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On the Assessment of (zain Scores by
Means of Item Response Theory

Gerhard H. Fischer!

Abstract

The problem of the measurement and statistical assessment of change
based on test scores which arises in repeated measurement designs with two
time points is treated within an item response theory framework. The lat-
ter is delineated by postulating a Partial Credit Model, of which the Rating
Scale Model and the Rasch Model are special cases. A conditional maximum
likelihood estimator of the amount of change, Clopper-Pearson and related sig-
nificance tests for the change parameter, uniformly most accurate confidence
intervals, and uniformly most powerful unbiased tests are presented. They
are all ’exact’ in the sense that no asymptotic approximations are needed.
They are grounded on the conditional distribution of the gain score, given
the sum score of both time points. These methods are quite flexible because
they do not require the same test to be given on both occasions; it is neces-
sary, though, that the items presented at the two time points be chosen from
an item pool conforming to the Partial Credit Model, and that the item X
category parameters of that model be known (i.e. have been estimated with
sufficient precision from a previous sample of testees). Possible applications
are the computation of significance tables for ’gain scores’ (i.e. score differ-
ences) for fixed pre and posttests or the computation of the significance of a
score difference for an individual in individualized (adaptive) testing. That
all results hold for single individuals and thus are applicable in single case
studies is a noteworthy feature of the present methods.

1 Motivation

The measurement and evaluation of change in testees between testing occasions is
highly important in psychological assessment. Questions concerning the amount of
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change in testees’ abilities or traits invariably occur in many subfields of psychology,
especially in clinical, developmental, applied, and social psychology. Nevertheless,
unsolved methodological problems of measuring change were notorious already in
classical psychometrics (Harris, 1963; Cronbach and Furby, 1970; Willett, 1989):
‘change scores’ (or ’gain scores’) D = Ry — Ry, where R; and R, are raw scores in
a test of interest, observed on two occasions, were considered inherently unreliable.
The problem of their reliability has recently been discussed again by Williams and
Zimmerman (1996). Amongst other results, these authors have shown that

~ ARel(Ry) + A"'Rel(Ry) — 2 p(r1, 72)/Rel(Ry)Rel(R,)

Rel(D) A+ A1 —=2p(m, ) \/Rel(Rl)Rel(RQ)

Y (1'1)

where 'Rel’” denotes reliability, A the quotient o(R;)/o(Rz), and p(y,72) the cor-
relation of the true scores between the time points (testing occasions) T; and Ts.
Therefore, Rel(D) is a function of (i) pretest reliability, (ii) posttest reliability, (iii)
the pretest-posttest true score correlation, and (iv) the quotient A.

As can be seen from Table 1, when R; and R, have similar standard deviations,
i.e, for A near 1.0, Rel(D) decreases dramatically as a function of p(71, 72), especially
when p(71,72) is close to 1.0. (By setting the numerator in (1.1) to zero it can be
shown that, in the present example, Rel(D) becomes zero at A = 1.06, which value,
however, is not given in Table 1.) Cases where A is in the neighborhood of 1.0 are
likely to occur in test practice, and high true score correlations are often considered
desirable (as an indication that the same trait is measured at 77 and T5); but in
precisely these cases, the reliability of the difference score D necessarily becomes
low.

This — and similar — considerations have nurtured the suspicion that difference
(or gain) scores are poor measures of change. Some authors have even advised
avoiding gain scores altogether (Cronbach and Furby, 1970).

These discouraging results are not germane to difference scores per se, they are
rather caused by the employment of test reliability as an indicator of measurement
precision. Indeed, it is quite common wrongly to consider reliability a characteri-
zation of test precision, which it is not: reliability, defined as the quotient of true
score variance over total variance of a measure (cf. Lord and Novick, 1968, p. 61),
strongly depends on distributional properties of the reference population, which have
nothing to do with measurement precision. Therefore, the fact that — under certain
conditions — the reliability of the gain score becomes small does not imply that the
gain score cannot be used as a basis for the estimation of true change and/or is
uninformative with respect to testing the Hy of no change. As will be shown below,
within the framework of a suitably chosen family of IRT models the gain score can
well be used (i) to derive a measure of change with quite favorable properties, (ii) to
construct a confidence interval for the true amount of change, and (iii) to test the
Hy of no change. Thus, from an IRT perspective, we shall arrive at an assessment
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Table 1: Reliability of gain score D = Ry — Ry, for Rel(R;) = .800 and Rel(R2) = .900,

as a function of A and p(11, 7).

p(71,72)

