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Tables: Potential Problems and How Can
They be Avoided
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Abstract

Statistical models defined by imposing restrictions on marginal distri-
butions of contingency tables have received considerable attention recently.
While these models are flexible and useful, certain theoretical questions have
remained open in the literature. These include, firstly, the existence of a joint
distribution with certain restrictions on some of its marginals, or general con-
ditions under which the existence of such distributions is guaranteed; secondly,
the determination of the dimension of a model; thirdly, a formal argument for
the applicability of large sample results for maximum likelihood estimates. A
general theory for answering these questions is discussed in this article.

1 Introduction

Several recent papers discuss the theory and application of models for contingency
tables which impose restrictions on marginal distributions of the contingency ta-
ble, see, for example, McCullagh and Nelder (1989); Liang, Zeger, and Qaqish
(1992); Becker (1994); Lang and Agresti (1994); Glonek and McCullagh (1995);
and Bergsma (1997). However, certain theoretical questions have remained open
in the literature. These include, firstly, what are the conditions for restrictions on
marginals to be feasible. That is, it is possible to specify contradictory constraints,
but no simple method for determining whether or not constraints are contradictory is
known. A second question concerns the determination of the dimension of a model.
In many cases, some of the constraints imposed on certain marginals are redundant
in a not so obvious way. This makes it difficult to determine the dimension of the
model. A third question is whether standard large sample theory is applicable. Most
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authors assume it is (e.g., Lang and Agresti (1994); Glonek and McCullagh (1995)),
while this has not been proven, nor is this always so.

A theory for answering the above questions has been developed by the authors
of the present article in a theoretical paper Bergsma and Rudas (2002). Since these
results may be of interest to many applied researchers, we summarize them here
in an application oriented manner, omitting all the proofs and some of the more
technical details.

Two concepts play an important role in answering the questions above: smooth-
ness and variation independence of parameters. A parameter is smooth if it satisfies
certain differentiability conditions. This is important for the interpretation of the
parameter. Furthermore, if the parameters belong to an exponential family of distri-
butions, standard maximum likelihood theory can be applied if the model of interest
is defined by linear restrictions imposed on a smooth parameter. Two parameters
are variation independent if the range of possible values of one of them does not
depend on the other’s value. If two parameters are not variation independent, this
causes problems in their interpretation, it leads to the possibility of the definition of
non-existing models, and frequently also causes problems in various computations.
Note that the multivariate logistic parameters of Glonek and McCullagh (1995) are
not variation independent if there are more than two variables.

Marginal models are studied in this paper by studying marginal log-linear pa-
rameters. Both are defined in Section 2. In Section 3, some examples are given
where problems occur when imposing restrictions on marginal distributions. In Sec-
tion 4, smoothness and variation independence are explained, and are shown to be
important concepts in the understanding of marginal log-linear parameters. In Sec-
tion 5, the properties of marginal log-linear parameters are used to provide a useful
methodology for checking whether models exist and whether standard asymptotic
theory can be applied to maximum likelihood estimates.

2 Marginal models

In Section 2.1, marginal log-linear parameters are introduced. In Section 2.2, log-
affine marginal models are defined.

2.1 Marginal log-linear parameters

For a given set of categorical variables, a marginal frequency pa(i) is defined by
a subset M of the variables and an index i for the cell to which the marginal fre-
quency belongs. For example, for a given I x J contingency table AB, the frequency
belonging to cell (i, ) of the table is denoted as pap(3, j).

A marginal log-linear parameter A% (i) is defined by two subsets of the variables:
M denotes the marginal variables to which the parameter belongs, £ denotes a
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subset of these marginal variables. For example, A5 (i, ) belongs to the marginal
ABC, and relates to the interaction effect between A and B in that table for cate-
gories ¢ and j, respectively.

For a marginal table AB, the marginal log-linear decomposition of expected cell
frequencies pap(i,J) is

log pan(i, ) = AP + X407 (1) + A5°(5) + M3B(i, )

Note the difference with the standard notation of log-linear parameters: the super-
script AB refers to the marginal distribution from which the parameters are calcu-
lated. The subscript refers to the log-linear effect, which in the standard notation
is in the superscript.

