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Abstract

The notions of centrality and distance-based consensus are important con-
cerns in many areas such as social network theory and classification theory.
The general set-up consists of a finite metric space X and a subset S of X.
For z € X, let D(z,S) be a measure of ‘remoteness’ of z to S, and let C be
the function where C(S) is the set of all points z € X for which D(z, S) is
minimum. C is called the median function on X when D(z,S) is the sum of
distances from z to all the points in S, C is called the mean function on X
when D(z, S) is the sum of the squared distances, and C is called the center
function on X when D(z,S) is the maximum of the distances from z to all
the points in S. This paper will review recent results obtained toward char-
acterizing the median, mean and center functions on metric spaces such as
certain classes of graphs (symmetric networks) and spaces of various types of
classifications on a fixed set of entities.

1 Introduction

Let (X,d) be a finite metric space and X* = |J X*. The elements of X* are called
k>1
profiles and are denoted m = (x1,...,zk), ™ = (Y1, .- -, Ym), etc. In consensus theory

and location theory, it is common to try to find those points in the space that are,
in some sense, closest to a given profile. The literature is quite extensive, but for a
start the reader can consult several of the references at the end of this note.
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To model the general case, we first let D : X x X* — Re where Re denotes the
real numbers. For appropriate functions D, D(z, ) can be thought of as a measure
of distance, or remoteness, of x € X to the profile . In this paper, a (distance based)
consensus function (also known as a location function) on X will be a function of the
form C' : X* — 2%\ {0}, where C(7) = {z : D(x,7) is minimum}. (2* denotes the
set of all subsets of X.) Let m = (xy,...,zx) be a profile and z € X. Three natural

k
measures of remoteness are Di(z,7) = Y. d(z,z;), Do(x,n) =max{d(x;,x) : i =
i=1

k
1,...,k}, and Ds(z,m) = . d(z,x;)®. Current terminology (McMorris, Roberts,
i=1

and Wang, 2001) is as follows: The median function is that consensus function, Med,
where Med(n) = {z : Di(x,n) is minimum}, the center function is the function
Cen where Cen(r) = {z : Dy(x,7) is minimum}, while the mean function, Mea,
is defined by Mea(r) = {z : Dj3(x,7) is minimum}. The most widely studied
consensus function to date is the median function. However, there has been some
recent progress concerning the center and mean functions, and this will discussed
in the following sections. Other remoteness measures and distances would lead to
other consensus functions - - - there are many possibilities to explore.

The next sections will briefly review results on the median, center, and mean
functions defined on an arbitrary metric space, and then we will consider metric
spaces that have additional structure that can be exploited for characterizations
of Med, Cen, and Mea. The present paper extends and modifies much of what
appeared in McMorris (1997).

2 The center, mean, and median functions on
finite metric spaces

We first list a few properties (axioms) that a consensus function might satisfy on an
arbitrary finite metric space (X, d). Each property has a straightforward interpre-
tation for both consensus and location applications, and on the surface, each looks
quite reasonable.

Consider the following properties for a consensus function C' on X:

Anonymity (A): For every profile 7 = (x1,...7,) € X* and permutation o of
{1,...k}, C(m) = C(n7), where 77 = (To(1), - - - > To(k))-

Betweenness (B): C((z,y)) = {2z : d(z,y) = d(z,2) + d(z,y)}

Consistency (C): If C(m) N C(n") # @ for profiles 7 and 7', then C(n7") = C(7) N
C(n"), where n7' is the concatenation of 7 and 7', i.e. if 7 = (x1,...,24) and
7= (Y1, Ym) then 77" = (T1, ..., Try Y1y -+, YUm)-

Faithfulness (F): C((z)) = {z} for all z € X.
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If C satisfies (B) and (C), then it satisfies (F). To see this, first note that C'((z)) =
C((z)) so by consistency (C) we have C((z,z)) = C((z)), and C((z,z)) = {z} by
(B) since d(z,y) = 0 if and only if z = y.

It is also not hard to show that Med satisfies (A), (B) and (C) on X (and hence
also (F)) (Barthélemy and Janowitz, 1991; McMorris, Mulder, and Powers, 2000).
However, these properties do not in general characterize Med among consensus
functions and in order to do so requires structure to be added to the metric space.
More will be said about this in later sections. It is an interesting open problem to
find those conditions that need to be imposed on X in order that the above three
very simple properties are also sufficient and thus characterize Med.

Regarding C'en and Mea, there exist metric spaces on which neither satisfy (B)
(McMorris, Roberts, and Wang, 2001). Also, it can easily be shown that Mea
satisfies (C), but that Cen need not (McMorris, Roberts, and Wang, 2001). Clearly
Cen and Mea both satisfy (A) and (F).

Other properties that help to separate these three consensus functions are:

Quasi-Consistency (QC): If C(m) = C(n') for profiles 7 and 7', then C(77') = C(x).

Population Invariant (PI): If {7} = {#'}, then C(7) = C(n'), where {r} is the set
of points making up the profile 7.