A .000 .100 .200 .300 .400 .500 .600 .700 .800 .900 1.000
10| .899 .897 895 .894 .892 .890 .888 .886 .883 .881 .879
.20 | .896 .893 .889 .885 .881 .876 .871 .865 .859 .853 .846
30 | .892 886 .881 .874 .867 .859 .850 .839 .827 .813 .797
40 | .886 .879 .871 .862 .851 .839 .825 .807 .786 .760 .726
.50 | .880 .871 .861 .849 .835 .818 .798 .771 .737 .692 .626
.60 | .874 .863 .851 .837 .819 .798 .770 .734 .685 .612  .497
270 | 867 .856 .842 .825 .805 .779 .745 .699 .633 .530 .345
.80 | .861 .848 .833 .815 .792 .763 .724 .669 .588 .455 .193
.90 | .855 .842 .826 .806 .781 .750 .707 .646 .555 .398 .073
1.00 | .850 .836 .819 .799 773 .739 .694 .631 .533 .365 .010
1.20 | .841 .827 .809 .788 .761 .727 .681 .618 .521 .361 .038
1.40 | .834 .819 .802 .781 .755 .722 .679 .621 .536 .401 .158
1.60 | .828 .814 .797 .777 753 .722 .683 .631 .559 .452 .275
1.80 | .824 .810 .794 .775 752 724 689 .644 .584 .498 .369
2.00 | .820 .807 .792 774 .753 .728 .696 .657 .606 .537 .440
3.00 | .810 .800 .788 .776 .761 .745 .726 .705 .679 .649 .613
4.00 | .806 .798 .789 .r79 .769 .757 745 731 715 .697 .677
5.00 | .804 .797 790 .783 .774 766 .756 .746 .735 .722 .709
6.00 | .803 .797 791 .78 .778 .77l .764 .756 .747 738 .728
7.00 | .802 .797 792 787 .781 775 769 .763 .756 .748 .740
8.00 | .802 .797 793 788 783 .778 773 .768 .762 .756 .749
9.00 | .801 .797 794 789 .785 781 .776 .771 .766 .761 .756
10.00 | .801 .798 .794 .790 .787 783 779 .74 770 766 .761

of the precision of change measurements that is very different from that of Williams
and Zimmerman (1976).

2 The partial credit model for a repeated
measurement design

The Partial Credit Model (PCM; Masters, 1982) is an IRT model for unidimensional
polytomous items with ordered response categories (also denoted as ’graded response
items’). It is the most general model within a family of Rasch Models, comprising
the Rating Scale Model (RSM; Rasch, 1965; Andrich, 1978) and the Rasch Model
(RM; Rasch, 1960) as special cases. Therefore, choosing the PCM as a basis implies



6 Gerhard H. Fischer

that the results will be applicable both to unidimensional achievement tests with
dichotomous items (with response categories ‘right’ vs. 'wrong’) or with polytomous
items (e.g., with response categories 'right’, 'partially right’, and 'wrong’) and to
unidimensional rating scales with ordered response categories (like 'always’, ’often’,
‘rarely’, 'never’). In the latter case, the response categories may either be defined
differently for each item (admissible in the PCM) or identically for all items (as
required by the RSM). Therefore, the methods presented below have a wide spectrum
of applications.

The PCM for a set of items given to a testee S at one time point (say, 7}) is
defined by equation

exp(j0 + Bij)
X;i=1 05« - =y Bim:) =
P( 1) ‘05 BZO’ aﬂzm@) Z;ZO eXp(le'{‘ﬂi[),

where X;; = 1if S chooses response category Cj; of item I;, and X;; = 0 otherwise;

(2.1)

 denotes the latent trait parameter of S, and (;; an ’attractiveness’ parameter
of response category Cj; of item I;, j = 0,...,m;. (The parameters j;; are often
replaced by sums of certain 'threshold’ parameters 7;;, however, this reparameteri-
zation is of no advantage here. Under either parameterization, some normalization
conditions are needed to render the parameters unique, however, the considerations
in the present paper are independent of whatever normalization has been chosen.)

Since we are concerned with measuring change, we have to specify the model
also for another time point 75 at which the latent trait parameter of S may have
changed from 6 to 6 + 7, where 1 denotes the amount of change in S between T
and Ty. The PCM for time point 75 then becomes

exp(j (0 +n) + By;)

As is usual in IRT, the item responses are assumed to be ’locally independent’,

implying stochastic independence of S’s responses as long as S’s parameters # and
n are constant. (This does not preclude non-zero correlations between items in the
population P of testees, though, because then 6 and n may vary between persons.)
Local independence will be postulated throughout this paper.

Under the PCM, the raw score r on a test with k£ items is r = Zle Z;-":"O JTij-
This comprises, as a special case, the 'number right score’ of intelligence tests with
dichotomous items.

The questions as to how the parameters of the model can be made unique by
normalization conditions and by which methods the normalized parameters can be
estimated empirically have been treated sufficiently in psychometric literature, cf.
Andersen (1995) or Fischer and Ponocny (1995); the interested reader is referred to
these sources and the references therein. The preferred approach to estimation is the
‘conditional maximum likelihood’ (CML) method which capitalizes on the existence
of a nontrivial conditional probability (or likelihood) of the data, given the testees’
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raw scores; it is a function of the item x category parameters (3;;, but is independent
of the person parameters . A CML program for the estimation of the parameters
of an RM, an RSM, or a PCM is described in Fischer and Ponocny-Seliger (1998).
(This WINDOWS program is available from ProGAMMA, Groningen.)

The conditional likelihood approach, based on (2.1) and (2.2), will also be used
for the estimation of the change parameter n and for tests of hypotheses about 7.
It is easy to verify that the conditional likelihood of S’s responses is independent
of the chosen normalization of the PCM parameters ;;. This independence is the
reason why we need not bother about the normalization; it suffices to assume that
parameters [3;; are given by which the PCM (2.1) and (2.2) is defined.

