.6547 1.3322 0.8793 2.4219

100 0.1840 0.9484 3.1345 0.3849 1.0845 1.2942
200 0.1105 0.5858 1.0809 0.2064 0.6042 0.6842
500 0.0540 0.3359 0.4534 0.0624 0.3358 0.3882
1000 0.0419 0.1649 0.1814 0.0427 0.1648 0.1757

snr = 0.85 50 0.2612 0.3865 3.3807 0.4651 0.4296 0.8452
100 0.0860 0.4034 1.0718 0.1857 0.4318 0.5794
200 0.0508 0.2632 0.4835 0.0937 0.2852 0.3110
500 0.0292 0.0854 0.1103 0.0273 0.0854 0.0910
1000 0.0121 0.0594 0.0656 0.0123 0.0594 0.0622

snr = 0.95 50 0.0689 0.1211 1.1191 0.1709 0.1335 0.2593
100 0.0408 0.1325 0.4054 0.0762 0.1332 0.1661
200 0.0225 0.0793 0.1234 0.0230 0.0819 0.0895
500 0.0058 0.0289 0.0327 0.0076 0.0290 0.0302
1000 0.0026 0.0203 0.0229 0.0045 0.0203 0.0208

Uniform Error
snr = 0.65 50 0.3377 0.9470 10.5057 0.9449 1.0260 1.5423

100 0.2226 0.6962 2.9884 0.3444 0.7351 1.2375
200 0.1145 0.5396 0.9475 0.1971 0.5889 0.6844
500 0.0570 0.2505 0.3224 0.0649 0.2575 0.2776
1000 0.0424 0.1556 0.1639 0.0382 0.1559 0.1539

snr = 0.85 50 0.2275 0.4183 3.8087 0.7557 0.4927 1.1520
100 0.0907 0.3585 1.1977 0.1609 0.4235 0.6175
200 0.0652 0.2285 0.3593 0.0766 0.2321 0.2903
500 0.0306 0.0995 0.1311 0.0266 0.1039 0.1097
1000 0.0130 0.0684 0.0768 0.0112 0.0685 0.0660

snr = 0.95 50 0.0875 0.1443 1.1126 0.1896 0.1574 0.3003
100 0.0383 0.1147 0.3480 0.0631 0.1213 0.1516
200 0.0194 0.0751 0.1255 0.0237 0.0754 0.0843
500 0.0050 0.0376 0.0482 0.0076 0.0377 0.0378
1000 0.0024 0.0176 0.0204 0.0038 0.0190 0.0186
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Table 2: ψ2(t) = sin(4πt).

n BIC AICc HQ S T PRESS

Gaussian Error
snr=0.65 50 0.3957 0.4316 1.0495 0.5045 0.4331 0.5687

100 0.1775 0.2500 0.4171 0.2157 0.2574 0.3030
200 0.0995 0.1338 0.1718 0.1058 0.1349 0.1412
500 0.0521 0.0685 0.0733 0.0500 0.0685 0.0697
1000 0.0336 0.0435 0.0451 0.0326 0.0436 0.0439

snr=0.85 50 0.2247 0.2252 0.4487 0.2655 0.2264 0.2828
100 0.0982 0.1217 0.1794 0.1098 0.1222 0.1371
200 0.0552 0.0683 0.0774 0.0562 0.0683 0.0714
500 0.0301 0.0329 0.0340 0.0280 0.0329 0.0334
1000 0.0206 0.0195 0.0199 0.0184 0.0195 0.0196

snr=0.95 50 0.1537 0.1539 0.2192 0.1685 0.1544 0.1726
100 0.0633 0.0683 0.0867 0.0649 0.0689 0.0734
200 0.0338 0.0364 0.0395 0.0327 0.0366 0.0372
500 0.0177 0.0169 0.0172 0.0165 0.0169 0.0171
1000 0.0115 0.0103 0.0104 0.0103 0.0103 0.0103

