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Abstract 

The motivation for the problem considered in this paper comes from a 
survival analysis problem in quality-assurance systems that are becoming 
more popular.  For example, when an automobile failures occur within the 
automotive warranty period, a manufacturer can develop a record of mileage 
to failure from owners' request for repair.  When no failure occur during the 
warranty period the owner naturally will not report the mileages, and it may 
be inferred that no record of failures.  By using a follow-up survey data can 
be acquired to include a partial record of nonfailures.  A method of 
estimating life time parameters is proposed for analyzing this kind of data 
under various scenarios assuming an Exponential lifetime distribution. 

1 Introduction 

In many statistical estimation problems, the data may not be exact for many 
reasons.  For example, in medical and reliability studies (Collett, 1994; Cox and 
Oakes, 1984), it is impossible or inconvenient to get complete measurements on 
all individuals of a random sample.  Censored observations are observations that 
contain partial information about the random variable X of interest.  The data that 
contain censored observations are called incomplete or censored data. 

Censoring could be of three types (Lawless, 1982). First, an observation X is 
said to be right-censored at U if the exact value of the observation is not known, 
but only that it is greater than or equal to U.  Second, an observation X is said to 
be left-censored at L if it is known only that the observation is less than or equal to 
L.  Third, an observation X is to be interval-censored if it is known only that the 
observation is between two values, say L and U, where L  <  U.  In some 
applications, some observations are censored on the right and some on the left.  In 
this case, the data are said to be doubly censored. 
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One of the main goals in Survival Analysis is to estimate the distribution 
function of the lifetime X of individuals in a population from the observed 
lifetimes of n individuals.  Once the estimator is derived, the focus shifts to 
examining the properties of the estimator. 

2 Description of the problem 

The motivation for the problem considered comes from a survival analysis 
problem in quality-assurance systems that are becoming more popular.  For 
example, some automobile manufacturers offer warranties on every new 
automobile.  The warranty is either for a fixed period of calendar time or for a 
fixed mileage.  To monitor the reliability of the new car, the manufacturer is 
interested in estimating the distribution of total mileage covered before the first 
breakdown occurs.  The manufacturer has a clear definition of what constitutes a 
breakdown in a car.  Presumably, failures attributable to manufacturing defects are 
treated as breakdowns.  Assume that the warranty is offered for a fixed calendar 
time.  Suppose that a random sample of new cars is being monitored to estimate 
the mileage distribution.  The data generated will have the following structure: 

1. If an automobile in the sample breaks down during its warranty period, the 
manufacturer will know the total number of miles driven on the car when it 
is brought in for repair. 

2. If an automobile has no breakdowns during its warranty period, the 
manufacturer has no idea how many miles were driven on the car before the 
first breakdown occurs.  It is extremely difficult to get information about 
the mileage on the car once the warranty period is over.  It is relatively easy 
to get information on miles Z driven on the car at the end of the warranty 
period. 

 
For an automobile randomly selected, let X denote the number of miles driven 

before the first breakdown occurs.  Let 




=∆
period, warranty  theduringdown break   tofails automobile  theif     0

period, warranty  theduringdown  breaks automobile  theif     1
 

and 




∆
∆

=
 0.= if       

1,= if      
Z

X
Y  

It is clear that Y = Min{X, Z}, and observing the event {∆ = 0} is equivalent 
to observing the event {X > Z}.  The miles Z driven on the car at the end of the 
warranty period may not be known. Suzuki (1985a, b) suggested that the 
manufacturer should pursue a fixed proportion p of owners in the sample and get 
information on Z if the event {∆ = 0} occurs.  Under this particular scenario, 
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Suzuki (1985a, b) derived estimators of the distribution of X both in the 
parametric and nonparametric frameworks.  