3 Some notation

The central idea underlying the present measurement of change and the testing
of hypotheses about change within a PCM is the following: the argument in the
exponential function in (2.2), (0 + n) + Bi;, can be rewritten as j# + (8;; + jn) =
70 + Bj;, where the §; are new item x category parameters of item /;. The latter
are sometimes designated as ’virtual’ item parameters since no items with these
parameters exist in reality. Employing this reparameterization implies that the
person parameter f remains constant, while change is projected into the virtual
item parameters. The advantage of this is that formulae (2.1) and (2.2) can jointly
be considered one PCM for a person S with a constant person parameter # and with
item X category parameters (3;; (for items I; from the pretest, which henceforth will
be denoted Z,) and ;; (for items I; from the posttest, henceforth denoted Z,). In
other words, we may consider the pretest Z;, given at time point 7}, and the posttest
T,, given at time point 75, jointly as one test of length £k, comprising A items I; € 7
and k — h items I; € Ts.

For formal convenience, we shall replace the parameters 3;; by transformed pa-
rameters €;; = exp(/3;;), 0 by & = exp(f), and 1 by § = exp(n), so that equations
(2.1) and (2.2) have to be rewritten as

P(X,y = 1 i) = o (5.)
i 5 €405 - - -5 Comy Z’lrilo 5leil .
and g
€
( J ‘57 5 €50, , € z) Z'ln;lo §l5l€i[ (3 )

Denote the maximum or 'perfect’ scores attainable in Z; and Z, as s; = Z?:l m;
and s, = Ef:h +1 My, respectively, and let all cases be excluded where the total score
r =711+ 7o is zero or sy + Sy (i.e. where r; and 7y are fully determined as soon as
r is given). The notation is summarized in Table 2. Notice that the two subsets of
items Z; and Z, may be disjoint, or overlapping, or even identical. Therefore, our
approach allows for many different testing designs with two testing occasions.
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Table 2: Notation for a repeated measurement design with two time points.

Occasions T T
Subtests T1 Ts

Items Il, .......... 7Ih, Ih+1, ............... ,Ik
Responses Xy eeeeeeeeen yXB KRl eeeeeereeeeens , Xk
Response Patterns X4 X
Numbers of ITtems h k—h

Raw Scores 71 T =T —1T1
Perfect Scores S1 S9

Item x Category Parameters

of the Real Items €10y weeeeen yEhmy Rt 1,05 eeeeeenns s €k,
Parameter Vector €

Item x Category Parameters
of the Virtual Items €10 vnner s €hmy, (50€h+1,0, ey 0% €

4 Measurement of change

It is well-known that in the PCM the conditional probability of a testee’s response
pattern X, given his/her raw score r, is independent of his/her person parameter £
(or ) (cf. Andersen, 1995). This probability is obtained by dividing the uncondi-
tional probability of X by the unconditional probability of observing any response
pattern Y compatible with the given raw score r, the denominator being a certain
combinatorial expression resulting from the summation over all patterns Y which
yield . With the present parameterization, this conditional probability is

P s
(ITi=, HTQO %” )or

P(X|r) = , 4.1
(Xir) Y (Z1, Ly, 6) (4.1)
where v,.(Z1,Z2,0) = Yr(€10, - - - » €hmy 5 O°€nt1,0, - - - s O™ €k, ) denotes the said combi-
natorial expression; the latter is
h m; - k m; )
w(@Z0) = ¥ (I e ) (I TT0e)™), (42)
Y|r “i=1j=0 i=h+1j=0

the sum over Y meaning summation over all patterns Y that are compatible with r
(cf. Andersen, 1995, p. 277).

Denoting that part of response pattern Y which pertains to Z;, as Yy, and the
rest, which pertains to Z,, as Y, with respective raw scores r; and ry satisfying
1 + r9 = r, it is seen that
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W@ L= Y (SIS I ) @)

T1,T2 Y, |rit=15=0 Y|ro i=h+1j=0
r1+ro=r

where now the summation is taken over all r; and ry sufficing r; + ro = r. This
again can be written more elegantly as

(T, L2,0) = > vea(T)u(Ta)d' (4.4)

l=a
The limits of this summation, a and b, are determined as follows: evidently, for the
summation index [ the constraints [ > 0,1 > r — s1, [ < s9, and | < r must hold.
These constraints are immediately seen to imply

a = max(0,r — s1),

b = min(r, s3).

It is now clear that

= — _ _ Vr 1o (L1) Yy (T2) 0"
Pp(re) := P(ry,ro|r) = P(re|r) = P(ro — ri|r) = A (4.7)

Note that these probabilities represent the conditional distribution of the gain score
variable Ry — R, which is identical to the conditional distribution of Ry; it depends
on only one parameter, 0 (or, equivalently, 1), provided that the item X category
parameters are known. It is easy to verify that this distribution is a one-parametric
exponential family. As we shall see, this has a number of interesting and quite
beneficial implications. (On exponential families, see Barndorff-Nielsen, 1978, or
Andersen, 1980.)

Now it is straightforward to determine a CML estimator of the change parameter
d (or, equivalently, of ) by maximizing (4.7) in terms of 4, which yields an estimator
7 as our measure of change in testee S. Clearly, to do so the item X category
parameters [3;; of the test must have been previously estimated from a sufficiently
large sample of testees. This person sample must stem from a population P in
which the PCM holds true, and the PCM must also hold for the present testee S,
of course; but the sample need not be random or representative of the population,
nor is it necessary to assume that S be sampled randomly from P. This is due to
the fact that the conditional estimator of the parameter vector € (or, equivalently,
() is consistent irrespective of the distribution of the # parameters in P (except for
certain degenerate distributions; see Andersen, 1973).