Clearly if C satisfies (C), then it satisfies (QC), so that both Med and Mea
satisfy (QC). Also, if C satisfies (PI), then C satisfies (A). Although, Cen need
not satisfy (C) it does satisfy (QC) as seen in Theorem 1. Cen also obviously
satisfies (PI) and thus (A), but neither Med nor Mea satisfy (PI) in general. So
that this paper does not become entirely ”proofless” the next result with proof from
McMorris, Roberts, and Wang (2001) is included in the hope that it gives the reader
some additional feeling for distance based consensus functions.

Theorem 1. The center function satisfies (QC) on any finite metric space.

Proof: For a profile 7 = (z1,...,2%) let D(z,7) = max{d(z,z1),...,d(z,zx)}
Assume that Cen(m) = Cen(n'), a € Cen(nn’), and b € Cen(m) = Cen(n').
From the definition of Cen we have D(a,n7") < D(b,nn"), D(b,7) < D(a, ), and
D(b,n") < D(a,n"). Clearly

D(b, 77") = max{D(b, ), D(b,7")} < max{D(a, ), D(a,7")}
= D(a,n7') < D(b, 77"). (2.1)

Thus D(a,nn') = D(b,nn') which implies b € Cen(nn') and therefore Cen(w) C
Cen(nn'). We now claim that a € Cen(w) = Cen(n’). For this, it suffices to show
that D(a,7) = D(b,7) or D(a,n") = D(b,n"). From (1), max{D(b, ), D(b,7")} =
max{D(a,7), D(a,7")}. If D(b,7) < D(a,n) and D(b,7") < D(a,n"), then
max{D(b,7), D(b,7")} < max{D(a, ), D(a,n")}, a contradiction. O
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3 Consensus on trees

Let G = (X, E) be a finite connected graph and d be the usual geodesic metric
on G, where d(z,y) is the length of a shortest path between the vertices z and
y. In this case a consensus function on X is referred to as a consensus function
on G. Note that a profile in a graph can be thought of as a sequence of vertices,
repetitions allowed. To date, there has been some success in characterizing Med on
various types of graphs (Barthélemy and Janowitz, 1991; Barthélemy and McMorris,
1986; Cook and Kress, 1992; Kemeny and Snell, 1962; Leclerc, 1993; Leclerc, 1994;
Margush, 1982). However, there is not much known for Cen on graphs. Cen has
only been characterized on trees, where a tree is a finite connected graph without
cycles, so results for Med will only be presented below for a tree in order to be able
to compare and contrast in a straightforward fashion. In what follows T' = (X, F)
will denote a tree. As a consequence of results holding for graphs more general than
trees, the following result was established in (Leclerc, 1994).

Theorem 2. Let C be a consensus function on a tree 7. Then C is the median
function Med on T if and only if C' satisfies properties (A), (B) and (C).

Let x and y be vertices of T" and let p be the path in T joining z and y. By
repeatedly deleting the end vertices of paths, starting with p, either we end with a
single vertex or two adjacent vertices. We call this vertex, or two adjacent vertices,
the middle of the path p. The following axiom is easily seen to be satisfied by Cen
on 7.

Middleness (M): Let C' be a consensus function on a tree T, and x,y vertices in T
not necessarily distinct. Then C((z,y)) is the middle of the unique path joining z
and y in 7.

In light of Theorem 2, it is tempting to conjecture that (M), (PI) and (QC)
are enough to characterize Cen on trees. Unfortunately, this is not true and we
need an additional axiom. If S C T, we let T(S) denote the smallest subtree of T’

containing S. For the profile 7 and x € X, let 7 — x denote the profile obtained
from 7 by removing x everywhere in 7 and reducing the length accordingly. Note
that if x ¢ {7} we have 7 —x = 7. {w} — x will be the set of vertices appearing in
7 not equal to x. The following axiom, like (M), is formulated only for trees.

Redundancy (R): Let C' be a consensus function on a tree 7. If x is a vertex of
T({r} — ), then C(r — z) = C(n).
Theorem 3. (McMorris, Roberts, and Wang, 2001) Let C' be a consensus function

on a tree T. Then C' is the center function Cen on T if and only if C satisfies
properties (M), (PI), (QC) and (R).

An open problem that remains is to give a characterization of Mea on trees.
Little is known, beyond what has been already pointed out as necessary conditions,
for Mea on any particular class of finite metric spaces.
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4 Consensus for hierarchies

Often each point in a particular space is itself an entity with structure. This in turn
allows for structure to be given to the metric space in natural ways. We look first
at the case where each point is a classification of a finite set of entities S. Features
of every classification scheme of S usually involve the notion of a “cluster”, where
the clusters are constructed so that objects of the same cluster are more similar to
each other than to objects of another cluster. Thus a classification on S is just a
set, of nonempty subsets of S. In addition, if we let H be a given classification of
S, we require S € H as well as {z} € H for all z € S. Since a hypergraph on S is
defined as a set of nonempty subsets of S, a classification scheme is foremost a type
of hypergraph. We refer to elements A € H as clusters of the hypergraph H. Let
‘H denote the set of all hypergraphs on S of the above type and n = |S| denote the
number of elements of the set S. Let d be the metric on H defined by

d(Hy, Hy) = |Hi| + |Ha| — 2[H1 N Hs|

for Hy, Hy, € H, where |H;| is the number of clusters in H;. This, of course, is the
well known symmetric difference metric. From now on the metric spaces considered
will be sets of hypergraphs, equipped with the symmetric difference metric.

