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Space-Time Bilinear Time Series Models
and Their Application

Lynne Billard! and Yuqing Dai

Abstract

Many phenomena are modeled by time series models. Bilinear time series
models are useful for series that display shocks such as disease outbreaks or
earthquakes. Spatial time series models deal with processes that feature both
spatial and temporal dependencies. This paper reviews these models. Then
the focus is on spatial-time bilinear (STBL) models for processes exhibiting
both shocks and spatial-time dependency. Some properties of STBL models
are given and used to identify the parameter orders of the underlying STBL
model. Some examples are provided.

1 Introduction

Many phenomena are modeled by time series models broadly defined. These
include diseases, environmental data (such as pollution measures), economic trends
(time, productivity levels, prices, etc.), meteorological data (temperatures, wind,
rainfall, barometric pressures, etc.), geological trends (e.g., earthquakes), oceano-
graphic data (ocean currents, ocean temperatures, etc.), and so on; the list is end-
less. Let us for the moment focus on any one of these myriad examples, an epidemic
consisting of a disease outbreak.

Many (perhaps most) diseases occur in locations that are part of a broader region,
rather than occurring in isolation at any particular site. That is, the numbers of
occurrences of a disease at a specific site are typically spatially dependent on the
numbers at adjacent sites. Clearly, the standard linear time series models which
model dependence over time but all at one location, can not deal with this broader
context. Also, surveillance for monitoring and control purposes is a mechanism for
detecting changes in historical patterns such as would occur in a disease outbreak.
Yet, the standard linear models generally are unable to identify such features; rather
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bilinear models are better suited to modeling time series data which feature sudden
outbursts.

A bilinear component in the model is especially important when there is a sudden
shock to the system. For example, Figure 1 shows such a shock (or outburst, or
sudden but temporary change) to a process. [This particular process is that process
at one specific site taken from a larger spatially dependent area (not shown)]. More
generally, a typical data set would feature both the spatial and disease outbreak
aspects and so likely should be modeled by a model containing both spatial and
bilinear components.

Therefore, in this work we describe the space-time bilinear (STBL) model of Dai
and Billard (1998), and show how this STBL model is an extension of the traditional
standard univariate models (fully described in, e.g., Box and Jenkins, 1976) and of
the space time linear model of Cliff et al. (1975) and Pfeifer and Deutsch (1980a, b);
see Section 5. The use of the STBL model is demonstrated through some illustrative
examples in Section 6. First, in Sections 2, 3 and 4, respectively, basic results for
standard linear ARMA models, bilinear models, and space time linear models are
described briefly.

2 Standard linear ARMA models

The standard linear autoregressive moving average (ARMA) model is given by
P q
2(t) = izt — i) + D Oe(t — j) + e(t) (2.1)
i=1 j=1

where {z(t)}, t = 1,2,..., is a sequence of observations and {e(t)}, t = 1,2,...,
is a white noise process with E{e(t)} = 0 and Var{e(t)} = o%, and where ¢;,
¢ = 1,...,p, are the autoregressive parameters and 6;,7 = 1,...,¢q, are the mov-
ing average parameters. Let us assume further that these {e(t)} are normally dis-
tributed. While this model was first developed in the 1920s (see, e.g., Yule, 1926,
and Walker, 1931), it is sometimes referred to as the Box-Jenkins model (a conse-
quence of the publication of their highly successful text which provides considerable
detail on the model and it uses, q.v.). We denote this as ARMA (p,q) with p
and ¢ representing the autoregressive order and moving average order of the model,
respectively.

There are many properties of the models which need to be satisfied in some as-
pect. Typically, the most important are stationarity and invertibility. For example,
take the ARMA (1,0) model, or simply the AR(1) model, given by

z(t) = ¢z(t — 1) + e(t). (2.2)

For this model to be stationarity, it is required that |¢| < 1. Otherwise, it is
nonstationary. When [¢| > 1, we see from (2.2) that the underlying process is
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explosive. When |¢| = 1, we have
z(t) = z(t — 1) + e(t),

w(t) = z(t) — z2(t — 1) = e(t);

that is,
w(t) = (1 — B)z(t), Bz(t) =z(t—1),

where B is the backward shift operator.