Maximization of (4.7) with respect to ¢ can be done by taking the derivative of
its logarithm and putting it to zero. The result of this, however, can directly be
obtained also from a well-known theorem from the theory of exponential families:
the ML (here: CML) estimator is obtained by equating the observed realization of
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the statistic, 7o, with its conditional expectation, E(Ry|r), which yields the CML
estimation equation

N (43)

If (4.8) is solved for 4, an estimate /) = In é obtains, i.c. a measure of $’s amount
of change on the latent scale . Moreover, if it should be possible to show that the
PCM, under suitable assumptions about the item universe, yields measures of the
latent trait € on an interval scale (as was done by Fischer, 1995b, p. 21, at least
for the Rasch Model), it would follow that the estimator 7 is unique except for a
multiplicative scaling constant, i.e. lies on a ratio scale. This would be is a very
important property of change measurement because, e.g., in clinical psychology it
would become possible to make statements like 'the amount of improvement (on the
latent trait measured by the test scale) of testee S, under treatment A is twice as
large as that of testee S, under treatment B.

Technical questions as to how to compute the functions v numerically and how
to solve the estimation equation (4.8) cannot be discussed within the scope of the
present paper; the interested reader is referred to Fischer (2001). Here it suffices
to mention that very efficient recursions are known for the v (see Andersen, 1972,
1995; Fischer and Ponocny, 1994, 1995) and that (4.8) is most conveniently solved
by means of a simple bisection method (see Fischer, 2001).

From well-known properties of exponential families it follows that, if the sufficient
statistic Ry is in the interior of the support [a,b], a finite CML estimator 7, i.e.
a finite solution of (4.8), exists and is unique. Therefore, our procedure for the
measurement, of change will yield a unique result except for certain boundary cases.
What happens with the root of (4.8) when 7y = a or o = b is seen in the overview
given in Table 3 (on the proof, see Fischer, 2001).

5 Clopper-Pearson confidence intervals and some
hypothesis tests

In many typical cases, an increase of the person parameter is expected, e.g., of
abilities under training, therapy, or growth; or a decrease is expected, e.g., of abilities
due to aging or of personality disorders under therapy. Therefore, it is of interest
to test the Hy: n = 0 against the one-sided Hi: 7 > 0 or Hy: n < 0, respectively.
Considering the conditional distribution (4.7), it is obvious that the tail probability

P(Ry > 12|8,m0,7) = > pyo (1), (5.1)

l=r2
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Table 3: Existence and uniqueness of a CML estimator of n and of finite limits of

Clopper-Pearson confidence intervals.

Estimator
Ry 7) s | n*
a —o0 | —oo | ext.

a—+1| ext. | ext. | ext.

b—1 | ext. | ext. | ext.
b +o0o | ext. | +oo

Note: The entry ’ext.” means that a finite solution exists and is unique. The results
concerning lower limits 7, and upper limits n* of Clopper-Pearson confidence intervals

hold equally for the one-sided and two-sided cases.

can be used to test the Hy: ny = 0 against the Hy: n > 0, namely, to reject Hy at
significance level « if P(Ry > 73|3,m0,7) < a. (The case Hy: 7 < 1 is analogous.)

An equivalent approach is to compute a one-sided so-called Clopper-Pearson
confidence interval (7, 00) for the change parameter 7, using again the conditional
distribution (4.7). The lower limit 7, is obtained by solving

P(Ry > 19|B,14,7) = (5.2)

with respect to 7, (cf. Santner and Duffy, 1989). For this purpose, again a bisection
method turned out to be quite efficient and easy to apply, see Fischer (2001). (The
case Hy: n < 0 is analogous.)

The Clopper-Pearson confidence intervals can also be interpreted as significance
tests of the null-hypothesis of no change, Hy: n = 0. The Hj is rejected if the
point 1 = 0 falls outside the respective confidence interval. Such tests are generally
conservative, like the underlying confidence intervals.

These simple but conservative confidence intervals and related hypothesis tests
have several attractive properties. First, they are based on the exact conditional
distribution of Ry, given the total observed score r, and hence do not require any
asymptotic approximations. ’Asymptotic’ in this connection means ’for k& — o0’,
which would be an unrealistic assumption because most test scales have very lim-
ited length. Second, they are quite analogous to elementary methods, e.g., for the
binomial distribution, described in textbooks of elementary statistics. Third, as will
be illustrated by the example below, they are more attractive, from the point of
view of an applied researcher, than optimal confidence intervals and most powerful
tests, because the latter involve an additional element of randomness (see Section 7
below).

In the case of a two-sided alternative hypothesis, Hi: 7 # 0, a 'naive’ — but simple
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Table 4: Numbers of categories and parameters of the 14 self-assertiveness items, and

the design of the pretest and posttest.

mi Bio P Bz Biz Prt. Pot.
1 1100 1.72 1 0
2 1100 0.87 0 1
3 1100 -0.84 0 1
4 100 -1.40 1 0
5 2100 097 1.09 0 1
6 2100 089 0.65 1 0
7 2100 036 -0.64 0 1
8 2100 -0.33 -1.53 1 0
9 2100 -0.61 -2.30 0 1
10 2100 -0.83 -2.56 1 0
11 3100 122 201 4.10 1 1
12 3100 -014 -042 -1.93 1 0
13 3100 -0.95 -1.96 -3.04 0 1
14 3100 -148 -2.77 -6.58 1 1

Note: The items are arbitrarily ordered first by their numbers of categories, second by
their (easiness) parameters f3;;. For normalization, all 8jp = 0 and >, £;; = 0. The item
design is described by design vectors with elements 1 or 0, depending on whether an item is
or is not contained in the pretest or posttest, respectively. The abbreviation 'Prt.” means
"Pretest’, "Pot.” means "Posttest’. The maximum score of either test is 17.

