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Abstract

The purpose of this work is to describe some applications of non-parametric
regression models where the dependent variable is a curve and the response
is scalar (Ramsay and Silverman, 1997). The estimator we will use is a gen-
eralization of the classical Nadaraya-Watson regression estimator with a local
window. Such a model may be used both for independent and identically
distributed data and for dependent observations. These methods may also be
used for forecasting of time series where the variable Y is a time series value
and X are portions of the same series.

With the aim to find a local confidence interval for the mean of the estima-
tor, that is biased, we will use bootstrap techniques in order to approximate
the law of statistic. In particular, adapting the bootstrap techniques (Efron,
1983) for non-parametric regression (see Hall, 1992 and Bowman and Azza-
lini, 1997) to the case of functional regression, we will find a variability band
for regression mean by bootstrapping the residuals.

In order to apply the methods we will propose a simulated example for
independent data. Further we will point out the results for forecasting a real
economics time series.

1 Introduction

Before presenting the main topic of this work, let’s lay out some definitions and fix
the notations used in the sequel. Consider the classical regression model between
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two random variables (r.v.) ¥ and X
Y=¢X)+e=E[]Y|X]|+¢ (1.1)

where ¢ is a r.v. independent from X, with zero mean and finite variance, and ® € C
where C is a class of functions. Moving from the most common definition based on
r.v. probability laws, such a model is said to be non-parametric when for the class C
only generic hypothesis of regularity are done (for example C is a set of continuous
and m times differentiable functions).

The literature is mainly devoted to the study of model (1.1) in the cases when
Y and X are r.v. defined on the same probabilized space (2, A,TP) with values
respectively in (R, Bg) and (R', Bg.) (where ¢ is an integer, ¢ > 1). In these cases
the multidimensional regression models for independent observations and forecasting
models for time series are actually included.

Nevertheless, such models are inadequate when the explanatory variable X is
a curve defined on a compact set of R' (p > 1). There are numerous fields of
study, such as meteorology, chemicals, econometrics, quality control, agriculture,
image processing, etc., in which it is common task to solve problems where scalar
responses are to be explained by means of a set of functions.

In such a context it’s necessary to use a more generalized regression model (1.1)
where X is a r.v. with values in (S,Bs) where S is a functional space and Bg
the associated o—algebra. In such a case the r.v. X is said to be a functional r.v
then we speak about regression functional model with scalar response (Ramsay and
Silverman, 1997). A particular case is when S is an Hilbert space and ® a continuous
linear operator with real values. In this case the model is called the Functional Linear
Model (Hastie and Mallows, 1993), and it is parametric. Recently some estimators
of the linear operator ® have been defined as well as their asymptotic properties
(Cardot et al., 1999; 2000).

In this work we study a more general non-parametric model where S is a func-
tional space supplied with a semi-norm ||.|| and ® a non linear operator with real
values. The r.v. (X,Y) defined on (2, A, IP) takes then values in (S x R, Bs ® Bg)
where Bg is the o—algebra generated by topology of S defined by semi-norm |.||.

In the following section we define the kernel estimator for the functional non-
parametric model for scalar response. In Section 3 we propose and illustrate a
bootstrap method to build a variability band around the mean of estimator. Before
the applications of Section 5, we describe the technical tools we have employed in
the examples.

2 The kernel estimator

Let us consider the observed data set {(x;, ;) }i=1,..n» where each (z;,Y;) stem from
a bivariate sample of r.v. identically distributed as the r.v. (X,Y). The non-
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parametric regression model for the observed data set we study is:

where the regression mean ®(z) = IE [Y'|z] is the object of our interest and the error
variables {e;}i=1,.n are assumed to be independent and identically distributed as
the r.v. € with zero mean and variance o2.

Let’s suppose that S is a space of continuous and differentiable functions and
that ® is a non-linear operator on S with real values.