In this paper, the following more natural scenario will be considered. 
Scenario:  Instead of pursuing a fixed proportion p of owners in the sample to 

get information on Z if the event {∆ = 0} occurs, we contact all the owners in the 
sample either by telephone or by mailing a questionnaire.  The basic information 
requested is the number Z of miles driven on the car at the conclusion of the 
warranty period if the car has not broken down during the warranty period. The 
owner may or may not report the requested information.  Let us introduce the 
random entity, 




=
n.informatio requested report thenot  doesowner    theif          0

n,informatio requested  thereportsowner    theif           1
D  

In this scenario, the proportion p of automobiles providing the requested 
information is random.  The random variable D is defined only when the event   
{∆ = 0} occurs.  The data consist of realizations of (Y, ∆, D). 

Using the data obtainable in this environment, we will pursue the estimation of 
the distribution of X in some parametric frameworks.  

3 Estimation of lifetime distribution  

In this paper, the estimation problem of the survival function of an industrial 
product in which the real operating time differs from its actual calendar time is 
considered.   

 Assume that the warranty is offered for a fixed calendar time.  There are 
two ways to generate data.  One could run a sample of automobiles in an industrial 
laboratory for a fixed length of time commensurate with the warranty period 
offered.  The total number of miles on the odometer is recorded for each 
automobile if a breakdown occurs.  This is how the lab data are generated.  
Another way is to sell a sample of automobiles to customers and monitor the 
performance of the automobiles over their warranty periods.  This is how the field 
data are generated.  It has been argued that field data are more reliable than the lab 
data in truly assessing the reliability of automobiles.  The problem considered in 
this paper is how to analyze the field data.  Suppose that a random sample of size n 
of new automobiles is being monitored to estimate the mileage distribution. The 
data generated will have the following structure: 

 
1. If an automobile in the sample breaks down during its warranty period, the 

manufacturer will know the total number of miles X driven on the 
automobile when it is brought in for repair. 
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2. If an automobile has no breakdowns during its warranty period, the 
manufacturer has no idea how many miles were driven on the automobile 
before the first breakdown occurs. 

  
Once the warranty period is over during which no breakdowns occurred, it is 

difficult to track the owner to obtain the value of X, the number of miles driven on 
the automobile before the first breakdown occurs.  On the other hand, it is feasible 
to get information on the number Z of miles driven on the automobile at the 
conclusion of the warranty period.  Evidently, X > Z.  The focus is now on the 
manner in which this information is obtained.   

Suzuki (1985a, b) proposed the following scheme. Choose and fix an integer 
1≤ r ≤ n, where n is the sample size.  Identify r owners in the sample.  No 
randomization is done in choosing the r owners.  Designate this sub-sample as the 
follow-up sample.  If the automobile of an owner in the follow-up sample has no 
breakdown during the warranty period, record the number Z of miles driven on the 
automobile at the conclusion of the warranty period.  Suzuki assumes that the 
number Z is always obtainable for every automobile in the follow-up sample.  

 Let 




=
otherwise.         0

up, followed be  todesignated isowner th -i  theif         1
Di  

*pD
n
1

n
r n

1i
i == ∑

=
.  Di is non-random, and p* is deterministic. 

Suzuki (1985a, b) estimated the distribution of X under this scenario in both 
parametric and nonparametric environments.  In Suzuki’s scheme, it is possible 
that all the automobiles in the follow-up sample broke down before the expiration 
of the warranty period and the remaining (n-r) automobiles had no breakdowns 
during the warranty period.  In such a case, we have no information at all about the 
remaining (n-r) automobiles.  But the probability that such an event will occur is 
small.  In this chapter, we will consider a more natural scenario.  If an automobile 
in the sample has no breakdown during the warranty period, we solicit from the 
owner information on the number Z of miles driven on the automobile.  The owner 
may or may not provide the solicited information.  Let r* be the number of owners 
who provide the requested information.  The entity r* is random.  It is in this 
modified scenario that we derive the maximum likelihood estimator of the 
distribution of X.  Some of the properties of the estimator are also examined.  