— method is to apply exactly the same procedures as under the one-sided alternative
hypotheses, however, with «/2 at either tail of the conditional distribution. Such
‘equi-tailed’ intervals are analogous to many methods in elementary statistics, but
in general there is no logical justification for splitting a into «/2 at each tail; this is
correct only in symmetric distributions. The present conditional distribution (4.7)
is symmetric if Z; and Z, are identical item sets, but is non-symmetric in most other
situations.

One and two-sided Clopper-Pearson intervals and significance tests for test scales
conforming to the RM have already been implemented in the software LPCM-Win
1.0 by Fischer and Ponocny-Seliger (1998).

We conclude this section with results on the uniqueness of the lower limit, n,, of a
one-sided Clopper-Pearson confidence interval (7., c0) and of the upper limit, n*, of
the one-sided interval (—oo,n*). They are summarized in Table 3. (The proofs can
again be found in Fischer, 2001). These results also hold for equi-tailed two-sided
confidence intervals with /2 instead of a.
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Table 5: Effect parameter estimates 7, significances, and confidence intervals
(Clopper-Pearson and Randomized) for one-sided and two-sided alternative hypotheses

at significance level o = .05 for all combinations of r; and ro with total score » = 19.

One-Sided Two-Sided
Hi:n>0 Hi:n#0
Clopp.-Pear. | Randomiz. | Clopper-Pearson Randomized

Ty 17 P M P P n 7 P n 7
17 2 -oco0 | 1.000 -00 | 1.000  -00|0.000 -c0 -3.55|0.000 -c0 -0
16 3 -5.07|1.000 -8.59|1.000 -7.20|0.000 -9.31 -2.45|0.000 -oco -3.17
15 4 -3.83|1.000 -6.18|1.000 -5.45|0.000 -6.60 -1.63 | 0.000 -7.76 -2.33
14 5 -2.93|1.000 -4.90|1.000 -4.27|0.002 -5.24 -0.92 |0.001 -4.77 -0.99
13 6 -2.160.999 -3.96|0.996 -3.54 |0.020 -4.25 -0.27|0.014 -3.89 -0.39
12 7 -1.4810.990 -3.16 |0.956 -2.99 | 0.130 -3.43 0.33 | 0.040 -3.42 -0.08
11 8 -0.85]0.935 -2.45|0.865 -2.17|0.466 -2.70 0.90 | 0.437 -2.15 0.89
10 9 -0.26 |0.767 -1.79|0.677 -1.47|1.000 -2.04 1.46|0.781 -1.81 1.33

—_
)

0.30 1 0.486 -1.19|0.389 -0.91|0.971 -1.43 2.03|0.918 -142 1.61
0.86 | 0.215 -0.62 | 0.180 -0.26 | 0.429 -0.86 2.64 | 0.365 -0.80 2.28
1.44 1 0.061 -0.07|0.020 -0.01]0.122 -0.30 3.33|0.048 0.01 3.28
2.08{0.010 0.49|0.004 0.64|0.020 0.26 4.13|0.003 0.83 4.24
2.8210.001 1.10{0.001 1.57|0.002 0.87 5.12|0.000 1.42 5.39
3.71 10.000 1.85]0.000 1.94)|0.000 1.54 6.49|0.000 197 7.39
4.96 | 0.000  2.61|0.000 2.80|0.000 2.33 9.210.000 2.66 00
0.000 3.78 | 0.000 4.65|0.000 3.45 oo | 0.000 00 00

[ S -t
LW N =

[ —
S O

N Wk Ot OO J 0 ©
[y
S

=
13

6 An example

Suppose scales for the measurement of 'Self-Assertiveness’, each composed of a sub-
set of a total of 14 items which conform to the PCM, are given to patients before
and after a psychotherapy that aims at promoting self-confidence. Items 1 to 4 are
dichotomous, items 5 to 10 have three categories each, and items 11 to 14 four cate-
gories each. The pretest is composed of items 1, 4, 6, 8, 10, 11, 12, 14; the posttest
of items 2, 3, 5, 7, 9, 11, 13, 14. The maximum scores of pretest and posttest are
both 17. The parameters and the test design are shown in Table 4.

For a demonstration, we arbitrarily select all score combinations r; and ry with
total score r = r1 + r9 = 19. The CML estimates 7, their significances by formula
(5.1), and Clopper-Pearson confidence intervals, based on one-sided and two-sided
alternative hypotheses, are given in Table 5. (The randomized confidence intervals
and related significances will be explained in Section 7.) Comparing the significance
levels P, for all positive changes 77 > 0 (i.e. for ro = 10,11,...,17), under the
two-sided Hi: 7 # 0 with those under the one-sided Hi: n > 0 shows that the latter
are smaller (as they indeed should be): the one-sided tests are more powerful. For



14 Gerhard H. Fischer

Table 6: Significances on the basis of formula (5.1) under the one-sided Hi: n > 0 (left
half of the table) and, with «/2, under the two-sided Hi: n # 0 (right half of the table)
for the self-assertiveness scale.

