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Some Simple Structural Equations
Models when the Original Variables are
Categorized
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Abstract

The present study is focused on the behavior of Structural Equation Model
(SEM) parameter, standard-error and goodness-of-fit estimates when some
or all of the variables on which the model is fitted have been categorized.
The behavior of the estimates is studied for different models, underlying and
observed distributions, parameter values, sample sizes, number of categorical
variables, and SEM programs. The purpose of this study is to determine
which are the factors that may disturb the most the estimation of parameter,
standard-error or goodness-of-fit values. If the estimation of parameters seems
to be satisfactory for polychoric and polyserial procedures, the standard-error
estimates are shown to be often biased, especially for models with polyserial
correlations. The use of bootstrap is shown here to be a possible solution to
this problem.

1 Introduction

Structural Equation Models were originally developed for continuous variables. They
are based on the modeling of the covariance structure of the multivariate distribution
(Bollen, 1989). In order to include categorical variable in these models, polychoric
and polyserial procedures were developed. In the polychoric estimation procedure,
for example, the correlation between each pair of categorical variables is estimated
as the correlation that would be obtained between two corresponding underlying
continuous variables. Details about these procedures can be found in Olsson (1979),
Olsson, Drasgow and Dorans (1982), Lee, Poon, and Bentler (1990, 1992, 1995),
Joreskog (1994), or Muthén and Satorra (1995).
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The estimation procedures considered in this article are implemented in EQS
5.7 (Bentler and Wu, 1993), PRELIS 2.30 / LISREL 8.30 (Joreskog and Sérbom,
1996a, 1996b), and Mplus 1.0 (Muthén and Muthén, 1999).

This article is organized as follows. Section 2 details the criteria chosen to
evaluate the bias and precision of parameter, standard-error, and goodness-of-fit es-
timates. Section 3 presents results obtained in a preliminary study where polychoric
estimation procedures are compared to product-moment procedures with or without
optimal scaling. Sections 4 to 6 present the results obtained from the simulation
studies.

2 Evaluation criteria

The simulations performed here are Monte Carlo simulations. For a description of
the process of the simulations see Appendix A. Two different types of models are
studied in this article: the bivariate regression models and the 4-indicator, 1-factor
analysis models. For each model, in order to evaluate the behavior of the estimation
procedures, the following criteria are introduced.

The relative bias and absolute relative bias are the criteria chosen to evaluate
the bias and precision of the parameter and standard-error estimates. The relative
bias (B(%ir)) and the absolute relative bias (AB(%;)) of a parameter estimate 4,
corresponding to observation number r, are:
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with 7; being the original parameter value chosen in the original model in order to
simulate the samples. Note that the denomination absolute relative bias is used for
AB(.) as in Boomsma and Hoogland (2001), although absolute relative deviation
could be a more appropriate denomination, AB(.) being informative not only on
the bias but also on the precision of the estimates.

Similarly, the relative bias and the absolute relative bias of the estimate ses, of
the standard error of 7; corresponding to observation r are defined as:
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and AB(se,, ) =

with se,, being the empirical standard deviation of the estimates of v; corresponding
to all observations being in the same design cell as observation r. For a discussion
about the choice of the empirical standard error as the reference standard-error
value, see Appendix B.

Finally, the values of the goodness-of-fit indices are compared to their expected
value, corresponding to the number of degree of freedom of the model. The distri-
bution of the estimates is also studied by means of Q-Q plots.
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3 Preliminary study: Polychoric vs. product -

moment

In this section, results yielded by LISREL, EQS, and Mplus polychoric estimation
procedures are compared to the ones yielded by the product-moment (PM) proce-
dure and the product-moment-with-optimal-scaling (PM+OS) procedure. In both
PM and PM+OS procedures the categorical variables are treated as if they were
continuous. With the PM procedure, the correlation is calculated using the original
values of the categories. With the PM+OS procedure, the value of the categories
are optimized in order to obtain the highest nontrivial (product-moment) correlation
coefficient possible. Both PM and PM+OS methods have been performed using the
Maximum Likelihood estimation procedure from EQS 5.7.

The procedures are compared on the basis of the estimates yielded if bivariate
regression models, with an original standardized effect coefficient equal to 0.2, 0.4,
0.6, or 0.8, are fitted when both variables are trichotomized (the underlying and ob-
served distributions considered are presented in Appendix A). For each combination
of observed and underlying distribution, 50 replications of samples of size 1000 are
drawn.