Centered Gamma Error
snr=0.65 50 0.3598 0.3644 1.0799 0.4365 0.3696 0.4901

100 0.1731 0.2419 0.4215 0.2132 0.2486 0.2854
200 0.0990 0.1452 0.1971 0.1054 0.1477 0.1571
500 0.0532 0.0687 0.0753 0.0513 0.0695 0.0704
1000 0.0333 0.0397 0.0414 0.0315 0.0401 0.0401

snr=0.85 50 0.2266 0.2332 0.4776 0.2848 0.2343 0.2965
100 0.0995 0.1250 0.1901 0.1087 0.1276 0.1395
200 0.0564 0.0746 0.0898 0.0571 0.0761 0.0788
500 0.0304 0.0333 0.0346 0.0286 0.0333 0.0334
1000 0.0210 0.0199 0.0203 0.0189 0.0199 0.0200

snr=0.95 50 0.1504 0.1522 0.2183 0.1644 0.1508 0.1665
100 0.0612 0.0652 0.0841 0.0625 0.0656 0.0702
200 0.0333 0.0374 0.0409 0.0336 0.0374 0.0384
500 0.0175 0.0174 0.0178 0.0162 0.0174 0.0175
1000 0.0115 0.0103 0.0104 0.0102 0.0103 0.0102

Uniform Error
snr=0.65 50 0.3639 0.3723 1.0344 0.4607 0.3784 0.5307

100 0.1686 0.2311 0.3984 0.1857 0.2381 0.2785
200 0.0991 0.1325 0.1749 0.0965 0.1367 0.1457
500 0.0518 0.0645 0.0716 0.0479 0.0644 0.0681
1000 0.0342 0.0395 0.0404 0.0317 0.0396 0.0398

snr=0.85 50 0.2198 0.2285 0.4528 0.2666 0.2272 0.2814
100 0.0983 0.1158 0.1669 0.1089 0.1192 0.1267
200 0.0553 0.0680 0.0833 0.0564 0.0687 0.0734
500 0.0292 0.0345 0.0364 0.0276 0.0347 0.0352
1000 0.0202 0.0193 0.0196 0.0179 0.0194 0.0195

snr=0.95 50 0.1562 0.1606 0.2374 0.1728 0.1599 0.1822
100 0.0645 0.0697 0.0869 0.0668 0.0702 0.0757
200 0.0336 0.0367 0.0405 0.0326 0.0370 0.0378
500 0.0176 0.0171 0.0176 0.0162 0.0171 0.0172
1000 0.0114 0.0101 0.0102 0.0102 0.0101 0.0101
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Table 3: ψ3(t) = sin(6πt).

n BIC AICc HQ S T PRESS

Gaussian Error
snr=0.65 50 0.5418 0.4906 0.6664 0.5245 0.4851 0.5209

100 0.2254 0.2449 0.3089 0.2306 0.2475 0.2592
200 0.1187 0.1341 0.1469 0.1170 0.1359 0.1377
500 0.0618 0.0628 0.0647 0.0588 0.0628 0.0631
1000 0.0393 0.0380 0.0385 0.0361 0.0381 0.0382

snr=0.85 50 0.2865 0.2823 0.3258 0.2869 0.2803 0.2902
100 0.1340 0.1374 0.1518 0.1377 0.1370 0.1408
200 0.0706 0.0716 0.0738 0.0692 0.0717 0.0722
500 0.0362 0.0317 0.0320 0.0329 0.0317 0.0318
1000 0.0230 0.0192 0.0191 0.0199 0.0192 0.0191

snr=0.95 50 0.1983 0.1960 0.1920 0.1933 0.1961 0.1948
100 0.0857 0.0832 0.0847 0.0831 0.0830 0.0835
200 0.0455 0.0414 0.0412 0.0422 0.0414 0.0414
500 0.0218 0.0182 0.0180 0.0196 0.0182 0.0181
1000 0.0135 0.0107 0.0106 0.0117 0.0107 0.0107

Centered Gamma Error
snr=0.65 50 0.5378 0.4795 0.6981 0.5355 0.4754 0.5243

100 0.2253 0.2470 0.3085 0.2351 0.2479 0.2571
200 0.1212 0.1366 0.1517 0.1200 0.1369 0.1394
500 0.0603 0.0644 0.0661 0.0565 0.0644 0.0644
1000 0.0396 0.0369 0.0370 0.0363 0.0369 0.0371

snr=0.85 50 0.2972 0.2861 0.3339 0.3008 0.2845 0.2986
100 0.1304 0.1373 0.1518 0.1329 0.1377 0.1400
200 0.0731 0.0755 0.0779 0.0723 0.0756 0.0763
500 0.0355 0.0323 0.0324 0.0327 0.0323 0.0324
1000 0.0231 0.0192 0.0191 0.0202 0.0192 0.0190

snr=0.95 50 0.1951 0.1899 0.1863 0.1868 0.1894 0.1869
100 0.0828 0.0816 0.0824 0.0819 0.0817 0.0817
200 0.0455 0.0416 0.0413 0.0426 0.0416 0.0414
500 0.0209 0.0181 0.0180 0.0192 0.0181 0.0181
1000 0.0136 0.0109 0.0108 0.0118 0.0109 0.0109

