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Metric Approach to Property Prediction

Damijana Kerzi¢!

Abstract

This paper surveys dissimilarity functions and weighting properties meth-
ods focusing on prediction problem. We discuss some transformations of dis-
similarity functions and weighting methods. We can improve the quality of
prediction by using two steps in weighting procedures, which is shown in the
experiments where we achieved higher prediction accuracy on average using

weights in dissimilarity functions than not using them.

1 Introduction

Let £ be a set of units and L a learning set, also set of examples, £ C £€. On the
learning set £ the property y is known, y : £ — Lo, where L is a set of all possible
property values.

The property prediction problem can be expressed as follows:

For the unit not in the learning set, Z € £ \ L, predict the unknown
value y(Z).

In the property prediction problem we assume that the property values change
smoothly over the similar units. The metric approach to the prediction of y(Z), Z €
E\ L, is based on the known values for the units from £ that are in the neighborhood
of Z (with respect to a selected dissimilarity). For this purpose we have to measure
how similar two units are or how different they are in ”appropriate” way.

Each of the considered units is represented by a vector of values of n measured
properties, X = (z1,%9,...x,), where is z; also called variable. In real problems
variables can be measured in different scales: nominal, ordinal, interval, ratio, or
absolute. Looking for an appropriate dissimilarity, we have to take care about the

type of scales of variables too - we will discuss this problem in Section 4.
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We shall use the following notation:

X; = ( gi),:cg),...xg)) unit, i =1...m, m = |L]|

Li,...L,, description properties

L= (xg-l), x§-2), .. .xg-m)),j =1...n measured values of property L; on £
:cgi) = L;(X;) description (explanatory) variable
Lo, Lo = (Y1, Y2, - - - Ym) prediction property known on £

v = y(Xi) = Lo(X;) prediction variable (response)

d(X;, X;) = dij dissimilarity, distance

D, D;; = d;; dissimilarity matrix

In this paper we survey some facts about dissimilarities in Section 2. Than we
discuss how to manage with different scale type variables using in the descriptions of
units. In Section 4 we review some weighting possibilities in dissimilarity function.
We continue with the prediction methods based on dissimilarities and at the end we
present two experimental results.

2 Dissimilarities

In this Section we introduce some definitions and general facts about dissimilarity

measures. A dissimilarity on £ is a mapping d : £ x £ — R that has the properties:

1. vanishes on the diagonal: d(X,X) =0, VX € &,
2. nonnegative: d(X,Y) >0, VXY € €,

3. symmetric: d(X,Y) =d(Y, X), VX,Y € €£.

The ordered pair (£, d) is a dissimilarity space. A dissimilarity d is said to be
semi-distance if and only if

4. triangle inequality: d(X,Z) +d(Z,Y) > d(X,Y), VX,Y, Z € &

holds. When d is semi-distance (£, d) is called a semi-metric space. If d is also
5. definite: d(X,Y)=0= X =Y,

then (£, d) is a metric space and d is a distance.

Definition of Euclideanicity of metric space (£, d) is the following: There exists
¢ : &€ — R", for some n, such that d(X;, X;) = 0(¢(Xi), ¢(X;)), VX, X; € &,
where ¢ is the Euclidean distance.

Several examples of dissimilarity measures for different scales of variables can be
found in any book of data analysis, see for example Anderberg (1973).

Using different transformations we can adopt a dissimilarity to additional re-

quirement. We search for such transformations that will improve the quality of
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dissimilarity in the sense that better prediction results will be obtained. When
applying these transformations to a dissimilarity we wish that the properties of d
are preserved. We mention here some ways for constructing transformations that

preserve dissimilarity, see for example Batagelj and Bren (1995):

Proposition 1: (dissimilarity — dissimilarity)
Let d be a dissimilarity on € and let a mapping f : RS — R{ has the property
f(0) =0, then 6(X,Y) := f(d(X,Y)) is also dissimilarity on E.

Proposition 2: (distance — distance)

Let d be a distance on € and let a mapping f : Ry — Ry has the properties:
1. f(z) =0<=2=0
2.z <y= f(z) < f(y)
3. flz+y) < flz)+ f(y)

then §(X,Y) := f(d(X,Y)) is also a distance.

The following transformations satisfy the last theorem, and so they preserve the
metric property: f(z) = ax, a>0; f(z) =log(l+2z), z>0; f(z) = {7, © > 0;
f(z) = min{a,z}, a > 0; f(z) = 2% 0 < a < 1. It is easy to verify that all

concave transformations preserve metricity.

We can also combine dissimilarities into a new dissimilarity.