The marginal log-linear parameters have not been identified. As identifying
restrictions, we may use

XaP(+) = A5%(+) = Xag(+,5) = a5 (6, +) =0

where a “+” in place of an index denotes summation over that index. Analogously,
for the marginal tables A and B, the marginal log-linear decompositions are

logpa(i) = M+ Xi(0)
logus(j) = A +A5())

with possible identifying restrictions A\4(+) = A2(+) = 0.

Since summing a marginal log-linear parameter over an index yields zero, some
are redundant. We define \! as the set of parameters \%!(i), omitting redundant
elements by not including the last value of each index. For example,

ME =836, |1<i<I-1,1<j<J-1}

There are two well-known sets of parameters for a contingency table: the ordinary
log-linear parameters and the multivariate logistic parameters (Glonek and McCul-
lagh, 1995). The multivariate logistic parameters are marginal parameters: for every
subset of k£ variables they can be viewed as measuring k-dimensional marginal “asso-
ciation.” The ordinary log-linear parameters are conditional parameters: for every
subset of k£ variables they can be viewed as measuring k-dimensional “association”
conditionally on the remaining variables. The ordinary log-linear parameters have
all the variables in the superscript (i.e. the superscript is maximal), for the multi-
variate logistic parameters the superscript equals the subscript (i.e. the superscript
is minimal). For 3-way tables ABC' they are:

AB »”“‘\BC »7'AC »» *ABC
® \A \B ABC
()‘ a)‘Aa)‘Ba)‘ )‘ABa)‘BCa)‘A6'7)‘ABC)

(A(;BC,/\QBC )\ABC’ )\ABC )\ABC’ )\ABC )\ABC AABC)
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respectively. These two types of parameters form the endpoints of a broad range
of different types of parameters. One can replace the superscript of any of the
parameters by something in between the subscript and the complete set of variables.
For example, replacing A4% in the multivariate logistic transform by A48¢ yields the
parameter

A, A NG, Mas MEC NABC MAB%) (2.1)

2.2 Log-affine marginal models

A log-linear marginal model is obtained by imposing linear restrictions on marginal
log-linear parameters. A log-affine marginal model is obtained by imposing affine
restrictions on marginal log-linear parameters. Affine restrictions are linear restric-
tions with a constant added. Such restrictions occur, for example, when a marginal
log-linear parameter is given a specific non-zero value.

To illustrate the utility of marginal log-linear models, consider an experiment
designed to measure a treatment effect. The subjects are divided into two groups:
an experimental and a control group. Let X = 1 stand for subjects in the former,
and X = 2 for subjects in the latter group. A categorical variable A is measured at
time point one, then the experimental group receives a treatment, after which the
variable B is measured on both groups. This design is used in many fields of study,
such as medicine or psychology. A first hypothesis which may be tested is whether
the experimental group has changed over time. With A, and B, denoting variables
A and B for the experimental group, this hypothesis has the form

(i) = X5 (1)
for all 4. This hypothesis cannot be tested using standard log-linear techniques,
because the outcomes at the two points in time are correlated: they involve the
same subjects.
A more sophisticated hypothesis is whether the difference between the experi-
mental and control groups, which is the inhomogeneity of their distributions in the

present setup, is the same before and after the treatment. This hypothesis is the
equality of marginal odds ratios:

At 1) = Ax5(t,9)
for all 7 and .

In the next section, it is shown that certain marginal hypotheses may lead to
unexpected problems.

3 Potential problems with marginal models

In Section 3.1, seemingly harmless constraints imposed on marginal tables are shown
to be contradictory, i.e. there is no joint distribution satisfying the marginal con-
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straints. In Section 3.2, it is shown that certain constraints on marginals are re-
dundant, i.e. implied by others. In Section 3.3, it is shown that certain marginal
constraints lead to models for which standard asymptotic theory does not neces-
sarily apply. A general method for determining when these problems can occur is
lacking.