3.1 Parametric estimation of lifetime distribution  

In this section, the estimation of lifetime parameters from incomplete data and 
follow-ups is considered.  In Section 3.1.1, the notation is set up, and assumptions 
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are spelled out.  In Section 3.2, the estimation of the lifetime parameters is 
discussed in general terms.  In Section 3.3, the derivation of the estimators is 
specialized when the underlying distribution is exponential.  Some of the 
properties of the derived estimators are discussed in Section 3.4. 

3.1.1 Notation and assumptions 
 
The following notation and assumptions are used in this article. 
a. (Xi, Zi), i = 1, 2, ..., n: independent, identically distributed pairs of random 

variables, with Xi the  mileage on the i-th automobile in the sample before the 
first breakdown occurs and Zi the total mileage on the automobile at the end of 
the warranty period. 

b. f(⋅), S(⋅): the probability density function of X and its corresponding survival 
function, respectively. 

c. g(⋅), G(⋅): the probability density function of Z and its corresponding survival 
function, respectively. 

d.  Θ : a vector of unknown parameters taking on values in the parameter space Ω.  
The parameters involved in the density function f(⋅) and g(⋅) are indicated by the 
symbol θ. 

 e. The observable, for i = 1, 2, ..., n, are 

   (i)  




=∆
otherwise.    0 

period, warranty  theof      

expiration  thebefore occursbreakdown  a if    1 

i  

 (ii)   If  ∆i = 1, let Xi be the mileage shown on the odometer. 
 (iii)  If  ∆i = 0, let  

 (iv)        

otherwise.    0
period, warranty  theof conclusion      

 at thecar  on thedriven  miles of number Z      
 on then informatio  theprovidesowner   theif     1

D i
i






=  

 (v)   




=∆τ
=∆

∆

,0D and 0= if           

 ,1D and 0= if         Z

1,= if        X 

=Y

ii

iii

ii

i  

where the special symbol τ indicates that no information is available on the 
automobile, except that Xi > Zi with both Xi and Zi unobservable. 
One needs to emphasize that the random entity Di is defined only when the 
event  {∆i = 0} occurs.  The data can be symbolically written as (∆i, Di, Yi), i = 
1, 2, ..., n.  The sample space of the data when n = 3 consists of 27 outcomes.  
For example: 

   (1, -, X1), (1, -, X2), (1, -, X3), 0 < X1, X2, X3 < ∞. 
   (1, -, X1), (1, -, X2), (0, 1, Z3), 0 < X1, X2 < ∞ and 0 < Z3 < ∞. 
    (1, -, X1), (1, -, X2), (0, 0, τ), 0 < X1, X2 < ∞. 
       (1, -, X1), (0, 0, τ), (1, -, X3), 0 < X1, X3 < ∞. 
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 (0, 1, Z1), (1, -, X2), (0, 1, Z3), 0 < X2 < ∞ and 0 < Z1, Z3 < ∞. 

 (0, 0, τ), (0, 1, Z2), (1, -, X3), 0 < X3 < ∞ and 0 < Z2 < ∞. 
 (0, 0, τ), (0, 0, τ),  (0, 0, τ). 

The  lower  case  letters   (yi,  δI,  di) are  used  to  indicate  the  realizations  of      
(∆i, Di, Yi), i =1, 2, ..., n. The generic symbol (∆, D, Y) is used for the data 
obtainable on an automobile. 

f. ∑
=

∆=
n

i
iun

1

= the number of automobiles which broke down during the warranty   

period. 

g. ∑
=

∆−=
n

i
iic Dn

1

)1( = the number of automobiles which did not  break down during 

the warranty  period, but for which the mileage is obtained through follow-ups. 

h. ∑
=

−∆−=
n

i
ii Dn

1

)1)(1(�  = the number of automobiles which did not break down 

during  the warranty period and for which no information is available on the 
number of miles driven at the conclusion of the warranty period. 

i. �nnnn cu ++=  =  the total number of automobiles in the sample. 
 