That is, by differencing, we have transformed the nonstationary {z(¢)} process
into a stationary {w(t)} process. In general, we difference d times to produce sta-
tionarity. Thus, the general model is denoted as ARIMA (p,d,q). Our discussion
herein will henceforth assume the underlying processes are stationary. A pure au-
toregressive model will be invertible always. In contrast, a pure moving average
process is always stationary but requires conditions on its parameters to achieve
invertibility; so, e.g., an MA(1) model

z(t) = fe(t — 1) + e(t) (2.3)

requires that |#| < 1 for the model to be invertible. See Box and Jenkins (1976) for
a fuller discussion of stationarity, invertibility and other model properties.

Determination of the (p,d,¢) which identifies the model is done through the
autocorrelation functions defined, at lag &, by

Cov{z(t),z(t + k)}

) \/V‘”"{Z(t)}Var{z(t +k)} (2.4)

Pk

where

Cov{z(t),z(t+ k)} = E{z(t) — Z}{z(t + k) — z}

is the autovariance function at lag k£ and z is the usual average of the observed
observations. For each ARMA (p, ¢) model, we know the theoretical patterns for py,
k=1,2,....

For example, for an AR(1) model,

pr=0% k=1,2,..., (2.5)
that is, pr decays exponentially; while for an MA(¢) model,

= 0, k>q,

that is, pr cuts off at k = q.
The partial autocorrelation functions, ¢,,, have the reverse pattern. By this we
mean that while for pure AR(p) models, p, decays exponentially in some manner,
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the partial autocorrelation functions cuts off at p. Likewise, for a pure MA(g) model,
the partial autocorrelation function decays. For the mixed ARMA (p, ¢) model, both
the autocorrelation functions and the partial autocorrelation functions decay (and
do not cut off).

These theoretical autocorrelation and partial autocorrelation functions are there-
fore compared with the sample autocorrelations p, £ = 1,2,..., and the sample
partial autocorrelation functions, calculated from the data, to identify tentative val-
ues for p,q and d. If these plots of p; as k increases do not decay towards zero, then
the data need further differencing to produce stationarity.

3 Bilinear models

The bilinear autoregressive moving average (BL) model added a cross-product
term to the standard linear ARMA model to give

z(t) = éd’iz(t—i)-i-ilﬁje(t—j)
Y Byt —i)elt — ) + e(t), (31)

i=1j=1
and is denoted by BL(p, g, 7, s). This model is linear in z(¢) alone and in e(t) alone,
but not in both. It was first developed by Mohler (1973) for control theory and
is particularly applicable for time series data exhibiting shocks. For example, the
BL(1,1,1,1) model is

2(t) = ¢z(t — 1) +0e(t — 1) + Bz(t — 1)e(t — 1) + e(?); (3.2)
and the pure bilinear model BL(0,0,1,1) is
z(t) = Bz(t — 1e(t — 1) + e(t). (3.3)

Quinn (1982), Pham and Tran (1981) and Bhaskara Rao et al. (1983) look at
stationarity conditions for specific models, while Liu and Brockwell (1988) and Liu
(1989, 1992) look at a general bilinear model. Invertibility issues were considered
by Granger and Andersen (1978), Subba Rao (1981), Liu (1985) and Quinn (1982)
for particular models.