1 1
ri/re 012345678901234567 ri/re 012345678901234567 ri/re

0 .ssSTTTTTTTTTT 0 .sSSTTTTTTTTT 0
1 .sSSTTTTTTTT 1 ssSTTTTTTTT 1
2 ssSSTTTTTTT 2 .ssSTTTTTTT 2
3 .ssSSTTTTTT 3 .ssSTTTTTT 3
4 .8ssSSTTTTT 4 .ssSTTTTT 4
5 .8ssSSTTTT 5 . .ssSSTTT 5
6 .ssSTTT 6 s ssSSTT 6
7 .ssSTT 7 ss. .sSTT 7
8 .ssST 8 Sss. .sST 8
9 .sST 9 TSss. .sT 9
10 .sS 10 TTSss sS 10
11 sS 11 TTTSss .s 11
12 . S 12 TTTTSs . s 12
13 S 13 TTTTTSs . 13
14 14 TTTTTSSss 14
15 15 TTTTTTSSss . 15
16 16 TTTTTTTTSSss 16
17 17 TTTTTTTTTTSS s s 17
1 1
012345678901234567 012345678901234567

Note: The leftmost, middle, and rightmost columns give the pretest scores r1, the top
and bottom rows the posttest scores ry. The interior of the table represents the levels
of significance: blanks denote nonsignificance, ’.” denotes significance at o = .10, ’s’ at
a=.05,"S at a = .01, and "T” at o = .001.

negative changes 7 < 0 (i.e. for 7o = 9,8,...,2), it is clear that no significances
are possible under the one-sided alternative Hi: n > 0. Under the two-sided Hi:
1 # 0, however, the scores 7, = 6,5, ..., 2 indicate a significant deterioration of Self-

Assertiveness (at o = .05). This is also reflected in the corresponding confidence
intervals.

The significance levels for all score combinations 7 X 7o are summarized in the
form of Table 6 for H;: 7 > 0 and for Hy: n # 0. Such tables are easy to apply even
for researchers who are not familiar with statistical or psychometric methods since
it suffices to look up the significance of the respective combination of scores r; and
3.

Two aspects have to be kept in mind. First, such a table is valid only for fixed
pretests and posttests, Z; and Z,. If different testee groups are presented with
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different item sets, one table has to be computed for each group. In individualized
(computerized adaptive) testing, however, such tables become impractical; then it
is necessary to compute the significance level for each individual separately. Second,
equal gain scores d may be differently significant depending on the respective 7,
and ry values. As Table 6 (left half) shows, e.g., for H;: n > 0, a gain score of
d =7—2 =05 is significant at the o = .05 level, while the gain score d =13 -8 =5
of the same size is only significant at « = .10. (This alone suffices to illustrate
why it would not make sense to assign a single indicator of measurement precision
like, e.g., reliability, to all values of the variable D = Ry — R;.) Comparing this
significance level, on the other hand, with that of the same scores under the two-
sided Hy: n # 0, it is seen that in the latter case there is no significance; this is
understandable because the two-sided test is less powerful.

7 Uniformly most accurate confidence intervals
and uniformly most powerful unbiased tests

Although the Clopper-Pearson confidence intervals and the related probabilities
(5.1) are intuitively appealing and easy to understand for researchers in psychol-
ogy or education, their disadvantage is that they lead to conservative decisions: the
Hj of no change is sometimes retained where a more powerful procedure might lead
to its rejection. Fortunately, a detailed theory of Uniformly Most Powerful Unbiased
(UMPU) tests and of the related Uniformly Most Accurate (UMA) confidence inter-
vals (on this terminology, see Mood, Graybill, and Boes, 1974) for one-parametric
families of exponential distributions can be found in statistical literature (see, for
instance, Lehmann, 1986, or Witting, 1985). The idea underlying the construction
of a UMPU test of the Hy of no change and of a UMA confidence interval for 7 is to
transform the discrete random variable R, into a continuous variable W = Ry + U,
where R, and U are stochastically independent and U has a rectangular distribu-
tion on [0,1). This transformation is called 'randomization’ of R, and the resulting
procedures are denoted 'randomized tests’ and ’randomized confidence intervals’,
respectively. Variable W has a continuous distribution function A that is strictly
monotone decreasing in 7,

1

[w]—
Ay(w) = ; py(l) + (w = [w])py([w]) , (7.1)

where [w] denotes the largest integer < w and the sum is defined to be zero if
[w] — 1 < a. It is important to understand that, although a random ’error’ variable
U is added to R,, no loss of information is incurred because, if w is given, 7o can
still be uniquely inferred by taking the nearest integer < w.

The continuous variable W can now be used for the construction of optimal tests
and confidence intervals. The lower limit of the one-sided UMA confidence interval
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Table 7: Existence and uniqueness of finite limits of UMA confidence intervals.

Hi:n>0 Hi:n<0 Hi:n#0

N | 7 | me |0 | e | N
W<a+a —00 | 400 | —00 | —00 | —00 | —00
ata<W<a+1l—« —o0 | +00 | —0o | ext. | —oo | ext.

at+tl—a<W<a+2—a|ext. | +oo | —o0 | ext. | —o0 | ext.
a+2—a<W<b—14a«a | ext. | +o0 | —00 | ext. | ext. | ext.
b—1+a<W<b+a ext. | +o00 | —o00 | ext. | ext. | +o0
b+ta<W<b+1l—« ext. | +oo | —oo | +00 | ext. | 4+o0
b+1—a<W 400 | 00 | —o0 | 00 | +00 | +o0

Note: The entry "ext.” means that a finite solution exists and is unique. In the case of

two-sided alternative hypotheses, however, uniqueness holds only if [¢1] < [e2].