Assumptions: 
a. Xi  and Zi , i = 1, 2, ..., n are independent for all i. 
b. All breakdowns during the warranty will be reported to the manufacturer. 
c. P(Di  = 1 | ∆i = 0) = p, unknown. 

3.2 Estimation of the lifetime parameters  

To derive an estimator of the underlying parameter vector based on the likelihood 
principle, the contribution of each and every observation to the likelihood has to 
be worked out.  There are basically three types of observations.  All these types 
along with their likelihoods are enumerated below. 

Type 1.  The automobile breaks down during the warranty period.  Let y be the 
mileage on the odometer at the time of the breakdowns. Its likelihood = f(y) P(Z > 
y). 

Type 2.  The automobile has no breakdowns during the warranty period.  The 
number of miles y driven during the warranty period is available. Its likelihood = p 
g(y) S(y). 

Type 3.  The automobile has no breakdowns during the warranty period.  The 
number of miles y driven during the warranty period is not available. Its likelihood  

∫∫ ∞∞

−=>−=>
00

dz. g(z) )()1(dz g(z) )()1( Z) P(X p)-(1 zSpzXPp  

The likelihood of the data (δi, di, yi), i = 1, 2, ..., n can be written as 
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A commonsensical estimate p̂ of p is  
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One can see that this is the maximum likelihood estimate of p. Differentiating  
l( )Θ  with respect to p and equating it to zero gives 
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The unique solution of this equation is given by 
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lnn

n
p

c

c

+
=  

To find the maximum likelihood estimate of other components of Θ, we 
compute the partial derivatives of l( )Θ , equate the derivatives to zero, and solve 
the resultant equations. 

3.3   Derivation of the estimators if the underlying distribution is 
exponential 

Let X be distributed as Exp(θ) and Z as Exp(λ).  The parameter vector Θ is 
identified as Θ = (θ, λ, p).  Note that: 

 P(Failure before the warranty period) = P(X ≤ Z) = θ/(λ+θ);  
 P(Failure after the warranty period but the owner responds)  
 = p. P(X > Z) = p.λ/(λ+θ); 
 P(Failure after the warranty period, but the owner does not respond) 
  = (1-p).P(X > Z) = (1-p).λ/(λ+θ). 
The likelihood function for the n observations is given by  

[ ] [ ] [ ] .Z)>P(X)p1())S(yp.g(y)G(y).f(y=)L(
n

1=i
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iiii
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After some simplification, the likelihood simplifies as   
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The corresponding log-likelihood function is 
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The maximum likelihood estimates of λ and θ are found by differentiating this 
function with respect to λ and θ and equating the derivatives to zero.  The 
resulting equations are 
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From Equations (1) and (2), we have 
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Therefore, the maximum likelihood estimates $ $θ θ λ λ of  and  of  are given by 
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The estimate $θ  has an intuitive interpretation.  The data come in three 
different forms: (1) Mileages of automobiles which broke down during the 
warranty period; (2) Reported miles driven on the automobile at the conclusion of 
the warranty period when they had no breakdowns during the warranty period; and 
(3) The total number of miles driven on the automobiles at the conclusion of the 
warranty period is not available. 

The denominator of $θ  is the sum of all mileage figures available in 1 and 2.  
The numerator nu is weighted down by a factor of the proportion of automobiles on 
which information on the mileage is available.  If every owner reports censored 

values Zi’s when needed, then n � = 0 and the estimate $θ  is the standard estimate.   
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3.4  Properties of the estimators 

The asymptotic variance-covariance matrix of the parameters is the inverse of the 
information matrix, whose elements are found from the second derivatives of the 
log-likelihood function.  We have  
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The information matrix is the matrix of negative expected value of these partial 
derivatives.  To evaluate these expectations, we need to know the distribution of  
nu, , n  and nc � .  The distribution of each of the random variables nu, , n  and  nc �  
is Binomial (n, θ⁄(λ+θ)), Binomial (n, pλ⁄(λ+θ)), and Binomial (n, (1-p)λ⁄(λ+θ)), 
respectively.   