Identification of BL: models using the autocorrelations functions analogously to
the approach for ARMA models does not work satisfactorily since, as Granger and
Andersen (1978) observed, the second order autocorrelations for the model

z(t) = Bz(t — k)e(t — 1) (3.4)

are zero, leading incorrectly to an identification of a white noise process or a linear
model. Granger and Andersen (1978) therefore suggested that the autocorrelation
functions of the squared observations {2?(¢)} be used instead. Li (1984) thus calcu-
lated the theoretical values for some simple models.
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4 Space time ARMA models

The standard linear ARMA model represents a series over time at a single location.
There are many situations, e.g., the spread of disease, pollution, social measures such
as income, for which there is a dependence across sites within a spatially contiguous
location as well as temporal dependence. In these cases, rather than fitting separate
linear ARMA models to each site which cannot capture any spatial dependence, it is
desirable to fit a model which accommodates both spatial and temporal dependence.
Working within a social geography framework, CIliff et al. (1975) and Pheifer and
Deutsch (1980a, b) proposed an extension of the temporal linear ARMA model of
(2.1) to the space time autoregressive moving average (STARMA) model given by

z(t) = f Z oL WM z(t —4) + zq: % OWMe(t — j) + e(t) (4.1)

i=1 m=0 7j=1n=0
where z(t) = [21(t),...,24(t)]" represents the observation at time ¢ at each of g
spatial sites, e(t) = [e1(t),...,e,(t)]" is the white noise process for the g sites, and

where ); is the spatial order of the autoregressive term at temporal lag %, n; is the
spatial order of the moving average term at temporal lag j, and W™ = (w,(czl))
is the g x g weighting matrix for spatial order m. We write A = (A,...,,) and
1N = (1m,-..,7) and denote the model by STARMA (py, qn).

The elements w,(;f) of the weight matrix W™ represent the mth order spatial
weight for neighbor site u of the kth site. As an illustration, consider the spatial

region with nine sites on a regular grid as indicated in the figure below:

1123
216
71819

Let us suppose that equal weights are assigned to each neighbor. Then, the first
(m = 1) order weight matrix corresponds to that given in Table la. For example,
site 2 has as first order sites 1, 3 and 5. Therefore, wéll) = w%) = w%) =1/3 and all
other weights in that row (k = 2 row) are zero. Then, site 2 is first order spatially

dependent on the other sites according to
(WO z(t) ees = (1/3)21(£) +022(t) + (1/3) 23 () +023(5) + 024 (£) + (1/3) 25 () + . . .+ 029 (¢),
i.e.

2(t) = (1/3)z(t — 1) + (1/3)2z5(t — 1) + (1/3)25(t — 1) (4.2)

and is clearly a weighted sum of its neighbors. The second order weight matrix w®
is given in Table 1b. The weights can be arbitrary, with the only condition being
that the row sums satisfy

g9
> wp) =1 (4.3)
u=1
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Table la: First-order weight matrix on 3 x 3 grid: W),

Neighbor

Site | 1 2 3 4 5 6 7 8 9
1 o120 12 .
2 (1/3 . 1/3 1/3 .
30 . 172 o120 .
4 11/3 . .13 . 1/3 .
5 /4 . 1/4 . 1/4 /4 .
6 /3 . 1/3 . 1/3
7 1/2 . .o 1/4
8 /3 . 1/3 . 1/3
9 1/2 1/2

* An ' represents wf, = 0.

Table 1b: Second-order weight matrix on 3 x 3 grid: w®,

Neighbor
Site | 1 2 3 4 5 6 7 8 9
1 A
2 1/2 . 1/2
3 . 1 .
4 .12 .12
5 |1/4 . 1/4 1/4 . 1/4
6 1/2 . 1/2
7 R
8 1/2 . 1/2
9 1

for each k and each m. When m = 0, we set W(® = I, the identity matrix; i.e. there
is no spatial dependence. The weights are assumed to be known. It is not necessary

that the sites be on a regular grid. Typically, sites will be irregularly spaced as when

each site represents (say) a country or state within the larger contiguous region under

study.

We observe that when g = 1 and W™ =1 for all m, the model (4.1) simplifies
to the standard ARMA model of a single site. It is also possible to show that if
W™ is such that it has one element equal to 1 (appropriately identified) and the

remaining (g X g — 1) elements equal to zero, the model (4.1) becomes the multiple
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ARMA model where instead of z(t) being the vector of observations at g sites it
now represents a multivariate variate with g components (but at one site). This
multiple ARMA model is a special case of the multitple bilinear model of Stensholt
and Tjoshteim (1987).