(74, 00) under Hy: 7 > 0 is obtained by solving (7.2) for 7.,
A, (w)=1-a. (7.2)

Similarly, the upper limit n* of the one-sided confidence interval (—oo,n*) under
Hi: n < 0 is obtained by solving (7.3) for n*,

Ay (w) = a. (7.3)

The numerical problems involved are again conveniently overcome by means of a
simple bisection method.

The question as to the uniqueness of limits 7, and n* and of their behavior when
R, assumes values at or near the boundaries of the interval [a, b] is more complicated
than in the case of Clopper-Pearson intervals because it depends not only on the
realization of Ry but also on the random component U and on the significance level
a. The results are seen in Table 7. (The proof can be found in Fischer, 2001.)

Equivalent to the construction of a UMA confidence interval is a UMPU test of
Hj against Hy: n > 0 or against Hy: n < 0: instead of solving (7.2) or (7.3), with
given a, for 7, or n*, we now insert n = 0 in (7.2) or (7.3), respectively, and compute
a, which is the significance level of the test of Hy: n = 0.

For the dichotomous RM, UMPU tests have already been suggested by Klauer
(1991a), Liou and Chang (1992), Liou (1993), and Ponocny (2000). Some tests are
implemented, e.g., in the software T-Rasch (Ponocny and Ponocny-Seliger, 1999).
Fischer (2001) generalized the results of Klauer (1991a) to the entire family of models
defined by the PCM.

The effect of randomization on the one-sided confidence intervals (7., c0) and on
one-sided tests of Hy: n = 0 is illustrated in Tables 5, 6, and 8 (left half); the latter
table gives the significance levels for score combinations 7, and r, for the example
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Table 8: Significances based on randomized tests under Hy: 7 > 0 (left half of the table)
and under Hy: n # 0 (right half of the table) for the self assertiveness scale.

1 1
ri/re 012345678901234567 r/ro 012345678901234567 r1/re

0 s .STSTTTTTTTTTT 0 s ssSTTTTTTTTTT O
1 .sSSSTTTTTTTT 1 .sTSTTTTTTTT 1
2 .sSSSTTTTTTT 2 .ssSTTTTTTT 2
3 .sSSTTTTTTT 3 S sSSSTTTTTT 3
4 sssSTTTTTT 4 .sSSSTTTT 4
5 .SsSSTTTT 5 .. .8sSsSTTTT 5
6 sssSSTTT 6 S . . ssSSTTT 6
7 .ssSSTT 7 Ss. sssSST 7
8 .ssSTT 8 SSss SSST 8
9 ssST 9 TSSss ssST 9
10 ssS 10 TTSSs. .ssS 10
11 .ST 11 TTTTSss s.S 11
12 sS 12 TTTSSsss. S 12
13 sT 13 TTTTTTss . s 13
14 s 14 TTTTTSTss. . 14
15 S 15 TTTTTTTSSs s 15
16 16 TTTTTTTTSSsS. 16
17 17 TTTTTTTTTTSSSs . . 17
1 1
012345678901234567 012345678901234567

Note: The leftmost, middle, and rightmost columns give the pretest scores r1, the top
and bottom rows the posttest scores ry. The interior of the table represents the levels
of significance: blanks denote nonsignificance, ’.” denotes significance at o = .10, ’s’ at
a=.05"S" at a = .01, and 'T’ at a = .001.

of Section 6 based on randomized UMPU tests. Comparing first the corresponding
columns in Table 5 shows that the randomized one-sided confidence intervals are
always better and the significance levels lower than in the Clopper-Pearson case;
this is as expected. Turning then to the contours of significance levels, a comparison
of Tables 6 (left half) and 8 (left half) reveals that the contours in the latter table are
more 'ragged’. Moreover, Table 6 possesses the property of ’double monotonicity’,
meaning that significance levels increase or decrease monotonically both row- and
columnwise. This certainly is in accordance with what empirical researchers would
expect. Table 8, on the other hand, partly violates this property and thus — at least
at first sight — seems to contain some contradictory entries. This is not so, however:
from a theoretical perspective, monotonicity has to hold only in all directions parallel
to the secondary diagonal of the table, that is, within each conditional distribution
with fixed total score r. As the reader can easily check, Table 8 indeed satisfies
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this monotonicity requirement. Anyway, the advantage of the randomized tests in
Table 8, as compared to those in Table 6, lies in their greater power to reject the
Hy:n=0.

From the point of view of an applied researcher, the UMPU randomized tests
have one serious disadvantage, though: applying such a test to two testees with the
same total and gain scores, or performing the test twice for the same person (keeping
the scores fixed), may occasionally produce different results (different significance
levels). This is probably not in accordance with most researchers’ expectations
about methodology. The statistician, however, can easily explain this random be-
havior of the test as formally correct and logical: if, for instance, a simple Student’s
t-test is carried out twice to test the Hy of equal means of two (sub)populations,
to repeat the test means to draw another pair of independent samples and to com-
pute the test statistic anew, which may obviously lead to a result that contradicts
a previous one. In the same way, repeating the significance test of the difference of
two person parameters in the present case implies observing independently new test
scores (which should be possible by virtue of the local independence assumption)
and subsequently drawing a new random number u from the uniform distribution
on [0,1). Clearly, total and posttest scores may be observed on the second occa-
sion that differ from those previously observed, and a different realization u of the
random variable U will also occur. Therefore, the outcome of the test in terms of
a significance level may be different. Even repeating only the computation of the
significance test involves sampling a new u, which may already suffice to produce a
change in the significance level. Nevertheless, the present chance dependence of the
significance test of a gain score might present a greater problem to the empirical
researcher than using the less powerful Clopper-Pearson tail probabilities.