Every estimation method was fitted on all the 12600 samples, LISREL, EQS and
Mplus, yielding estimates on 12600, 12600 and 5405 of them, respectively. Mplus was
thus rather unstable as it did not yield estimates for more 50% of the replications.
This seems to come from a division by zero during the estimation of the robust
chi-square statistic (L. Muthén, personal communication). This problem should be
solved in version 1.03 of Mplus.

Table 1: Grand average B(.)s and AB(.)s over all experimental conditions
(bivariate regression models).

Fﬁ’) AB(%) B(SAe'v) AB(s“e7)
Estimation method

Product Moment -0.28  0.28 -0.73 0.73
PM + Optimal Scaling -0.25  0.25 -0.70 0.70
Polychoric EQS 5.7 0.01 0.10 -0.51 0.61
Polychoric LISREL 8.20 0.01 0.09 0.10 0.21
Polychoric Mplus 1.0 0.01 0.09 -0.13 0.17

The regression parameter estimates yielded by the polychoric procedures were
rather similar and on average much less biased (0.01 against -0.28 and -0.25) and
more precise (average absolute biases of 0.09 or 0.10 against 0.28 and 0.25) than the
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ones yielded by PM and PM+OS (see Table 1). This pattern was also found for each
specific observed distribution, unobserved distribution, and parameter size, which
corresponds with findings from several earlier simulation studies (see, e.g., Coenders,
Satorra and Saris, 1997). The PM+OS procedure always performed slightly better
than the PM one. A possible explanation of this last result may be that, as the PM
procedure often underestimates the true correlation, by optimizing the categories
values, the PM+OS procedure corrects the estimated correlation slightly upwards,
yielding a smaller relative bias.

The precision of the polychoric estimates (AB(%)) was found to decrease with the
value of the original regression parameter. For example, with regression parameters
0.2, 0.4, 0.6 and 0.8, the average AB(%)s found for EQS estimates were 0.19, 0.09,
0.06 and 0.03, respectively. The bias and precision of the PM or PM+OS estimates
also depended on the type of observed distributions: strongly biased estimates were
obtained for models with variables having highly skewed or leptokurtic observed
distributions. As a result, for a low original regression parameter and a not too
skewed or leptokurtic observed distribution, the difference in precision between the
estimates of the five procedures is small. For example, for an original regression pa-
rameter of 0.2 with an equiprobable distribution (C2), the average AB(¥) was equal
to 0.19 for PM, 0.16 for PM+OS and 0.14, 0.14 and 0.17 for the three polychoric
procedures. However, if the observed distribution chosen was highly leptokurtic
(C8), the average AB(%) was equal to 0.49 for PM, 0.44 for PM+OS and 0.21, 0.21
and 0.23 for the three polychoric procedures. Note that these results are similar to
those of O’Brien and Homer (1987).

The standard-error estimates were less precise than the parameter ones. In
particular, the estimates yielded by PM or PM+OS underestimated strongly their
empirical value. Further, the estimates yielded by the polychoric procedures were
much different from each other. EQS procedure strongly underestimated the stan-
dard errors, Mplus underestimated them and LISREL overestimated them. Mplus
obtained the best results regarding the precision with an average AB(se,) of 0.17.

In the study presented above, better parameter estimates were obtained when
using polychoric procedures than when using PM or PM+OS procedures. It seems
then often advantageous to use them instead of PM or PM+OS procedures. Even
if Mplus yielded quite satisfactory estimates compared to LISREL of EQS, due to
the large number of replications where no results were provided, only LISREL and
EQS estimates are considered in the following.

4 The bivariate regression models

The continuous data is simulated here from a bivariate regression model where vari-
able X; has an effect on variable X5, which is represented by the standardized
regression coefficient v (7 = 0.2, 0.4, 0.6, or 0.8). Either both variables are catego-
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rized, or only X5 is categorized. The variable “type of treatment” is defined in order
to indicate whether both variables are categorized (polychoric models) or only X5 is
categorized (polyserial models). The various conditions are thus: 2 types of treat-
ment, 4 different regression parameter values, 9 observed distributions, 7 underlying
distributions, 2 sample sizes (300 and 1000). For each condition, 100 replications are
drawn. In total, each of the two estimation programs are performed 100800 times.