Model (2.1) may be used both when studying data from i.i.d. r.v.’s and in the
case of time series. To solve problems of forecasting time series it is possible to divide
the observed series into a finite number of periods and perform regression on it. In
other words, let Z be a continuous time stochastic process observed on a compact
interval 7 C R; such an interval is supposed to be divided in n sub-intervals of
constant length 7. Starting from Z we can, for example, build n functional r.v.’s
(X;); defined by

Vt € [0; 7], X;(t)=2Z((i — )T+ 1), i=1,...,n

and n a scalar r.v. Y; = X;1(T) with T € [0; 7].
In order to estimate the operator ® defined in (2.1) let’s introduce the following
estimator

Vo € S, P, = Zwi(m)Yi (2.2)
i=1

with

(z) = nK <%> (2.3)

where h,(x) is a sequence of strictly positive real numbers depending on z and n, the
kernel K is a monotonous decreasing function with compact support [0;a] a > 0,
and ||.|| a semi-norm measuring the distance between the functions of S. Such
estimator, introduced by Ferraty and Vieu (2000), is a generalization of the better
known non-parametric regression Nadaraya-Watson estimator.

The idea of (2.2) and (2.3) is to estimate IE [Y|X = z]| with a weighted average
of the r.v.’s Y;; following the K properties the weights decrease when we get far from
z. The semi-norm allows to measure the distance between the functions and the
window h,,(z) allows to control locally the size of the set on which we are working.

The uniform almost total convergence properties of the estimator (2.2) have
been studied by Ferraty and Vieu (2000) for i.i.d. observations and for dependent
observations Ferraty et al. (2002) give analogous results under opportune hypothesis
of fractal dimension of probability law of the r.v. (X,Y).
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3 The bootstrap method for confidence bands

To find a local confidence interval for the mean of the estimator (2.2), that is bi-
ased, we will use bootstrap techniques in order to approximate the law of a pivot
statistics. In particular, adapting the bootstrap techniques, (Efron, 1993) for non
parametric regression (Hall, 1992; Bowman and Azzalini, 1997) in the case of func-
tional regression, we will find a variability band for regression mean bootstrapping
the residuals.

In the case of i.i.d observations the estimator ®(z) defined in (2.2) has mean and
variance, respectively:

Bo@)] =Y wi@)e@)  Var[b@] =0y o)

where o? is the variance of the errors ¢;.
To build a variability band around the point estimation given by ®(z) we consider

the statistics: R R
®(z) — E[®(z)]

S(z) =

Var [(a)]
Knowing the distribution law of S(z) a two-sided confidence interval (at level «) for
IE [®(z)] is given by:

I(z) = [‘i)(fﬂ) — U(1+a)/2 O ; ‘i(m) — U—a)j2 O B] (3.1)

where IP(S(z) < £) = ug and 3, = (31, w?(x))Y2.

As the estimator is biased, it is not necessary true that P(®(z) € I) = a.
To have an exact confidence interval for ®(z) it will be necessary to correct I(x)
eliminating the bias effect; for this reason we consider I(x) as variability band for
®(x) proposing it as the size of standard error of ®(z).

Since the exact distribution law of S(z) depends on errors law, and in a non-
parametric context no hypothesis are made about it, we suggest a bootstrap method
to estimate the corresponding quantiles in the studentized version of interval (3.1)
instead of using the classical asymptotic method. In such a way we approximate
U(1+4a)/2 and U _q)/2 of the interval

L(z) = [®(z) — uiays2 60s ; P(&) = va—ay2 6 Bil (3.2)

with the corresponding quantiles uE‘l +a)/2 and uz‘l_a) /2 of the law of:

_ @) - B[ ()]

5% (x)

——

Var [®*(z)]

where ®*(z) and Vaﬁ{?(x) are the bootstrap version respectively of ®(z) and
Var [®(z) defined as follows.
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We note that S(z) can be written in the form:
g (el
> (ham )

with v = o (30, K2 ().

hn(z)
For any i = 1,...,n, we compute the sample residuals & = Y; — ®(z;), we
standardize them &; = & —n~' >"" | &, and we draw a sample {7, ...} } at random
with replacement from the set {£1,...,é,}. In such a way the bootstrap version of

S(z) is defined as follows:
* — *)—1 K ||.T — ‘/'CZ” *
S*(z) = (") ;:1 (7})}” @ )¢

where (%) = 6*(2i, K2(4=gl)) V2 and 6* = (n — 1)~ Zf (e =n7t o )
Using as estimate variance of errors 62 = (n—1)"' Y | £? and finding bootstrap
quantiles with Monte Carlo techniques, the confidence interval as approximations

for I;(x) is

I (@) = [®(2) — ufyiay2 08 3 ©(@) — Uy ayj2 6 Bal (3.3)