3.1 Infeasible marginal constraints

Consider a 2 x 2 x 2 contingency table ABC. We impose the restrictions on the
one-dimensional marginals A, B, and C that they are symmetric, i.e. P(A=1) =
P(A=2), PB=1) = PB =2),and P(C =1) = P(C = 2). In terms of
restrictions on marginal log-linear parameters, this is

Xa(1) = A5(1) = A&(1) =0 (3.1)

We may further hypothesize that the odds ratios in tables AB, BC, and AC' are 5,
5, and 1/5, respectively. In terms of restrictions on marginal log-linear parameters,
this is

Nig(1,1) = ABe(1,1) = =ME(1,1) = 4 log5 (3.2)

It is easy to verify that the approximate probability distributions of the two-dimen-
sional marginals are

B C C

A 0.40{0.10 B 0.40 | 0.10 A 0.10 | 0.40
0.10 | 0.40 0.10 | 0.40 0.40 | 0.10

It can be verified that there exists no joint distribution for table ABC with these
two-dimensional marginals; for example, the product moment correlation matrix is
not positive definite. In general, however, this positive definiteness is not a sufficient
condition, and generally a linear programming problem has to be solved to verify
existence of a joint distribution.

The example can have practical use when different censuses provide the bivari-
ate marginals. If these are incompatible, the censuses must come from different
populations.

3.2 Redundancy of constraints

The marginal homogeneity (MH) model for a table AB is used to test for equality
of the marginal distributions A and B. In terms of marginal log-linear parameters,
it is specified as

Xa(i) = A5() (3.3)
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The symmetry (S) model is specified as
XiB(i,5) = Map(d,9)
Xat() = A5°(i)
It is easy to verify that S implies MH. However, equations (3.3) and (3.5) are only

equivalent if (3.4) holds, and this is not easy to see?’. For example, consider the
table (with marginals included)

B
112 3
A3 147

For this asymmetric table, the one-variable effect parameters are different when the

effect pertains to the one-dimensional marginals or to the whole table. In particular,
the marginal effects are

Ni(1) = t1og(3/7)  AR(1) = $log(2/3)
while the effects pertaining to the complete table are
XiP(1) =log(3/8)  A3"(1) =1log(1/6)

A general method for checking whether or not there are redundant constraints, and
if so which ones, is lacking.

3.3 Failure of standard asymptotic theory

Consider the 2 x 2 x 2 table ABC. Marginal independence of A and B is specified
as

MB(1,1)=0 (3.6)
Conditional independence of A and B given C is specified as
MEE(,1,1) = MEE(1,1) = 0 (3.7

Dawid (1980) showed that the simultaneous model (3.6) and (3.7) is equivalent to
A being independent of both B and C, or B being independent of both A and C'
(or both). In terms of prescriptions for log-linear parameters, this is

(MBE(,1,1) = MEC(1,1) = ME°(1,1) = 0) (3:8)
or
(MBS, 1,1) = ME(1,1) = A38°(1,1) = 0) (3.9)

2Note that this corrects a condition given by Bishop, Fienberg, and Holland (1975) - end of
Section 8.2.1. The verification is by straightforward algebra.
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In fact, if either (3.8) or (3.9) holds, but not both, standard asymptotic theory can
be applied. However, if both models hold simultaneously, i.e. if A, B, and C are
mutually independent, it cannot. This happens because in this case for any sample
size there is positive probability of two local maxima, namely on both (3.8) and (3.9),
and the likelihood of each maximum goes to a fixed value greater than zero as the
sample size goes to infinity. In contrast for large classes of models commonly used
in practice, if the model holds the likelihood of all but one of the local maxima goes
to zero as the sample size goes to infinity. It follows that in the present case the
likelihood ratio statistic does not have a large sample chi-square distribution, but
rather is distributed as the minimum of two chi-square distributions.

Of particular importance is that the conditional likelihood ratio statistic for
testing mutual independence of A, B, and C against the alternative that A and B
are both marginally independent and conditionally independent given C does not
have a large sample chi-square distribution if the mutual independence model is
true. Rather, it is distributed as the maximum of two chi-square distributions.

4 Basic properties of marginal log-linear
parameters

In Sections 4.1 and 4.2, the two key concepts for understanding marginal log-linear
parameters are discussed: smoothness and variation independence, respectively. It
is shown how these properties facilitate the interpretation of parameters.