4.1 Previous research

Polychoric correlations are unbiased for underlying normal distribution and observed
distributions with zero skewness and kurtosis (Olsson, 1979). However, polychoric
estimation procedures were shown to yield poor estimates whenever: the observed
distributions are skewed (Faber, 1988), the underlying skewness and kurtosis are
high (O’Brien and Homer, 1987), or the sample size is small (Lee and Lam, 1988).
Furthermore, the higher the original correlation, the lower the average relative bias
(O’Brien and Homer, 1987; Lee and Lam, 1988). Note that standard-error estimates
were not considered in most previous researches. Olsson et al. (1982) compared the
behavior of the Full ML and the Two-Step ML polyserial estimations procedure
with the point-polyserial estimation procedure. The first two procedures yielded
estimates with B(%)s lower than 0.05, while the point-polyserial procedure yielded
estimates with B(%)s higher than 0.15. A recent study by Coenders et al. (1997)
found polychoric and polyserial estimates rather robust against nonnormality of the
underlying continuous variables, and polyserial estimates fairly sensitive to nonnor-
mality of the (observed) continuous variable.

4.2 Simulations results
4.2.1 Behavior of parameter estimates

An analysis of variance was performed on the relative bias of the parameter estimates
(B(%)) yielded by LISREL and on the ones yielded by EQS. Several remarks may
be drawn from the results obtained:

e Both ANOVA-models containing all possible interaction effects did not explain
more than 11 % of the total variance. Hence, when a parameter estimate of
a certain sample varies from its original value, this is, in general, more due
to sampling errors than to a specific bias of the estimation procedure due to
particular design conditions.

e The behavior of the LISREL and EQS estimates procedures are most of the
time similar. The average difference between the two estimates was of 0.003
and the mean absolute difference was of 0.02.

e The total average of all relative biases is rather low (< 0.01) for both estimation
procedures. The factors found to affect the most the relative bias are the type
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of observed distribution and the type of underlying distribution. However, the
effects were found to be low as all average B(%)s given one level of each design
factors are always between -0.05 and +0.05.

Table 2: Average B(4)s (bivariate regression models).

e Polychoric models

EQS LISREL
Unobserved distr. Unobserved distr.
D1 D2 D3 D1 D2 D3
C1 0.01 -0.02 -0.11 0.01 -0.03 -0.12
C3 -0.01 -0.02 -0.08 -0.01 -0.02 -0.08
Observed C5 0.01 0.06 0.11 0.01 0.06 0.12
distr. C9 0.00 0.06 0.12 -0.01 0.04 0.10
Cr 0.00 -0.06 -0.14 0.00 -0.06 -0.14
C8 0.00 -0.10 -0.16 0.01 -0.09 -0.16
e Polyserial models
EQS LISREL
Unobserved distr. Unobserved distr.
D1 D2 D3 D1 D2 D3
Observed
distr. C8 -0.01 -0.04 -0.10 -0.01 -0.06 -0.11

The combinations of type of treatment, observed distributions, and underlying
distributions resulting in average B(%)s higher than 0.10 are presented in Table 2.
Although none of these average biases are significantly different from zero which
support the claim that polychoric estimates are quite robust against nonnormality
(Olsson, 1979; Coenders et al., 1997), several conclusions may be drawn from this
table:

e Higher parameter relative biases appear whenever both underlying and ob-
served distributions deviate from multivariate normality: the highest average
|B(¥)| with D1 is 0.01, while it is 0.16 with D3. Note that this was also found
by O’Brien and Homer (1987).

e Underlying distributions and observed distributions do not affect the value of
the relative bias independently. Considering LISREL estimates for example,
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Table 3: Average B(sey)s (bivariate regression).

EQS LISREL
Polychoric Polyserial Polychoric  Polyserial
(0.2) -0.77* -0.63* 0.01 0.37
Value (0.4) -0.72% -0.54* 0.01 1.01
of v (0.6) -0.58* -0.28 0.07 1.53
(0.8) -0.02 1.15 0.36 2.16

NB: The average B(se.ys being significantly different from zero are indicated by a star.

the interaction underlying/observed distributions accounts for 31% of the vari-
ance explained, whereas underlying and observed distributions account inde-
pendently for 10% and 17% respectively. The influence of skewness or kurtosis
in the observed distributions is much more important if the underlying variable
is highly skewed than if it is normally distributed.

e Estimates from polyserial models are slightly less affected by nonnormality
than estimates from polychoric models. For example, with LISREL, the av-
erage B(79) is -0.01 for polyserial models against 0.02 for polychoric models.
Furthermore, it can be seen from Table 2. that polyserial estimation proce-
dures seem to be at least as robust as polychoric ones in these cases. Although
all original continuous variables are supposed to have the same distribution
here and all variables are observed, this last result is different from the one
found by Coenders et al. (1997).