Pfeifer and Deutsch (1980b) investigated identification issues for the STARMA
model. They derived the autocorrelation function for a STARMA (0,1;) model and
gave a detailed analysis of the patterns that prevail for different scenarios for that
model and also for the STARMA(1;, 0) model. Further, they provided general
pattern characteristics of the theoretical autocorrelation and partial autocorrelation
functions.

Thus, the space-time autocorrelation function for A spatial lags and j time lags
apart is given by

pn(3) = Tho(3)/+/Thn(0) 700 (0) (4.4)

where 7,,(j) is the space-time autocorvariance function between the hAth and kth
order neighbors and j time lags apart is

() = (1/9)Coo{W®z(t), Whz(t - j)}
= (1 g)tr{W®]"W"r(j)} (4.5)

with
L'(j) = Cov{z(t), z(t—j)} (4.6)

and tr A is the trace of the matrix A. The space-time partial autocorrelation func-
tion is the coefficient ¢}, obtained from solving the system of equations

kA

Tho(J) = DD &umm(j —9) (4.7)
i=11=1
asl=0,1,..., A for k=1,2,..., in turn.

For the STARMA (py,0) model, the autocorrelation function decays while the
partial autocorrelation function cuts off after p time lags and A, spatial lags. For
the STARMA (0, gry) model, the autocorrelation function cuts off after ¢ time lags
and 7, spatial lags while the partial autocorrelation function decays. For the mixed
STARMA (py,qn) model, both functions decay to zero. Notice the similarities
between these patterns for the space time linear models with their counterparts for
the non-spatial temporal-only linear ARMA models.

5 Space time bilinear models

When there are both spatial and time dependence and shocks present in the
system, we want to combine the features of the STARMA and the BL models.
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Therefore, from Dai and Billard (1998), we have the space time bilinear (STBL)
model, given for k=1,...,9,t=1,2,..., by

ZZng {Zwku zu(t — 1)} + ex(t)

i=1m= 0
F S 0 et — )} (5.1)
7j=1n=0 v=1
1 K

+iizzﬂzn Zwku zut—l}{zwkvev }’

=1 j=1m=0n=0

or, in its vector form, by

ZZ([S“ W 2 (t — 4) +ZZ€7W”)e(t—])

i=1m=0 j=1n=0

z Hj

T S
DI IDIPIYH z(t —i)l#e(t — )] + e(t), (5.2)

=1 j=1m=0n=0
where p is the autoregressive order, ¢ is the moving average order, r is the autore-
gressive order in the bilinear term, s is the moving average order in the bilinear
term, J; is the spatial order of the autoregressive term at temporal lag %, n; is the
spatial order of the moving average term at temporal lag j, & is the spatial order
of the autoregressive term in the bilinear term at temporal lag ¢, 1, is the spatial
order of the moving average term in the bilinear term at temporal lag j, ¢! is the
autoregressive parameter at temporal lag 7 and spatial lag m, 67 is the moving av-
erage parameter at temporal lag j and spatial lag n, 3% is the bilinear parameter
at temporal lags ¢ and j for the autoregressive and the moving average terms, re-
spectively, and at spatial lags m and n for the autoregressive and moving average
terms, respectively, W™ = (w,(c:f)) is the g x g weighting matrix at spatial order
m, and e(t) = [e1(t), ..., e,(t)]" is a sequence of independent identically distributed
vector random variables with

Ele(t)] = 0,
. G, j=0
Ele(t)e(t+5)"] = ’ ’
eet+i] = { & 120
Elz(t)e(t+35)"] = 0, j>0.
We write A#B = (c¢;;), where ¢;; = a;;b;;, is defined as the matrix element-wise
multiplication for any matrices A = (a;;) and B = (b;;) of the same size. Analogously

to the bilinear and STARMA models, we denote (5.2) as the STBL(py, g5, re) )
model of temporal order p,q,r, and s; and spatial order A = [Ay,...,\)], n =

[nl,---,nq],£=[€1,---,§r], and p = [p1, ..., ).