Uniform Error
snr=0.65 50 0.5301 0.4673 0.6754 0.5156 0.4661 0.5073

100 0.2219 0.2430 0.3024 0.2282 0.2445 0.2557
200 0.1195 0.1320 0.1469 0.1177 0.1320 0.1357
500 0.0596 0.0611 0.0629 0.0563 0.0612 0.0614
1000 0.0389 0.0367 0.0369 0.0346 0.0368 0.0368

snr=0.85 50 0.2958 0.2890 0.3281 0.2913 0.2853 0.2906
100 0.1287 0.1299 0.1467 0.1284 0.1300 0.1350
200 0.0720 0.0716 0.0747 0.0690 0.0716 0.0725
500 0.0355 0.0341 0.0343 0.0332 0.0342 0.0341
1000 0.0233 0.0191 0.0190 0.0203 0.0191 0.0191

snr=0.95 50 0.1990 0.1953 0.1922 0.1940 0.1951 0.1956
100 0.0851 0.0833 0.0839 0.0834 0.0832 0.0829
200 0.0455 0.0424 0.0420 0.0435 0.0424 0.0422
500 0.0218 0.0188 0.0185 0.0198 0.0187 0.0186
1000 0.0134 0.0107 0.0106 0.0116 0.0107 0.0107
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Table 4: ψ4(t) =
(
sin(2πt2)

)3
.

n BIC AICc HQ S T PRESS

Gaussian Error
snr=0.65 50 0.3840 0.4621 1.5207 0.5364 0.4690 0.6364

100 0.2710 0.3556 0.6475 0.3111 0.3572 0.4110
200 0.2079 0.2529 0.3326 0.2116 0.2566 0.2722
500 0.1430 0.1564 0.1602 0.1380 0.1573 0.1568
1000 0.1188 0.0892 0.0896 0.1018 0.0892 0.0895

snr=0.85 50 0.2667 0.2868 0.6534 0.3209 0.2869 0.3643
100 0.1805 0.2142 0.3077 0.1899 0.2157 0.2308
200 0.1376 0.1396 0.1535 0.1333 0.1400 0.1419
500 0.0966 0.0599 0.0614 0.0635 0.0599 0.0603
1000 0.0480 0.0321 0.0327 0.0300 0.0322 0.0323

snr=0.95 50 0.1897 0.1943 0.3146 0.2090 0.1947 0.2227
100 0.1154 0.1104 0.1334 0.1093 0.1110 0.1165
200 0.0677 0.0558 0.0614 0.0541 0.0557 0.0569
500 0.0237 0.0248 0.0251 0.0221 0.0248 0.0249
1000 0.0142 0.0145 0.0146 0.0137 0.0145 0.0145

Centered Gamma Error
snr=0.65 50 0.3766 0.4026 1.5415 0.5222 0.4289 0.6315

100 0.2716 0.3786 0.6567 0.3138 0.3840 0.4268
200 0.2029 0.2602 0.3607 0.2169 0.2644 0.2735
500 0.1429 0.1551 0.1585 0.1391 0.1564 0.1564
1000 0.1172 0.0870 0.0893 0.0966 0.0872 0.0881

snr=0.85 50 0.2563 0.2878 0.7081 0.3336 0.2910 0.3614
100 0.1802 0.2236 0.3113 0.1979 0.2249 0.2408
200 0.1393 0.1492 0.1654 0.1349 0.1482 0.1524
500 0.0924 0.0621 0.0635 0.0660 0.0620 0.0621
1000 0.0497 0.0335 0.0340 0.0301 0.0335 0.0338

snr=0.95 50 0.1872 0.1909 0.2986 0.2153 0.1906 0.2198
100 0.1178 0.1124 0.1342 0.1134 0.1131 0.1166
200 0.0692 0.0592 0.0653 0.0585 0.0595 0.0620
500 0.0252 0.0251 0.0258 0.0229 0.0252 0.0254
1000 0.0142 0.0148 0.0151 0.0134 0.0149 0.0148