4.2.2 Behavior of standard-error estimates

The grand average of B(se,) over all experimental conditions was -0.29 for EQS
and 0.74 for LISREL, indicating a much less accurate estimation than for the effect
parameters. Similarly to what was done previously, two analyses of variance were
performed on the estimated-standard-error relative biases obtained.

Note first that very few sampling variation was found between the standard-
errors estimates of the 100 replications per design cell. Indeed, the total variance
of B(se,) is explained for 94% and for 99% by the variation of the different design
conditions for EQS and LISREL, respectively.

The factors found to affect the value of B(se,) most are the type of treatment
(polychoric or polyserial) and the value of the original regression parameter. The
type of observed distribution did also, to a lesser extent, affect LISREL estimates.
In order to see more precisely, which effect do type of treatment and parameter
value have, mean relative biases are calculated for all cells of the crosstable formed
by these two factors. The results are presented in Table 3. Several remarks may be
done:
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e For low values of v, EQS B(se,) are significantly different from zero. The
standard-error estimates are then underestimated.

e LISREL standard-error estimates are very close to their empirical value for
polychoric models, but are overestimating quite strongly their empirical val-
ues for polyserial models. Indeed, given an original value of v and one of the
observed distributions C1, C2, C4 or C6, the average B(se,) obtained for poly-
serial models is significantly overestimating the empirical standard deviations.

e The average relative bias value of the standard-error estimates almost always
increases (i.e., estimates become more overestimated for LISREL or less under-
estimated for EQS) as the original value of the regression parameter increases,
for polychoric or polyserial models.

e Dependence on the original regression parameter value is more pronounced for
polyserial models than for polychoric ones. For example, EQS mean relative
bias increases from -0.63 (v = 0.2) to 1.15 (v = 0.8) for polyserial models,
while it increases from -0.77 (v = 0.2) to 0.02 (y = 0.8) for polychoric models.

5 The Confirmatory Factor Analysis models

In this section, a four-indicator, one-factor model is studied. Variables X, X5, X3
and, X, are supposed to be the indicators of a latent variable £&. The equations
implied by this model are:

X1 = M +e,
Ané + €,
Asé + €3,
Xy = Al +e,
with \;; and ¢; being the factor loading and the error of measurement, respectively,
associated with latent variable & and indicator X; (for ¢ = 1,...,4). Variables X,

to X, are observed. In order to identify the model, the variance of £ is set to 1.
If all variables are categorical, the models are called polychoric models. If only X3

falks
Il

and X, are categorical while X; and X, are continuous, models are called polyserial
models. The bias is calculated here as the average bias obtained between the last
two factor loadings (the factor loadings of X3 and X4, the variables that are always
categorized). All four factor loadings are supposed to be equal. Selected values of the
(standardized) factor loadings are 0.55, 0.71, and 0.84. The analyses of variance are
performed with the usual design factors. The nonconvergent cases (134 for LISREL
and 2228 for EQS) were deleted from the study. Note that, although the model here
is much simpler than the ones considered in Boomsma and Hoogland (2001), the
number of nonconvergent cases obtained from these estimation procedures is smaller
to the ones obtained by Generalized-Least-Squares, or Asymptotic-Distribution-Free
estimation procedures for similar sample sizes.
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Table 4: Grand average estimated values over all experimental conditions
(CFA models).

B(MA_) B(sex.) AB(\.) AB(sey ) Chi-square
EQS 0.00 -0.51 0.07 0.56 7.8
LISREL  0.01 -0.04 0.07 0.23 3.3

5.1 Previous research

For models with categorical variables only and factor loadings around 0.71, Liscomp
estimated factor loadings and standard errors were found to be close to their true
value (Muthén and Kaplan, 1985; Potthast, 1993). The bias of factor-loading es-
timates (with original value around 0.87), in models with categorical data having
underlying nonnormal variables, was found to be low by Coenders et al. (1997). If
the model size increased (more latent variables having four indicators each), stan-
dard errors were found to be underestimated whereas the bias of the factor-loading
estimates remained fairly small (Potthast, 1993). The parameter estimate bias was
found to be smaller for large sample sizes than for small ones (Parry and McArdle,
1991), although for sample sizes higher than 500 this difference was reported to be
small (Potthast, 1993). Parry and McArdle (1991) also found that the quality of
parameter estimation increased as the sample size and/or as the true factor load-
ing values increased. LISREL and Liscomp estimation procedures, were found to
yield similar results for categorical models (Dolan, 1994). For models with both
categorical and continuous variables, Lee et al. (1992, 1995) found that parameter
and goodness-of-fit estimates were satisfactory with EQS and Liscomp for samples
of 200 observations or more.