Space-Time Bilinear Time Series Models and Their Application 11

For example, the STBL (0,0,14, 19) model where the weights are those of Table
1 is, for site k =1,

where for notational simplicity (8}. is written as 3,,. Notice that the moving

average part of the bilinear term has no spatial dependence, since p = 0. If, however,
we add spatial dependence to this part of the model to give the STBL(0,0,14,1;)
model, then, at site £ = 1, we have

z1(t) = Poozi(t — et —1) + ﬁlo[%z2(t -1+ %Zz;(t = Dlei(t — 1)
+ Pzt - Dlgealt— 1) + gealt — ) (5.4)
+ Bulgalt—1)+ gzl — Dllgenlt - 1) + gealt — 1]+ ealr).
For the general model, there are three special cases of importance.

(i) If g4 =0, for all i, j, m, and n, then the STARMA model of (4.1) is recovered.
(ii) If g =1 and W™ =1 for all m, then the BL model of (3.1) is recovered.

(iii) If B4 =0 for all 4,5, m, and n, and if g = 1 and W™ = 1 for all m, then we
capture the classical ARMA model of (2.1).

Dai and Billard (1998) also show that the STBL model can be structured as a
multiple bilinear model. However, the STBL model has

p

P= YD)+ X0+ D+ EEHDHE e+ D) (59)

=1

parameters, whereas the multiple bilinear model has P, = ¢g?(p+g+grs) parameters;
see Stensholt and Tjostheim (1987). It can be shown that P; < P,. To illustrate,
when p=g=r=s=1and A =n =& = pu =1, a not unreasonable common case,
we have

P,=8 and P, = ¢*(2+9).

Then, P, > P, only if ¢g*(2 + g) > 8, which implies P, > P, only if g = 1. However,
when g = 1, we have one site and the model is no longer spatial. This reduced
number of parameters for the STBL model makes it an attractive alternative to the
multiple bilinear model.

In addition to the aforementioned special cases which recapture only more restric-
tive classes of models, there are four other special cases within the class of STBL
models itself which will be particularly useful as the model’s behavior is studied.
These are:
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(a) The diagonal model is when 3%, =0, i # j.
(

)

b) The subdiagonal model is when 8% =0, i < j.

(c) The superdiagonal model is when 3% =0, 1 > j.
)

(d) The pure bilinear model is when

ai=> g Wm =0 ¥=6Wm"=0, foral i,j.

n=0

The identification procedure for the STBL model has two stages. First, the sam-
ple autocorrelation and sample partial autocorrelation functions are calculated and
compared with the patterns for the corresponding theoretical functions as though
a linear STARMA model were being fitted. This allows identification, at least ten-
tatively, of the py and gy orders. The tentative STARMA (py, gn) model is then
fitted to the data and the residuals calculated. If the py and gy values are correct
or nearly so, then the residuals should be a pure bilinear model (case (d) above).

As observed by Granger and Andersen (1978) for the temporal bilinear model,
so here is it necessary to work with the squared observations when determining
the autocorrelation functions. Following their lead and by analogy with those of
Pfeifer and Deutsch (1980b), Dai and Billard (1998) give definitions for the space-
time autocorrelation function at spatial lag h and time lag j equivalent to those
of (4.4)-(4.6) but with z(t) everywhere replaced by z%(t). Likewise, the partial
autocorrelation function of (4.7) pertains but applied to the squared observations
2%(t). They derived expressions for the space-time covariance functions for several
special multiple bilinear models, from which those for some STBL models follow.

Therefore, for the diagonal STBL model

p & u
=2 2 3 Bun{Wa(t — )W et = i)} + e),

i=1m=0n

the space-time autocorrelation function of 22(t) satisfies

ph(]) = 0, if h’>max(£alu')a (56)
pn(d) = 0, if By =0 for h < max(&, p).