As an example, on the left side of Fig. 1 are plotted, arbitrarily ordered as
®(x) increases, the 95% bootstrap confidence bands around the estimation of mean
for a regression model with errors distributed as a shifted Gamma of parameters
(1.5,2.04). On the right side of Fig. 1 are plotted the 95% bootstrap confidence
bands for the sample simulated as described in Section 5 with regression errors
distributed as a Normal r.v. In both cases the number of bootstrap iterations was

10000.

O Mean of estimator|

T T T T T T T T T T T T
0 10 20 30 40 50 0 20 40 60 80 100

Figure 1: Bootstrap confidence bands.
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4 Some computational features

When observing real phenomena we may collect many points belonging to the curves
x; but not complete curves, before using estimator (2.2), it is then necessary to
smooth the observed data. There are many techniques that can be used (i.e. ba-
sis functions methods using Fourier series, polynomial, spline and wavelet basis or
smoothing methods by local weighting). We have chosen a smoothing method of
kind roughness penalty based on B-spline base (Ramsay and Silverman, 1997). In
order to choose the base size we use the classical Cross-Validation (CV) technique.

Now let’s point out the components of the regression function estimator. As a
semi-norm ||.||, we have chosen

Vge s,  gllm= \// (9<m)(t))2dt (4.1)

where g™ stands for order m derivative of function ¢g. As it is evident, for m =
0 the equation (4.1) becomes the classical L? norm. Such choice is allowed for
the continuity and differentiability hypothesis and for computational features it is
possible by means of the observed smoothing data.

We will use as kernel decreasing function:

3 2
(1 — -1

K(u) 2(1 u®) for u € [0;1], (4.2)
0 otherwise.

The choice of optimal local window h,(z) is done with Cross-Validation technique
as follows. For any z = z; the distances between this curve and the other in the
sample are calculated. The curves are ordered according to such distances. All
possible values for the window size used in Cross-Validation loop are computed as
central points of the intervals

(s, = @jllm 5 25 = 25llm ] k=1,...,n-1

where x;, is the k curve in the order done by the distance.

On the base of observed data set {(z;,Y;)}i=1,...n, we then set the order of semi-
norm, the optimal window size and determine a point estimation for ®(x). Observ-
ing a new curve x;, a forecast for the corresponding ®(z;) will be done using the
parameters of (2.2).

5 Some applications

In the first part of this section we lay out the properties of the estimate method
we have described in Section 2 through simulation. In particular we propose an
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Figure 2: Curves and functional coeff. §(-).

example of estimation with bootstrap variability bands for a i.i.d. simulated data
set.

In the second part we analyze a empirical time series to show an application of
the estimator to the case of forecasting with dependent data.

Let us treat the i.i.d. case: we generate a sample of 200 curves, each one dis-
cretized in 100 design points equispaced in [0; 1], according to the following rule

X;(t) = a;jt + b; sin(2t7) + ¢; cos(4tm) + e, i=1,...,200

with ¢ € [0;1], a; ~ U(0;5), b; ~ U(0;5), ¢; ~ U(0;5) and e; ~ N(0;.2). The r.v.
a;, b;, ¢; and e; are mutually independent. On the left side of Fig. 2 some of these
curves are shown.

Using this set of curves we simulate Y values using the model

1
m:/ B)m(D)dt + &, i=1,...,200
0

where &; ~ N (0;0 = .8) and the functional coefficient 3(.) is defined by £(t) =
sin(7t/2) 4+ 0.5sin(37t/2) +0.25 sin(57t/2) and visualized on the right side of Fig. 2.
The standard deviations of the random errors ¢; are fixed in order to have approxi-
mately 02 22 0.2Var [®(X)].

The observed data set {(z;, Y;) }i=1,... 200 is split into two parts: one with 150 data
pairs is used for learning the model, the other one as forecasting. In the learning
step we compute the order of semi-norm by 10—fold cross validation and we estimate
the variance using the CV statistic. We also obtain the local band-widths and the
number of the curves which are near.