5.2 Simulations results
5.2.1 Behavior of factor-loading estimates

The values of the total average of the factor-loading relative biases and average
relative biases were close to zero for both EQS and LISREL: lower than 0.01 for

~

B(\_) and lower than 0.08 for AB(A_) (see Table 4). For both methods, less than
11% of the variance of B(A_) could be explained by the design factors. Similarly
to what happened with the bivariate regression models, most of the variation of the
estimates are due to sampling fluctuations. Although the most important factors are
the observed and underlying distributions, all average B(A%)s, given an underlying

and an observed distribution, are lower than 10 %. Hence, these estimates are rather
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robust against observed and unobserved nonnormality. Note that this is in line with
what was found by Coenders et al. (1997).

For both procedures, the absolute relative biases of the factor loadings (AB(A_))
were found to depend mainly on the factor-loading original value. The higher the
original factor-loading, the lower the average AB (;\,), thus the higher the relative
precision of the estimates. For example, with LISREL, the average AB(\_) was
equal to 0.12, 0.06 and 0.04 for A = 0.55, A = 0.71 and A = 0.84, respectively. Note

that this is similar to what was found for Liscomp by Parry and McArdle (1991).

5.2.2 Behavior of standard-error estimates

The grand average of the standard-error relative biases deviates strongly from zero
for EQS (-0.51) but less for LISREL (-0.04) (see Table 4). Furthermore, the average
relative biases are also high for both procedures: higher than 20% for LISREL and
higher than 50% for EQS.

Similarly to the results for regression models, a large part of the variance of
B(sey_) is explained by the saturated ANOVA-model (90% for LISREL and 96%
for EQS) and little sampling variation is found across the 100 replications per design
cell. LISREL estimates are found to be mainly affected by the observed distribution
and by the interaction between observed distribution and type of treatment. EQS
estimates are mainly affected by the value of the original parameter and by the ob-
served distribution. Average B(se,_) obtained for each of these levels are presented
in Table 5. From examination of this table, several points are worth remark:

e LISREL standard-error estimates are relatively close to their empirical value
for polychoric models but relatively further away for polyserial models, espe-
cially when the observed distributions are skewed or leptokurtic. For example,
with C3 (no skewness or kurtosis) the average B(se,_) are -0.07 and 0.11 for
polychoric models and polyserial models, respectively, whereas with C9 (high
skewness and kurtosis) the average are -0.09 and -0.57, respectively.

e EQS estimates are often further from their empirical values than are LISREL
ones. EQS estimates seem to be closer to their empirical values for high original
factor-loadings than for low ones: average B(se,_)s of -0.76 and 0.69 are found
for polychoric and polyserial models with all As equal to 0.55, against -0.32
and -0.01 for polychoric and polyserial models with all As equal to 0.84. They
are also slightly less biased for polyserial models than for polychoric models:
the average B(se,_) is of -0.58 for polychoric models while it is of -0.44 for
polyserial models.

LISREL estimates are thus close to their empirical values for models with cat-
egorical variables only. Given the fact that LISREL and Liscomp procedures were
found to yield similar results (Dolan, 1994), these results are in line with the results
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Table 5: Average B(sey_) given some combinations of different conditions.

e For LISREL

Observed distributions

C1 C2 C3 C4 Ch C6 C7 C8 C9
Polychoric -0.07 -0.01 -0.07r -0.08 -0.08 -0.05 -0.09 -0.13 -0.09
Polyserial 0.31  0.53* 0.1 -0.05 -0.32* 0.49* -0.23 -0.36* -0.57*
Original factor-loading values
0.55 0.71 0.84
Polychoric -0.08 -0.06 -0.08
Polyserial -0.01 -0.01 -0.01
e For EQS
Observed distributions
C1 C2 C3 C4 C5 C6 Cc7 C8 C9
Polychoric -0.51* -0.34 -0.55* -0.45 -0.58* -0.54* -0.69* -0.78* -0.74*
Polyserial -0.36 -0.21 -0.38 -0.30 -045 -0.40 -0.58* -0.69* -0.64*
Original factor-loading values
0.55 0.71 0.84
Polychoric  -0.76* -0.65* -0.32
Polyserial  -0.69* -0.55* -0.01

NB: The average B(sey_)s being significantly different from zero are indicated by a star.

from Potthast (1993). Furthermore, LISREL polychoric estimates have been shown
here to be rather robust against observed or underlying nonnormality.