4.1 Smoothness of marginal log-linear parameters

A parameter is smooth if it is twice continuously differentiable with full rank Jaco-
bian. Knowledge that a parameter is smooth facilitates its interpretation. For ex-
ample, for a dichotomous variable A for which P(A=1) =7and P(A=B)=1—n«
(for some 0 < 7 < 1), consider the parameters

a=r(l-7m) p= T

4.1
- (4.1)
Then « is the variance of A and [ is the odds of being in category 1 of A rather
than in category 2 of A. Differentiation with respect to 7 yields the Jacobians

O op 1

—=1-21 ——=—" 4.2

on or  (1—m)? (42)
Note that the Jacobian of « is singular (i.e. zero in the present case) when 7 = 1,
and therefore « is not smooth. On the other hand, the Jacobian of 3 is nonsingular
(strictly positive for all 0 < 7 < 1 in the present case) and continuously differ-
entiable, and is therefore smooth. For the interpretation of a given value of the
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variance of A, the fact that it is not smooth has to be taken into account. For
example, suppose o = 0.21. Then we find that either 7 = 0.3 or 7 = 0.7. On
the other hand, prescribing a value to 3 always yields one value for m. Hence, the
interpretation of  is more straightforward than the interpretation of a.

Generally, smoothness is guaranteed for a broad class of marginal log-linear pa-
rameters:

Theorem 1 A marginal log-linear parameter is smooth if there is an ordering
)\le, cen )\2’:5 of its components such that

As examples, ordinary log-linear parameters and multivariate logistic transform pa-
rameters are smooth. Mixtures of these parameters are smooth if the log-linear
parameters are taken from higher marginals, and the multivariate logistic parame-
ters are taken from lower marginals. However, if there are components with the same
subscript but different superscripts, a marginal log-linear parameter is not smooth:

Theorem 2 A marginal log-linear parameter is not smooth if it has components
M and N with My # Ma.

An example of a parameter which is not smooth is (A45°, A45), because the sub-
script AB appears twice. In most practical cases, smoothness holds if no subscript
appears twice with different superscripts.

4.2 Variation independence of marginal log-linear
parameters

Besides smoothness, a second useful property of parameters is variation indepen-
dence. A (multidimensional) parameter is variation independent if its range is the
Cartesian product of the ranges of its coordinates.

Variation independence is of major importance in the interpretation of parame-
ters. This can be illustrated as follows. Consider again the example of Subsection 2.2
and suppose the marginal tables AX and BX are (in percentages)

X X

10] 5 | 15 30|20 | 50
Al40[45] 85| B|20]30] 50
150 [ 50 100 | 150 | 50 | 100 |

Let £4 be the proportion of subjects for which A = 1 who were going to receive
treatment minus the proportion of subjects for which A = 1 who were not going to
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receive treatment. Define e for B as a comparison of those who have and those
who have not received treatment. Then

S

Ep =

sk

A=

The fact that e is twice as large as € 4 suggests that the treatment had a large effect
on subjects. However, given the one-dimensional marginals, the maximum value of
€4 is 0.3 and the maximum value of €5 is 1, i.e. the actual values are { and ! the
maximum values, respectively. In fact, the difference in the values of €4 and ep
can be attributed to the differences in the marginal distributions of A and B. This
can be seen from the value of the odds ratio, which equals 9/4 in both tables. The
odds ratio, or a function of it, is the only measure which is variation independent
of the marginals. Since €4 and ep are not variation independent of the A and B
marginals, respectivelyx, one should take care in comparing their values in tables
AX and BX if A and B have different marginal distributions. As far as can be seen
from the above tables, and disregarding the difference in the A and B marginals,
the treatment had no effect.

As is clear from the above, it is important to establish variation independence
of parameters of interest. The ordinary log-linear parameters are well-known to
be variation independent, but when log-linear parameters are taken from various
marginal distributions, the situation has not been clarified in the literature. For
this reason, a solution to the problem is given below.

In the study of variation independence of marginal log-linear parameters, the
concept of decomposability plays a central role. A class of incomparable finite sets
{My, ..., M;} is called decomposable if it has at most two elements or if there is
an ordering My, ..., M; of its elements such that, for £ = 3,...,s, there exists a
Jr < k such that

(Uf;llMi) NM; = Mjk N M,

(Haberman, 1974). For example, the set {AB, BC} (where, for example, AB is
short for the set containing A and B) is decomposable, but the set {AB, BC, AC}
is not.