Turning now to the case of a two-sided alternative hypothesis Hi: n # 0, the
method of randomization can be applied as before, but it entails more complicated
procedures. According to the theory of statistical tests in one-parametric exponen-
tial families, a UMPU test of Hy: n = 0 can be written as a function ¢ of the
observation w = ry + u,

o) - {

where W = Ry + U is the randomized score variable, ¢ = 1 means rejecting and
¢ = 0 retaining the Hy, and ¢y, cy are certain cutoff scores. The latter can be
determined from the system

1 for w<e¢ or w> co,

4
0 otherwise, (7:4)

Eplo(W)] = o, (7.5)
Eﬂo[R2¢(W)] = aky, (RQ)’ (7'6)
with 79 = 0 under the present Hy of no change (cf., e.g., Witting, 1985, Chap. 2,

who describes in much detail the procedure for the binomial distribution; see also
Klauer, 1991a, and Klauer, 1991b, who applied the same to the RM).
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Evaluation of the expectations in (7.5) and (7.6) yields the system

A (c1) + By, (c2) = a,
Aﬁo (Cl) + BT)O (02) =

where A, (c;) is the distribution function (7.1) taken at w = ¢;, and

By(c2) = ([eo] + 1 — e2)py([e2]) + ; py(l), (7.9)
< O+ (e = [y (e el

A,,(cl) = Ez:apn ) , (7.10)
B, (cz) — (lea] + 1 = ex)py(leleo] + e 2a(0)] 11)

Z?:a py()!
(Again, a sum where the lower summation limit is greater than the upper limit is
defined to be zero.)

The system of equations (7.7) and (7.8) affords a basis for solving two equivalent
problems, the construction of a UMA confidence interval (7., n*) and the determina-
tion of the cutoff scores ¢; and ¢, for a two-sided UMPU test of Hy: 7 = 779. (On this
equivalence, see Mood, Graybill, and Boes, 1974, p. 464). The technical problems
of how to solve the system (7.7)-(7.8) and the questions related to the uniqueness
of the results are treated in Fischer (2001). The conditions for the uniqueness of
(n«,n*) are summarized in Table 7. As in the case of one-sided alternative hypothe-
ses, the uniqueness of a solution depends on 74, on the realization u of the random
component U, and on the chosen significance level a. Therefore, it may again hap-
pen that, for a given pair of scores r and 7, together with a realization u, a unique
solution is found, but that, upon recalculation with another u, one of the limits 7,
and n* diverges to —oo or oo.

8 The example continued

To give a rounded picture of the procedures outlined in this paper, UMA confi-
dence intervals and UMPU significance levels under the two-sided Hy: n # 0 are
also presented in Tables 5 and Table 8 (right half). To see the difference between
the Clopper-Pearson approach and the randomized confidence intervals and tests,
compare the corresponding columns in Table 5: for almost all score combinations,
the two-sided randomized confidence intervals are narrower, but near the extreme
score combinations r; = 2, 7 = 17 and r; = 17, r9 = 2, one or both limits of the
UMA confidence interval tend to diverge. The reader may further wish to compare
the significance levels of the UMPU two-sided tests (Table 8, right half) with those
of the Clopper-Pearson procedure (Table 6, right half). As is clear on theoretical
grounds, the former are always smaller than the latter, that is, the UMPU tests are
more powerful.
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9 Conclusion

Treating the problem of the change of raw scores between two time points within the
framework of a family of Rasch models (RM, RSM, PCM) leads to a powerful arsenal
of tools: simple Clopper-Pearson confidence intervals and related significances as
well as UMA confidence intervals and related UMPU hypothesis tests based on
randomized scores. All of them are ’exact’ in the sense that they are grounded on
the exact conditional distribution of score differences, given the observed total score
r, which implies that no asymptotic approximations are required. They allow one
to compute tables of the significance of score differences which are easy to apply
in practice. All these methods hold for any selection of subtests Z; and Z; from
a given item pool that conforms to the postulated model (PCM). By the way, the
same methods and tables also apply to the statistical assessment of score differences
between two different testees.

The present author advocates that such tables should routinely become part of
test manuals of published tests. Clearly, this is only possible if pretest and posttest
are fixed. An example of such a use of the methods outlined in this paper can
be found in the Manual for Raven’s Progressive Matrices and Vocabulary Scales
(Appendix 3 by Fischer and Prieler, 2000).

From all this it is evident that the 'precision’ of change measurements can be
evaluated on the basis of confidence intervals of the change parameter n and of
related significance levels. Such a characterization of precision is somewhat more
complex than the traditional one because more than just one number (i.e. reliability)
is required. On the other hand, the present approach does not suffer from the
paradoxes and weaknesses inherent in the concept of reliability.

Further extensions of the present methods where individual significances of change
are integrated into one significance of change for a group of testees (e.g., in clinical
research with small groups) are immediate but cannot be treated within the scope
of the present paper.
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