5.2.3 Behavior of goodness-of-fit values

The 4-indicator, 1-factor model, has 2 degrees of freedom. The expected y2-goodness-
of-fit value is 2, and has a 95 % probability of being contained in the interval from
0.05 to 7.38. With a grand mean of 7.8, EQS goodness-of-fit values were very often
too high to be acceptable. LISREL goodness-of-fit values were much less inflated
(grand mean around 3.3). Analyses of variance were performed on the estimated
goodness-of-fit values. The most notable results, shown in Table 6, are the following

ones:

e The most important factors explaining the variation of LISREL estimates are
the observed distribution, the type of treatment, and their interaction. The
average estimated goodness-of-fit values of the polychoric models are close to
the expected value of 2 for all observed distributions. They are not too inflated
for the polyserial models either, provided that not too skewed or leptokurtic
observed distributions are used. For example, with C1 to C4 and also C6 the
average goodness-of-fit values are lower than 4.0.

e The most important factors explaining the variation of EQS estimates are the
observed distribution and the interaction between the type of treatment and
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Table 6: Average x2-goodness-of-fit estimates.

e For LISREL
Observed distributions
ct C2 (C3 C4 Cb5 C6 Cr C8 (9
Polychoric 2.1 20 20 19 22 20 20 22 19
Polyserial 29 20 36 3.1 48 1.7 64 93 8.0
Original factor-loading values
0.55 0.71 0.84
Polychoric 2.1 2.0 2.0
Polyserial 4.4 4.7 4.8
e For EQS
Observed distributions
ci C2 (€3 C4 Cs C6 CrT C8 (9
Polychoric 4.1 3.0 53 45 78 6.8 127 257 26.0
Polyserial 3.1 2.0 25 28 42 31 48 11.9 93
Original factor-loading values
0.55 0.71 0.84
Polychoric 22.5 14.1 1.7
Polyserial 7.3 3.6 2.8

the original factor-loading value. Estimation procedures produce somewhat
better estimates for polyserial models than for polychoric ones. For both types
of treatment however, the goodness-of-fit estimates are too high for low factor-
loading values: for example with A\ = 0.55, the average x2-goodness-of-fit value
was 22.5 for polychoric models and 7.3 for polyserial models.

6 Bootstrapping used with polychoric estimation

procedure

As the average LISREL goodness-of-fit estimates are close to 2 for polychoric mod-
els, the shape of the distribution of the estimates is studied. Two Q-Q plots are
presented here in Figure 1 for both observed and underlying distributions with no
skewness or kurtosis (D1C3), and for highly skewed and leptokurtic observed and
underlying distributions (D3C9). For both combinations, the shape of the distribu-
tions is approximately chi-squared distributed (the relation between expected and
observed quantiles is approximately linear). However, the tails of the distributions
can be rather different: for example, the distribution of the estimates for D1C3 has
thicker tails than the chi-squared one, whereas the one of D3C9 has thinner tails
than the chi-squared one. Indeed, higher values of the goodness-of-fit estimates are
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more likely to happen for D1C3 than for D3C9. The same kind of Q-Q plots have
been created for polyserial models, and indicate that the distributions deviate some-
what more from the chi-squared distributions, and that the right tail is most of the
time much thicker than for the theoretical distribution (see, Figure 2).

As Bollen and Stine (1990) have shown, bootstrap methods can be used to obtain
standard-error estimates. The purpose of this section is to evaluate whether the
use of bootstrapping may solve the problem of inaccuracy in the estimation of the
standard errors from EQS. A nonparametric bootstrap is used here associated with
the estimation procedure from EQS 5.7.

The results of the simulation studies in this section are obtained with the 4-
indicator, 1-factor models, whenever all indicators are categorical. The underlying
distributions are normally distributed; 50 replications of samples of size 1000 are
drawn. For each replication, 200 (bootstrap) samples of size 1000 are drawn with
replacement. The standard error of the factor-loading estimates is calculated for
each replication as the empirical standard deviation of the 200 bootstrap samples.

The factor-loading estimates produced by the bootstrap procedure are very close
to their original values and they are not presented here. Results of the standard-error
estimates from the bootstrap procedures for given specific trichotomous distributions
are displayed in Table 7. The estimates provided by EQS in combination with the
bootstrap procedure are very close to the empirical standard errors. Furthermore,
this result holds for all original values of the factor loadings and all observed distri-
butions, even the most skewed and leptokurtic: the average relative bias is always
lower than 10% for all observed distributions.

Table 7: B(sey_)s for EQS with and without using bootstrap.