For the subdiagonal STBL model

=1 m=0n

g & u
ZZZZZ Brnd W™ 2(t — i) }H{W We(t — j)} + e(t),

the space-time autocorrelation function of 22(t) satisfies

pn(3) = 0, if h > max(§, p), (5.8)
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on(4) =0, if Bmn =0 if m or n equals h < max(&, p). (5.9)

These results show there is a natural cutoff for spatial lag h at max(&, u). They
also imply that there is no general cutoff point in spatial lag A for fixed time lag j
(though it can occur in some cases). Another implication is that in p,(j) the time
lag j can be fixed and that we need only observe the pattern in the spatial lag h.

6 Illustrative examples

The foregoing STBL model results are illustrated through the following three
examples. In each case, data were generated on a 5 x 5 spatial grid with mth
order, m = 1,2, 3, spatial weights being those obtained by assuming all mth order
neighbors have the same weights w,(czl) for each m and wu; that is, the weights are the

analogue of those given in Table 1 for a 3 x 3 grid.

Figure 1

Plot of Data at Site 3: Example 1

207

10

=107

=207

-301

T T T T T T T T T T T T T T T T T T T
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180

time

Figure 1: Plot of data at site 3, Example 1.

Example 1.
The first example consists of a set of data generated from a STBL (0, 0, 2¢ 4p)
model with & = (0,1) and g = (0,0,0,2). This is a pure bilinear model involving
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Table 2: Sample space-time autocorrelation functions for {z(¢)}: Example 1.

Spatial lag
pn(j) |h=0 h=1 h=2 h=3
j=1] -005 0.060 0.011 -.008

Time j=2| -.006 0.035 -.086 0.020
lag  j=3]|0.011 0.007 -.018 0.006
j=4| 176 -125 -.035 -.012
j=5| -003 0.009 0.019 -.003
j=6| -.039 0.034 -.009 0.029
j=7| -022 -006 0.007 -.010

j=2810.076 0.020 0.015 -.015

only the cross-product terms and 8%, parameters, in equation (5.1). The parameter
values used were

iLopl2 B Bl Bt B 0.0 0.0 0.0 0.0 0.0 0.0
8= o B2 B opE B ops | =100 05 00 —4 0.0 0.3 (6.1)
2l g2 g2 g2 g2t g 00 0.7 05 —7 0.0 0.9

The plot of Figure 1 represents these data points over time at site three.

Table 2 displays the sample space-time autocorrelation functions obtained by
using the sample counterparts of equations (4.4)-(4.6) on the observations {z(¢)}.
The absence of any pattern among these values suggest there are no linear terms in
the model, confirming the p = ¢ = 0 values.

Therefore, the second stage involving the squared observations is invoked. Thus,
the sample space-time autocorrelation functions for {2?(t)} are calculated, and
shown in Table 3. At time lags j = 2 and j = 4, the sample space-time auto-
correlations are non-zero.

These reflect the (known) r = 2 and s = 4 values, respectively. The values for
pn(j) cut off at spatial lag h = 2, as expected since py(j) = 0 for h > max(&, u) =
2. It is also the case that both the sample space-time autocorrelation and partial
autocorrelation functions (not shown) tend to decay exponentially. This reflects the
presence of both autoregressive and moving average terms in the model.