A class of arbitrary finite sets is ordered decomposable if it has at most two el-
ements or if there is an ordering My, ..., M, of its elements such that M; € M;
if + > j, and, for £ = 3,...,s, the maximal elements of {M;,..., My} form a
decomposable set. The ordering My, ..., M, is then also called ordered decompos-
able. Note that ordered decomposability is a generalization of decomposability to
apply to incomparable subsets as well. For comparable subsets, the two concepts
are identical. A sufficient (but not necessary) condition for a set of subsets to be
ordered decomposable is that all subsets containing only comparable sets are de-
composable. For example, the set {AB, BC, ABC} is ordered decomposable, but
the set {AB, BC, AC, ABC'} is not.
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Ordered decomposability is useful for establishing variation independence of
marginal log-linear parameters:

Theorem 3 A marginal log-linear parameter is variation independent if there is an
ordering )\2’:1, e )\2’:5 of its components such that, in addition to (4.3) and (4.4),
My, ..., Mg is an ordered decomposable ordering.

As mentioned above, the ordinary log-linear parameters are variation independent
and the conditions of the theorem hold. However, the multivariate logistic trans-
form parameters are not variation independent if the number of variables exceeds
two. The parameter (2.1) is variation independent. In fact, for three variables, it
can be shown that a parameter satisfying the conditions of Theorem 1 is variation
independent if and only if it does not contain the components

(A4, MBS, A49)

In summary, if a parameter is smooth and, additionally, the marginals to which the
parameter pertains form an ordered decomposable set, the parameter is variation
independent.

5 Feasibility of constraints on marginal
frequencies and applicability of standard
asymptotic theory

In the previous section, the basic properties of marginal log-linear parameters were
discussed. The properties of marginal models can to a large extent be understood
by understanding marginal log-linear parameters. Below, a useful methodology for
checking whether models exist and whether standard asymptotic theory can be
applied to maximum likelihood estimates is presented.

Linear restrictions on marginal log-linear parameters are always feasible as it can
be shown that the uniform distribution satisfies them. However, the determination
of the dimension of such a model may not be simple; for example, the uniform
distribution may be the only one satisfying the model, yielding a dimension of zero.
The question of the feasibility of affine restrictions is a very difficult one. However,
a sufficient condition can be given: affine restrictions are feasible if the parameter
to be restricted is variation independent. This yields the following theorem.

Theorem 4 If a marginal log-linear parameter A is variation independent, then any
affine restrictions are feasible.

In Section 3.1 an example was given where parameters which are not variation
independent are restricted, yielding an infeasible model. A different problem is to
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determine whether restrictions on parameters which are not variation independent
are feasible.

If the feasibility question has been resolved, the model may be tested by drawing
a sample from the population. It is convenient if standard asymptotic theory can
be applied:

Theorem 5 Suppose a marginal log-linear parameter \ is smooth, and a Poisson
or multinomial sampling scheme is used. Then under feasible affine restrictions,

1. The probability that i exists uniquely tends to one as the sample size goes to
infinity.

2. If i exists, it is a stationary point of the likelihood in the model

3. With sample size N, N ’%(ﬂ — 1) has an asymptotic multivariate normal dis-
tribution with mean zero.

4. The likelihood ratio statistic has an asymptotic chi square distribution with
dim(H) — dim(A) degrees of freedom.

In Section 3.2, the parameters which are restricted are not smooth. Even though
in this case standard asymptotic theory can be applied, the number of degrees of
freedom of the likelihood ratio statistic is not equal to the number of constraints,
since the marginal homogeneity constraints are redundant. In Section 3.3, an ex-
ample was given of restrictions on a parameter which is not smooth, and leading
to a model for which standard asymptotic theory does not apply for all parameter
values.

Finally, the parameters restricted in Section 2.2 are both smooth and varia-
tion independent, and hence the model is guaranteed to be feasible, while standard
asymptotic theory can be applied to maximum likelihood estimates.
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