EQS (direct) estimates EQS bootstrap estimates

“True” factor loadings “True” factor loadings

Observed distribution 0.55 0.71 0.84 0.55 0.71 0.84
Skewness  Kurtosis

-0.8 -0.5 -0.71 -0.54  -0.13 -0.01 0.04 -0.01

0.0 -1.5 -0.66 -0.47 0.05 -0.00 0.02 -0.02

0.0 0.0 -0.69 -0.64  -0.26 -0.05 -0.05 -0.01

1.5 1.1 -0.77 -0.66  -0.32 -0.00 -0.00 -0.04

2.5 5.4 -0.88 -0.81 -0.54 -0.04 -0.07 0.01

7 Conclusion

The results presented here are based on a Monte-Carlo study. The conclusions
drawn in this section are thus restricted to the models and distributions used here.
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In particular, variables are supposed here to have the same observed and underlying
distributions, and the underlying distributions are supposed to be approximately
unimodal. Other simulation studies have shown that polychoric and polyserial es-
timation procedures may be much less accurate when dealing with underlying mul-
timodal distributions or variables having different degree of skewness and kurtosis
(see, e.g., Aris 2001). The main results obtained from the present study are sum-
marized below.

EQS and LISREL parameter estimates were found to be very often similar and
close to their original value. High relative parameter estimate biases were obtained
for simultaneous observed and underlying skewness and/or kurtosis. The effects of
observed and underlying skewness/kurtosis have been shown to interact: the more
the underlying distribution was skewed, the stronger the effect of observed skewness
on the over- or underestimation of the parameters.

EQS standard-error estimates were very often found to significantly underesti-
mate their empirical values, and this especially for models with low parameter values.
LISREL standard-error estimates were found to be close to their empirical values
for polychoric models but overestimated significantly their empirical values for poly-
serial models with certain skewed, leptokurtic or platykurtic observed distributions.
For both estimation procedures, the values of the relative bias of the standard-error
estimates were found to depend much more on the type of treatment or on the value
of the original parameters than on the underlying and/or observed distributions. As
the parameter estimates are rather close for LISREL and EQS, the large differences
between the standard-error estimates found may very probably come from the es-
timation of the asymptotic variance-covariance matrix of the correlation estimates.
Different estimates for this matrix are used in EQS 5.7 and LISREL 8.3 (Joreskog,
1994: equation 35, Lee et al., 1995: equation 31). If these estimates are still far
away to their asymptotic value, the Generalized Least Squares procedure used to
estimate the parameters may not be efficient, and yield standard-error estimates far
from their correct value.

A bootstrap procedure was performed in combination with EQS, and did help to
correct the estimation of the standard errors. The relative bias of the (bootstrap)
standard-error estimates was much lower than the original ones.

LISREL and EQS yielded also very different goodness-of-fit estimates. LISREL
goodness-of-fit values were almost always acceptable for polychoric models, while
for polyserial models they were too large for variables with high observed skewness
and/or kurtosis. The distribution of LISREL goodness-of-fit estimates was often
close to the theoretical one although for polyserial models, the upper tail of the
observed distribution was almost always too thick. EQS goodness-of-fit values were
also affected by high observed skewness and kurtosis, yielding goodness-of-fit values
too inflated for polychoric and polyserial models. EQS goodness-of-fit values did
also fairly depend on the original factor-loading values. In particular, too high
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goodness-of-fit estimates were obtained for models with low original factor-loading
values.

Finally, it is interesting to note that skewness and kurtosis in the observed dis-
tributions seem to affect the results much more that skewness and kurtosis in the
underlying distributions, although for polychoric and polyserial procedures, only
assumptions about the underlying distributions are made. Even though samples
considered here are not that small, in the light of results from Boomsma and Hoog-
land (2001), the effect of observed distributions could possibly be due not to mere
skewness of kurtosis, but to their consequences such as zero cells, or unprecise esti-
mation of the asymptotic variance-covariance matrix.
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Appendix A

Organization of the simulations

The simulation studies are conducted in the following way. A model M, with a
set of parameter values () is chosen to represent the relationships among several
continuous variables. The variance-covariance matrix for the entire population can
be calculated and is denoted by . A certain degree of skewness and kurtosis is cho-
sen for the continuous variables and a sample of N observations of these continuous
variables having this degree of skewness and kurtosis given ¥ is generated. Then,
using certain fixed threshold values, some variables are categorized in order to have
approximately a chosen categorical distribution. The model M is finally fitted on
these transformed samples. The estimates of M’s parameters, standard deviations
and goodness-of-fit indices are then compared to the references values.