Uniform Error
snr=0.65 50 0.3663 0.4251 1.5492 0.5513 0.4458 0.6496

100 0.2628 0.3704 0.6321 0.2954 0.3733 0.4414
200 0.2011 0.2599 0.3238 0.2032 0.2627 0.2751
500 0.1412 0.1562 0.1654 0.1401 0.1566 0.1593
1000 0.1178 0.0885 0.0904 0.0984 0.0885 0.0885

snr=0.85 50 0.2662 0.2963 0.6546 0.3366 0.3020 0.3617
100 0.1812 0.1994 0.2821 0.1933 0.2027 0.2240
200 0.1360 0.1413 0.1596 0.1316 0.1416 0.1461
500 0.0959 0.0641 0.0663 0.0668 0.0642 0.0647
1000 0.0451 0.0325 0.0333 0.0294 0.0325 0.0327

snr=0.95 50 0.1968 0.2015 0.3279 0.2272 0.2006 0.2400
100 0.1168 0.1112 0.1318 0.1109 0.1126 0.1189
200 0.0708 0.0606 0.0639 0.0578 0.0607 0.0620
500 0.0244 0.0250 0.0259 0.0239 0.0251 0.0253
1000 0.0143 0.0141 0.0142 0.0133 0.0141 0.0142
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Table 5: ψ5(t) = 1 − 48 t + 218 t2 − 315 t3 + 145 t4.

n BIC AICc HQ S T PRESS

Gaussian Error
snr=0.65 50 0.2635 0.3612 1.7660 0.4526 0.3779 0.6061

100 0.1633 0.3104 0.6456 0.2429 0.3228 0.3661
200 0.1020 0.1879 0.2475 0.1138 0.1888 0.2003
500 0.0611 0.1056 0.1113 0.0668 0.1061 0.1095
1000 0.0510 0.0811 0.0849 0.0547 0.0812 0.0831

snr=0.85 50 0.2000 0.2317 0.7109 0.2795 0.2374 0.3230
100 0.0989 0.1441 0.2632 0.1148 0.1453 0.1699
200 0.0681 0.1033 0.1303 0.0745 0.1039 0.1098
500 0.0521 0.0632 0.0663 0.0540 0.0633 0.0643
1000 0.0465 0.0503 0.0513 0.0459 0.0503 0.0504

snr=0.95 50 0.1527 0.1694 0.3760 0.1963 0.1718 0.2174
100 0.0781 0.0953 0.1465 0.0845 0.0985 0.1077
200 0.0570 0.0684 0.0771 0.0585 0.0685 0.0696
500 0.0450 0.0442 0.0455 0.0419 0.0443 0.0446
1000 0.0368 0.0334 0.0334 0.0339 0.0334 0.0334

Centered Gamma Error
snr=0.65 50 0.2669 0.3244 1.8680 0.4057 0.3476 0.5814

100 0.1617 0.3009 0.6513 0.2079 0.3297 0.3722
200 0.0973 0.1885 0.2790 0.1116 0.1911 0.2058
500 0.0612 0.1108 0.1280 0.0662 0.1124 0.1171
1000 0.0513 0.0778 0.0829 0.0546 0.0781 0.0812

snr=0.85 50 0.1884 0.2197 0.7900 0.2650 0.2270 0.3229
100 0.1048 0.1585 0.3120 0.1316 0.1741 0.2032
200 0.0693 0.1229 0.1493 0.0765 0.1239 0.1265
500 0.0524 0.0656 0.0696 0.0544 0.0658 0.0668
1000 0.0470 0.0514 0.0522 0.0463 0.0515 0.0514

snr=0.95 50 0.1429 0.1576 0.3421 0.1767 0.1585 0.1851
100 0.0748 0.0944 0.1358 0.0851 0.0951 0.1065
200 0.0558 0.0695 0.0793 0.0569 0.0702 0.0733
500 0.0444 0.0456 0.0462 0.0425 0.0457 0.0457
1000 0.0373 0.0342 0.0342 0.0343 0.0342 0.0340