To quantify the errors we introduce the following error criteria

8 8

MSE = -3 (@(n) - 8(@)?  and  EC =Y (- 8

where s is the number of estimated points or the number of forecasted points. We
obtained the following results:



132 Alessandra Durio and Aldo Goia

Step ‘ MSE EC
Learning | 0.22385 0.14096
Forecast | 0.68598 0.18293

—_—

Fig. 3 shows the scatterplots of ®(z) = IE(Y|z) versus ®(z) = IE(Y|z) in the
estimation step and in the forecast step; while in Fig. 4 there are the 95% bootstrap
confidence bands for the Y forecasting means conditionally to x = z; for any 7 =
1,...,50.

In some cases the size of the bands is very large, for at least two reason. One
depends on the local nature of the estimator. The variance of the estimator depends
on quantity Y ;. w?(x), that is function of h,(z); if the curve z; on which the
forecast is based is far from the other curves of the observed sample, the sum of
square weights increases. In other words, we do not have a good performance when
we try to estimate the variance in a curve that is too different from that we use in
the learning step. The other depends on the estimation of error variance; we have
used the classical sample variance even if the estimator is biased. It is possible to
find a different estimator that takes into account the bias of ®(z). Unfortunately
the difference-based method, proposed in literature (Hall, 1997) for the classical
Nadarya-Watson regression model, is not directly used in this case as that method
requires the Y; of the sample sorted according to the x;’s.

Estimated E(Y|X)

Figure 3: Estimated and forecasted points.

As mentioned in Section 2, the estimator defined in (2.2) and (2.3) may be
used for time series prediction. Now, present results of the method application to a
time series describing the US electricity monthly consumption by the residential and
commercial sectors. The time series consists of 158 observation (from January 1988
to February 2001) and its shape is displayed on the left side of Fig. 5. The first step
consists in differentiating the log-data in order to eliminate the heteroscedasticity
and the linear trend. The transformed series, said (2;)i=1,.. 158, is divided into 85
twisted pieces, each one of 60 observations as follows:
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o Real E(Y|x)
® Mean of estimator|

0 10 20 30 40 50

Figure 5: Electricity monthly consumed by the residential and commercial sectors.

T = (Ztla Rtgs -+ 9 Rtsgs Ftsgr Zteo) Yi = Ztgy
Ty = (Zt27 Rtz -+ 3 Rtsgsr Fleor ztﬁl) Yi = Ztgy
T3 = (ztga Rty -+ Rtgos “le1r Ztﬁz) Yi = Zig3

An example of these curves is shown in Fig. 6.

Our objective is to forecast the next 12 months, from Mach 2000 to February
2001, using the model estimated in the first part of the series. In practice, the
learning step is very similar to the i.i.d. case and we obtain an optimal semi-norm
order m = 1. Notice that the classical L? norm is not optimal and we may interpret
this fact by seeing that the shape of the curve on the right side of Fig. 5 are very
similar and the differences between the curves can be measured only with respect
to the first order derivative.

In the forecasting step, every forecast point is used to build the new curve that
is needed to forecast the next point, as described in the following scheme
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Figure 7: Forecasted electricity consumption data.

Points of curves z; Forecast value
Rty Rty -+ Rtz Rtsg  Rteo thl
Rty Rty -+ Rtsg  Rieo gtf)l gte2
Rty Rty -+ Rlgo gtel gtez @tezs

The results are shown in Fig. 7. The prediction error is EC = 0.00269 and the
forecast relative error, defined as

12 ~ 2
1 = &(w_1)

t=1

is FRE = 0.00177.

6 Conclusions

In this work we reviewed the Nadaraya-Watson type estimator for the functional
non-parametric model with scalar response both for independent and identically
distributed data and for dependent observations. In the i.i.d. case we have studied
a bootstrap procedure to build a variability band for the mean of estimator.
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The obtained results show that the estimator has a good performance (see the
magnitude of MSE, EC and FRE in Section 5). An open critical question is the
choice of semi-norm in (2.3): it should be compared to the estimator performance
using a different criterion to measure the distance between curves such as a semi-
norm based on functional principal component analysis.

A further study of the application of bootstrap procedure to dependent data
should be done.
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