In the simulations, 7 different possible underlying distributions (denoted D1,
D2, ..., D7) and 9 different observed ones (C1, C2, ..., C9) will be considered. A
description of these distributions can be found in the following.

Underlying distributions

The 7 continuous distributions called D1, D2, ..., D7, are generated using results
from Fleishman (1978) and Vale and Maurelli (1983). The nonnormal variables
simulated here are obtained from a fourth-degree-polynomial transformation of a
standardized normal variable.

The first four moments of the 7 underlying distributions are shown below.
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Values of
Name Distribution type Mean Variance Skewness Kurtosis
D1 Normal variable 0.0 1.0 0.0 0.0
D2 Mildly skewed variable 0.0 1.0 0.8 0.0
D3 Highly skewed variable 0.0 1.0 1.5 2.5
D4 Platykurtic variable 0.0 1.0 0.0 -1.0
D5 Mildly leptokurtic variable 0.0 1.0 0.0 2.5
D6 Highly leptokurtic variable 0.0 1.0 0.0 4.0
D7 Highly leptokurtic + skewed | 0.0 1.0 1.5 4.0

Observed distributions

The number of possible categories per variable chosen is three. In a previous study
(Dolan, 1994), the use of polychoric correlation and of specific estimation procedures
was advised until a maximum of five categories per variables.

The observed three-category distributions were chosen to have certain values
of skewness and kurtosis. These values and the observed distributions chosen are
shown below.

Observed frequency
categories (in %) | Skewness Kurtosis
Name Distribution type Catl Cat2 Cat3
C1 Negatively skewed 10 35 95 -0.8 -0.5
C2 Equal categories 33.3 333 333 0.0 -1.5
C3 Normally distributed 16.7  66.7 16.7 0.0 0.0
Cc4 Positively skewed 55 35 10 0.8 -0.5
Cb Highly posit. skewed 714 214 74 1.5 1.1
Cé6 Platykurtic 46 8 46 0.0 -1.9
C7 Mildly leptokurtic 10 80 10 0.0 2.0
Cs8 Highly leptokurtic 71 8.7 7.1 0.0 4.0
C9H Extremely posit. skewed
and leptokurtic 85 10 5 2.5 5.4

Appendix B

Reference value for the standard-error estimates
For the standard-error estimates, two reference values can be chosen: the value
of the standard deviation calculated from the original continuous model, or the
empirical value calculated from the variations of the parameters across the different
replications.

It may be interesting to use the original value of the standard error as reference
value since this value is the same for all estimation procedures and all types of cat-
egorization of one (underlying) continuous variable. Furthermore, it is the original
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Table 8: sey_s for LISREL (polychoric model, N=1000, D1, 200 replic).

Standard errors

Continuous model LISREL
True values Empirical Ezpected
Value of Observed dist.:
A Skew.  Kurt.
0.0 -1.9 0.039 0.060 0.052
0.55 0.0 0.0 0.039 0.047 0.047
0.0 2.0 0.039 0.062 0.058
0.0 -1.9 0.031 0.039 0.035
0.71 0.0 0.0 0.031 0.033 0.032
0.0 2.0 0.031 0.044 0.040
0.0 -1.9 0.027 0.024 0.022
0.84 0.0 0.0 0.027 0.023 0.021
0.0 2.0 0.027 0.027 0.026

NB : all standard deviations of the expected std are between 0.0012 and 0.0070.

standard deviation value of the parameter from the model that should “ideally” be
estimated.

Given NR replications of a data set from a cell of the multivariate crosstable
formed by crossing all design factors, the empirical standard deviation value can be
calculated from:

seZ™P — J ! § (4 )2
i NR — 1 — Yir — Vi) »
with 7; being the parameter from which the standard deviation is estimated. This
value mirrors exactly the variation of the estimates obtained by the estimation
procedures. Hence, it may also be interesting to use this value as reference value for
the standard-error estimates.

In Table 8, values of the original standard error, of the empirical standard devia-
tion, and of the (expected) estimated standard error yielded by LISREL polychoric
estimation procedure are presented for several CFA models. The original and the
empirical values differ somewhat from each other. As a result, the standard-error
estimates can be relatively close to their empirical value, even though they are quite
far away from their original true value, and vice versa.

Because the stress will be put here on the correctness of the modeling of the
parameters variation and because the empirical standard deviations of the estimates
from the two procedures are often very close, the empirical standard deviations are
considered to be the reference standard errors here.