Uniform Error
snr=0.65 50 0.2600 0.3515 1.7317 0.5167 0.3737 0.6430

100 0.1579 0.2822 0.6103 0.2056 0.3015 0.3709
200 0.1044 0.1875 0.2820 0.1149 0.1888 0.2081
500 0.0602 0.0990 0.1118 0.0663 0.1003 0.1040
1000 0.0509 0.0758 0.0780 0.0531 0.0759 0.0763

snr=0.85 50 0.1786 0.2301 0.7175 0.2484 0.2331 0.3087
100 0.1005 0.1443 0.2767 0.1217 0.1513 0.1756
200 0.0678 0.1068 0.1348 0.0724 0.1081 0.1157
500 0.0514 0.0657 0.0716 0.0523 0.0660 0.0667
1000 0.0463 0.0510 0.0514 0.0455 0.0510 0.0512

snr=0.95 50 0.1543 0.1725 0.3632 0.2001 0.1764 0.2178
100 0.0790 0.0959 0.1454 0.0878 0.0964 0.1077
200 0.0567 0.0692 0.0762 0.0581 0.0694 0.0716
500 0.0444 0.0456 0.0467 0.0424 0.0456 0.0458
1000 0.0373 0.0338 0.0338 0.0339 0.0338 0.0338
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Table 6: ψ6(t) = 0.3 exp(−64(t− .25)2) + 0.7 exp(−256(t − .75)2) .

n BIC AICc HQ S T PRESS

Gaussian Error
snr=0.65 50 0.7655 1.0836 5.0320 1.2000 1.1393 1.4901

100 0.7020 1.1661 2.1737 0.8439 1.1947 1.3220
200 0.6419 0.9985 1.3474 0.6253 1.0096 1.1309
500 0.4290 0.5208 0.5500 0.3513 0.5253 0.5251
1000 0.2467 0.3274 0.3438 0.2498 0.3320 0.3344

snr=0.85 50 0.6656 0.7496 2.3707 0.9529 0.7609 1.1440
100 0.5353 0.5880 0.9913 0.5120 0.6157 0.6555
200 0.3437 0.4287 0.4876 0.3287 0.4314 0.4412
500 0.2139 0.2635 0.2750 0.2236 0.2636 0.2655
1000 0.1879 0.1823 0.1852 0.1768 0.1823 0.1830

snr=0.95 50 0.4066 0.4205 0.8989 0.4842 0.4281 0.5326
100 0.2700 0.3212 0.4777 0.2875 0.3248 0.3620
200 0.2127 0.2297 0.2486 0.2155 0.2303 0.2363
500 0.1655 0.1191 0.1200 0.1280 0.1191 0.1188
1000 0.1077 0.0724 0.0724 0.0724 0.0724 0.0728

Centered Gamma Error
snr=0.65 50 0.7908 1.0304 5.6731 1.2359 1.1515 1.6671

100 0.6666 1.0793 2.4654 0.8090 1.1604 1.3408
200 0.6130 0.8390 1.1636 0.6194 0.8421 0.8765
500 0.4360 0.5266 0.5903 0.3743 0.5341 0.5476
1000 0.2490 0.3357 0.3567 0.2418 0.3358 0.3399

snr=0.85 50 0.6737 0.7484 2.0863 0.8230 0.7552 0.9239
100 0.5133 0.6437 1.1074 0.5813 0.6713 0.7006
200 0.3592 0.4394 0.5298 0.3397 0.4519 0.4723
500 0.2164 0.2632 0.2783 0.2259 0.2642 0.2655
1000 0.1897 0.1772 0.1781 0.1813 0.1771 0.1770

snr=0.95 50 0.4247 0.4192 0.8852 0.4747 0.4183 0.5121
100 0.2769 0.3197 0.4313 0.2980 0.3248 0.3444
200 0.2122 0.2249 0.2523 0.2103 0.2250 0.2278
500 0.1667 0.1222 0.1243 0.1342 0.1226 0.1218
1000 0.1042 0.0728 0.0729 0.0736 0.0727 0.0727