The negative expectations of the second order derivatives are given by 
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4 Results and conclusions 

The main goal of this work was to present some new methods of analyzing lifetime 
data collected under certain sampling schemes. 
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The problem came from the automobile industry.  The problem was to model 
the mileage distribution of a new line of automobiles before the first breakdown 
occurs.  A standard procedure is to run a sample of automobiles inside an 
industrial lab and note the mileage on the odometer when a breakdown occurs for 
an automobile.  To speed data collection, hard conditions are created for the 
automobiles in the lab for a quicker degradation of the automobiles.  This process 
is called accelerated life testing. 

This method of data collection is losing approval.  Running an automobile 
inside a lab and running it on the American roads are two different propositions.  
The mileage distribution based on the running of automobile on real roads should 
truly reflect the reality.  Another reason why accelerated life testing has lost its 
approval is that there is a great deal of difficulty in modeling the acceleration of 
the life of the automobile. Suzuki (1985a, b) came up with a sampling scheme: 

1. Let X denotes the mileage on the odometer of a randomly chosen 
automobile at the time of its breakdown. 

2. Sell a sample of n automobiles. Each automobile carries a warranty against 
breakdowns for a fixed number of years. 

3. If an automobile in the sample breakdown before the warranty period is 
over, the owner brings in the automobile for repair, and the value of X is 
noted down. 

4. If an automobile has no breakdowns during the warranty period, the value of 
X for this automobile will not be known.  Let Z denote the number of miles 
the automobile is driven at the conclusion of the warranty period.   X > Z. 

5. Choose and fix 0 < p < 1.  Identify a proportion p of the buyers of the 
automobiles in the sample.  If an automobile in this targeted group of 
automobiles has no breakdowns, note the number Z of miles on the 
odometer of the automobile at the conclusion of the warranty period. 

 Let us illustrate the data collection procedure by a simple scenario.  Suppose 
n=10 and p=0.5.  The following is one possible set of data. 

 
Automobile identity Breakdown during the warranty period X Z 

Targeted            1 Yes x1 - 
                       2 Yes x2 - 

                         3 No - z3 
                         4 No - z4 
                         5 Yes x5 - 

Non-targeted         6 Yes x6 - 
                         7 No - - 
                         8 No - - 
                         9 Yes x9 - 
                       10 Yes x10 - 

 
Assuming that X has a parametric distribution, Suzuki (1985b) estimated the 

parameters of the mileage distribution using a certain modified maximum 
likelihood method. 
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In this work, we modified the sampling protocol of Suzuki (1985b).  Our 
scheme has the same first four ingredients of Suzuki’s scheme.  We modify the 
fifth leg of Suzuki’s scheme.  In Suzuki’s scheme, there is an implicit assumption 
that the owner will furnish the value of Z when requested.  This is not realistic.  
We believe that the response of the owner will be random.  The modified version 
is like the one presented below. 
 

Id. Breakdown during the warranty period  
X 

Response of the 
owner 

 
Z 

1        Yes x1 - - 
 2                     Yes x2 - - 

  3                        No - Yes z3 
  4                        No - No - 
  5                        Yes x5 - - 
  6  Yes x6 - - 
  7               No - Yes z7 
  8                        No - Yes z8 
  9          Yes x9 - - 

  10                      Yes x10 - - 
  

 If an automobile has no breakdowns during the warranty period, contact the 
owner to provide the value of Z.  The owner may or may not respond. In our 
scheme, we do not have a targeted group of automobiles.  

Under the assumption that X has an Exponential distribution, we derived the 
maximum likelihood estimator of the parameter of the distribution as well as its 
asymptotic variance. 
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