Example 2
The second data set was generated from the model STBL (14,0, 3511) with & =
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Table 3: Sample space-time autocorrelation functions for {2?(¢)}: Example 1.
Spatial lag
pn(j) | h=1 h=2 h=3 h=4
j=1] -022 -015 -.002 -.010
Time j7=2|0.368 0.490 0.122 0.025
lag j = -.022 -.015 -.005 -.009
j= 0.230 0.214 0.132 0.099
j=51| -022 -016 -.005 -.009
Jj= 0.163 0.120 0.057 0.079
j=7] -021 -017 -.005 -.008
j=81 0.132 0.129 0.022 0.037
(0,0,2) and parameter values ¢ = (¢, #1) = (0.5, —0.4), and
1 g 0.0 0.4
21 ol 0.0 —.3
B=|p s |=] 00 o7 (6.2)
31 gl 0.0 0.0
31 g3l 0.0 0.8

Tables 4a and 4b display the sample autocorrelation and partial autocorrelation
functions for the data itself {z(¢)}. From Table 4a, the exponential decay across
time and spatial lags is evident. Since from Table 4b we see that there is a cutoff in
the sample space-time partial autocorrelation function at time lag j = 1 and spatial
lag h = 1, we conclude that the (linear) STARMA model would be tentatively
identified as STARMA (11,0). That is, the linear autoregressive term of the model
includes a first order spatial (A = 1) component. [If there were a standard linear
(but nonspatial) autoregressive term only (applicable if A = 0) as in a standard
AR(1) model of equation (2.2), then the spatial cutoff in Table 4b would have been
at h = 0 instead of at h = 1.]

In order to identify any bilinear terms in the model, we first fit a STARMA (14, 0)
model to the data, and then study the resulting residuals {x(¢)}. These residuals
should represent data from the STBL (0, 0, 3511) model with & and 3, as above in
equation (6.2). To identify the model orders of these residuals, we need to calculate
the sample space-time autocorrelation and partial autocorrelation functions of the
squared residuals {?(¢)}. The autocorrelation functions are displayed in Table 5.
It is observed that the spatial cutoff is at h = 2, consistent with p,(j) = 0 for
h > max(&, p) = 2. Likewise, a time lag of 7 = 3 is identified by the nonzero values
at j = 3 for both h = 0 and h = 2; that is, py(3) = 0.339 and py(3) = 0.169.

The ”zero” value for p;(3) = .001 ~ 0 pertains since for o = 1, the 3} = 0,
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Table 4a: Sample space-time autocorrelation functions of {z(¢)}: Example 2.

Spatial lag
pn(j) |h=0 h=1 h=2 h=3
j=11]0.569 -474 0.447 0.231

Time j=2] 0423 -439 0.353 0.223
lag  j=3]| 0420 -.433 0.343 0.221
j=4|0280 -357 0278 0.172
j=510.220 -317 0220 0.171
j=610.250 -240 0.250 0.195
j=70169 -189 0.185 0.144

j=80.134 -172 0.155 0.145

Table 4b: Sample space-time partial autocorrelation functions of {z(¢)}: Example 2.

Spatial lag
i |h=0 h=1 h=2 h=3
j=11]0569 -362 0.075 -.083
Time j=2] 0.065 -.120 -.066 0.092
lag j7=3]0.139 -158 -.026 -.023
j=41 -154 0.063 0.001 -.057
j=51] -025 -095 -.027 0.033
j=610.047 0.098 0.069 0.015
j=7| -.042 0.034 -.010 -.019
j=28]0.006 -.025 0.048 0.025

as expected from equation (5.9). Suppose instead the data set had been generated
with the parameters

0.0 0.4
0.0 —.3

g=100 07 |; (6.3)
0.0 0.6
0.0 0.8

that is, the same parameter values as in equation (6.2) except that now 3| = 0.6.
Then, after fitting the linear STARMA (14, 0) model as before; we obtain the sample
space-time autocorrelation function of the resulting squared residuals {z?(t)} to be
as shown in Table 6. As expected, the same patterns emerge indicating a spatial lag
of 2 and a time lag of 3, except that now the p;(3) = 0.114 value is no longer zero.
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Table 5: Sample space-time autocorrelation functions of {z?(¢)}: Example 2.