Uniform Error
snr=0.65 50 0.7189 1.1792 5.7416 1.4728 1.3589 1.9794

100 0.6762 1.0807 2.1893 0.7817 1.0984 1.2609
200 0.6208 0.8705 1.2099 0.6604 0.8729 0.9545
500 0.4296 0.5109 0.5474 0.3322 0.5118 0.5154
1000 0.2454 0.3321 0.3455 0.2397 0.3326 0.3379

snr=0.85 50 0.6838 0.7620 2.2574 0.8946 0.7563 1.0579
100 0.5345 0.5978 0.9791 0.5490 0.6134 0.6909
200 0.3468 0.4223 0.5317 0.3359 0.4262 0.4417
500 0.2115 0.2814 0.2986 0.2226 0.2813 0.2864
1000 0.1889 0.1772 0.1792 0.1812 0.1773 0.1766

snr=0.95 50 0.4234 0.4134 0.9229 0.4724 0.4174 0.5153
100 0.2816 0.3218 0.4754 0.3027 0.3389 0.3634
200 0.2104 0.2349 0.2577 0.2127 0.2378 0.2441
500 0.1657 0.1247 0.1271 0.1297 0.1246 0.1254
1000 0.1055 0.0773 0.0774 0.0771 0.0773 0.0771
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for n ≥ 200, the calculated RMISE is not larger than 14% (it reaches 3% for
n = 1000) when snr = 0.85 and 6% when snr = 0.95 (with RMISE = 1.3% for
n = 1000). BIC gives the best results for small samples, even if RMISE values are
rather high.

For the models whose coefficient is ψ5, simulations indicate Shibata’s criterion
as a good one for n ≥ 200 whereas BIC is good for small samples. In fact when
n ≥ 100, RMISE obtained using the Schwartz’s method is not larger than 11%
when snr = 0.85 or 0.95, and S performes similarly or better for n ≥ 200. The HQ
method is the worst one, even if all methods seem to be equivalents for n = 1000
and snr = 0.95.

When we estimate the coefficient ψ6, we obtain very bad performances in general:
when n and snr are large all selectors perform poorly with RMISE not lower than
7 − 8%. For example, when snr = 0.85 and n = 1000, the best criterions give
RMISE around 18% (for example in the gaussian case the Shibata’s criterion is the
best with RMISE = 17.7%).

At this point, in the light of previous comments, we can give some general prac-
tical indications. It seems that for large samples (n ≥ 500) the Shibata’s selector
gives good results: in general, it supplies the best performances or at least near to
the best ones, for any error distribution and signal-to-noise ratio.

When the simple size is small (n ≤ 200), BIC is performing often better than
the others one, even if the RMISE is high. We may note that it gives better results
than the corrected AIC, which should be the a priori suitable selector for small
samples. The criterion that supplies the worst results is that of Hannan and Quinn:
usually it performs very badly and in the best cases it gives RMISE at least of the
order of the other methods.

For the others selection methods, it seems that Rice’s T, PRESS and AIC have a
quite similar behavior for large samples, but in general they have not homogeneous
and good performances in the different analyzed cases. We note also that the PRESS
criterion, which is very used in the applications and in the software implementations,
is not optimal also with large samples.

5 Conclusions and perspectives

As we have already noticed in this paper, when we use the Principal Component
Functional Regression Estimator in order to estimate the functional linear regression
model, we can introduce many techniques to choose the number of Principal Com-
ponents: as simulations show, it seems that some criteria are better than others,
and in particular the Shibata’s criterion gives always good performances for large
samples. These results remain valid also when models are not gaussian.

The attainment of convergence results in L2−norm is a gap which has to be
filled: if we had these results we could verify if, using the above mentioned selection
criteria, the estimator attains the optimal L2−rate of convergence.

As we previously mentioned, the PCR estimator which we have used here is not
the only one which needs the choice of a regularization parameter. In particular the
suggested results should be read in the case in which estimation is based on Fourier
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Basis Expansion: in this case the functions of the base are chosen a priori and there
is the need to identify their number.

When we use the Penalized spline method, the problem does not lie in the choice
of the number of the knots, but in the smoothing parameter which controls the
roughness of the curves (see Marx and Eilers, 1996, for a discussion on this topic).

Another perspective is the possibility of extending the results obtained in the
i.i.d. context to the case of dependent observations: the same kind of analysis
presented here should be made in the time series framework using functional linear
models. This approach should lead to use this tool in a dependent context: also in
this case we need some robust selection criterion to face the dimensionality problem.
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