A classification of S will usually be structured into something tree-like called a
hierarchy. In our context a hierarchy (also called an n-tree) on S is a hypergraph
T, in H, such that AN B € {A, B,@} for every cluster A, B € T. Let T denote
the set of all hierarchies on S. Because the median function on (7,d) is defined in
terms of d, one way of “knowing” Med is to characterize this symmetric difference
metric. This was done in Margush (1982) generalizing work found in Barthélemy
(1979); Bogart (1973); Bogart (1975); Kemeny and Snell (1962). Also see Cook and
Kness (1992) for several examples of this approach.

In order to present a characterization of Med on (7, d) one more property needs
to be defined. It is named after the Marquis de Condorcet who, according to Young
(1988), actually was suggesting the median function in 1785 (Condorcet, 1785). If
7w = (T1,...,Ty) is a profile of hierarchies and A C S, let y(A4,7) = HZAkiET’}‘ A
consensus function C' on (7,d) is %—condorcet if for any A C S and profile 7 =
(T1,...,Tx) € T* such that v(A, 7) = 1, the following holds:

T € C(r) if and only if T U {A} € C(n) provided T'U {A} is a hierarchy.

The following result appears in McMorris and Powers (1995) in an abstract ver-
sion, and improved earlier results in Barthélemy and Janowitz (1991) and Barthélemy
and Monjardet (1991).

Theorem 4. Let C' be a consensus function on (7,d). Then C is the median
function if and only if C satisfies properties (C) and (F) and is 3-condorcet.

Cen and mea have not been studied on (7, [), and this remains an interesting
area for investigation.
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For m = (Hy,...,Hy) € H*, let Maj (m) = {4 : y(A,7) > }. The resulting
consensus function Maj : H* — H is the majority rule. Note here that, although we
refer to Maj as a consensus function, the codomain has been modified from 2%\ {0}
to simply H - - or, one can think of the usual codomain and note that |Maj(7)| =1
for all 7. When H = T, it is easy to see that Maj () € T for all 7 € T* (Margush
and McMorris, 1981), but care must be taken for other classes of hypergraphs.
For example, there exist profiles m of weak hierarchies for which Maj (7) ¢ W
(McMorris and Powers, 1991). Using Maj, finding medians in (H,d) is easy. Let
E(m) = {A:v(A,7) = i}. An argument given in Barthélemy and McMorris (1986)
can be used to show that H € # is a median for = if and only if H = Maj (7) U K
where K C E(7). It follows from this that the number of medians for even a profile
of two hierarchies can grow exponentially (this also follows as a consequence of axiom
(B)), even though finding one median (the majority rule hierarchy) can be done in
polynomial time.

5 Consensus for weak hierarchies

A hypergraph W on S is a weak hierarchy if and only if ANBNC € {ANB,AN
C, BNC} for all clusters A, B,C € W. Weak hierarchies were introduced in Bandelt
and Dress (1989) to generalize hierarchies in a way that allows partial overlap of
clusters. Let W denote the set of all weak hierarchies on S.

In contrast to the situation for hierarchies, there exist consensus functions on
(W, d) that satisfy the three conditions of Theorem 4 yet are not the median function
(McMorris and Powers, 1997). Unfortunately the major additional condition is fairly
complicated. For the profile 7 = (W7,... W) € W* and set A C S define

w(A) = k(2v(A,7) — 1)

" J(r) = {A (A7) > %}

Note that w(A) > 0 if and only if A € J(7). For each W € W set

where the sum is taken over all A € J(w) for which A ¢ W. When J(7w) C W, set
w, (W) = 0. A consensus function F on W is %—weighted if, for any profile 7 € W*,
F(m) C{W € W : w(W) is minimized }.

In McMorris and Powers (1997) the following is proved:

Theorem 5. The median function on (W, d) is the unique maximum (with respect

to set inclusion) consensus function on W which satisfies properties (C) and (F) and

is 2-condorcet and 3-weighted.
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Clearly it would be nice to find a more simple list of properties that characterize
Med on (W, d).

We close by noting two results from McMorris and Powers (1991) that are conse-
quences of more general theorems. The general results allow for profiles to be mixed,
in the sense that members of a profile can be either hierarchies or weak hierarchies.
Extreme cases of this are to consider a consensus functions C' : W* — ‘H defined by
C(r) ={A:v(A,7) > 3} and C : W* — W defined by C(n) = {A: y(A4,7) > 2}
Both of these are clearly analogs of the majority rule in these contexts, and have
been characterized while noting that both % and % are the smallest fractions that
allow these functions to be well-defined in the sense that they produce elements of
‘H and W respectively.
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