Spatial lag
on(j) | h=0 h=1 h=2 h=3
j=11] 0.094 0.110 0.036 0.018
Time j=21| 0.100 0.026 0.012 -.005

lag j = 0.338 0.001 0.169 0.056
J= 0.097 0.059 0.031 0.002
J=2951] 0.068 0.033 0.023 0.005
Jj= 0.166 0.012 0.073 0.011

j=7] 0.044 0.016 0.038 0.017
j=281| 0.070 0.027 0.012 0.003

Table 6: Sample space-time autocorrelation functions for {%(t)}: Example 2'.

Spatial lag
on(j) | h=0 h=1 h=2 h=3
j= 0.136  0.132 0.053 0.033
Time j=2]| 0.144 0.047 0.023 0.007
lag j=3(0.379 0.114 0.168 0.020

j= 0.184 0.066 0.081 0.019
Jj= 0.100 0.030 0.046 0.022
j=61| 0247 0.078 0.075 0.008
Jj= 0.065 0.039 0.035 0.022

j=281| 0.101 0.034 0.026 0.016

Example 3
Let us now consider a data set generated from a STBL (0, 0, 26’ 2p) model with
€ =1(0,2) and p(1,1), and parameters

gl g2 B2 0.0 0.0 0.0 0.0

8= & o3t s s | _| 00 00 08 —4 (6.4)
2 pH g2 g2 00 00 03 07 |- '
21 B2 BB pR 0.0 0.0 0.6 0.9

Since 84 = 0 for all i # j, the underlying model is a diagonal STBL model.

The sample space-time autocorrelation functions for the {z%(¢)} are given in
Table 7a. There is a clear spatial cutoff at lag h = 2 which matches the max(¢&, u) = 2
value. This is particularly noticable at time lags 7 = 2, 4, 6. These autocorrelation
values decay over time lags (at each h = 0, 1, 2). When we look at the sample
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Table 7a: Sample space-time autocorrelation functions for {2?(t)}:
Example 3.

Spatial lag
on(j) | h=0 h=1 h=2 h=3
j= -.019 -.018 -.018 -.015
Time j;=2|0.468 0.321 0.489 0.158
lag j=3| -019 -018 -.018 -.015
j=410.123 0.232 0.421 0.155
j=5| -019 -018 -.018 -.015
j=1610.077 0.186 0.185 0.209
j= -.019 -.018 -.018 -.015
j=81 0.039 0.154 0.104 0.169

Table 7b: Sample space-time partial autocorrelation functions for {22(¢)}: Example 3.

Spatial lag
hi | h=0 h=1 h=2 h=3
j=11|-0187 -.020 -.109 -.015
Time j= 0.468 0.277 0.710 0.021
lag j=3| -003 -.001 0.004 -.000
j=41] -196 -130 0.099 -.006
j=5] -005 -002 0.005 -.000
Jj= 0.031 0.150 -.021 0.110
j= -.004 0.000 0.005 0.001
j=8] -.082 0.033 0.026 -.009

space-time partial autocorrelation functions (shown in Table 7b), the distinct cutoff
at time lag j = 2 (for each h) indicates that the time order is r = 2.

Suppose in equation (6.4), the % = 0.7 value is replaced by 3% = 0 but
that all other parameter values are unchanged. The resulting sample space-time
autocorrelation functions are provided in Table 8. Notice that the p;(j) = 0 (for
each j) as expected from equation (5.7) since m = n = h = 1 < max(&, ). The
same patterns in the autocorrelation and partial autocorrelation functions prevail
and indicate the time order is j = 2 and the maximum spatial order is h = 2, as
before.
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Table 8: Sample space-time autocorrelation functions for {2?(¢)}: Example 3'.

Spatial lag
on(j) | h=0 h=1 h=2 h=3
j=1| -039 -.036 -.024 -.010
Time j=21]0.490 0.072 0.181 0.024

lag j=3| -038 -.035 -.027 -.011
j=4[0.211 0.047 0.136 0.017
j=5| -039 -.030 -.028 -.007
j=6(0.153 0.042 0.075 0.013

j=7] -029 -025 -.021 -.011
j=281| 0.087 0.029 0.059 0.006
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