Proposition 3:

Let di and dy be dissimilarities. Then

l.d=adi+pdy, ;a+08>0,a,3>0

2.d=4%/(d+db); peRp>1

3. d= max{dl, dg}

is also a dissimilarity. If d; and dy are (semi-)distances then d is a (semi-)distance

too.

Using last theorem we can show for example:

k
if d;, 1 = 1..k are distances, then d = *, Zaidi” is a distance, p € N, o; > 0,
i=1

oy > 0.
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Another important transformations of dissimilarities are transformations which
improving dissimilarity into a distance or even into a Euclidean distance. The fol-
lowing methods of transformations are usually used (Joly and Le Calvé, 1994). Let

d be a dissimilarity, then:
e a positive additive constant: d(X;, X;) + c is distance for some ¢ > 0, i # j;
e a power transformation: d*(X;, X;) is distance for some o, 0 < @ < 1.

Let us cite three results. The proofs can be found for example in Gower and Legendre
(1986) (Theorem 1), Joly and Le Calvé (1986) (Theorem 2, Theorem 3), and also in
oldest references, see Cailliez and Pages (1976), Hoang (1978), Schoenberg (1937).

Theorem 1
If d is a dissimilarity then d(Xi, X2) + ¢, X1 # Xo is metric if and only if ¢ >
maX{|d(X1,X2) + d(Z, Xg) - d(X]_,XQ)‘, Xl,XQ,Z € g}

Theorem 2

If d is a dissimilarity there exists a unique nonnegative number p € RT, such that
d*(X1,Xs) is a distance for all positive o smaller or equal than p, 0 < a < p, and
d*(X1, Xs) is not a distance for all a greater than p, o > p.

The threshold value p from the last theorem is called a metric index.

Another important question is when transformation result is a Euclidean distance.
Here is the answer the reader could find in Gower and Legendre 1986 or in Schoen-
berg (1938).

Theorem 3
A dissimilarity d is Euclidean if and only if the matriz (I1—es")A(I—se’) is positive

semi-definite where I is a unit matriz, e =[1,1,...1] and A;; = —%d?j, s'e =1.

3 Dissimilarity and different scale types of vari-

ables

The prediction based on dissimilarity between units is very sensitive to the definition
of the selected dissimilarity. In real world problems descriptions of units usually
combine variables of different scale types. One possible strategy calculating the
dissimilarities between units in such cases is conversion of variables from one type to
another to achieve homogeneity, higher or lower level in the hierarchy of scale types.

After such conversion we can use one of possible dissimilarity functions appropriate



Metric Approach to Property Prediction 27

for chosen scale type. Of course conversion of variables means also loss or ignoring
of information or on the other hand adding additional artificial relations between
units.

In the second approach we take the description variables just as they are. For
each type of variables we choose appropriate dissimilarity and combine all of them
into new dissimilarity. If dj is the dissimilarity for property L, the new dissimilarity
between units X; and X, is d(X;, X;) := 2(dy,ds,...d,), where z is any function
constructing by consecutive application of steps described in Propositions 1,2,3.

Here is an example taken from the literature named Heterogeneous FEuclidean-
Overlap Metric (HEOM) (Wilson and Martinez, 1997).

Let the units be represented by the vectors of nominal and continuous (ratio or
interval scale type) variables, X; = (a:gz), xg), ca®)) X = (xgj), xgj), oz,

The dissimilarity function dj, that returns a dissimilarity between two values of

the same property Ly, is defined as:

1 2 or z¥ unknown

dk(xg),ac,(c)) =< d, (xg),xg)) nomlnal variables (3.1)

de(z . 29)  continuous variables

depending on scale of variable. For nominal type of variables the discrete distance

is used:

(@) )
0 =,/ ==x
d, x(z),xm _ k k 3.2

(e’ 2”) = 1 otherwise (32)

and for continuous variables normalized Euclidean distance is used:

(%) )
i xy —x
do(a), 2y = 17k~ T | (3.3)

| maxy, —miny, |

where max;, is the maximal value and ming, is the minimum value of the property

Ly in the learning set £, max;, = max{xgi); X; € L}. The dissimilarity between two
units X;, X; € £ is calculated:

dHEOM X,,X chp .Tk ,.Tg) . (34)

There is also the problem of weighting the contribution in the dissimilarity func-
tion of the different variables. In the next Section we will look for some possibilities

how to calculate weights of dissimilarities.
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4 Weights in a dissimilarity

Property prediction methods based on a dissimilarity are essentially dependent on
the dissimilarity functions used. Since some description properties are more impor-
tant than others the contribution of variable in a dissimilarity should has different
weighting factors. Using weights for properties we compute the dissimilarity between
the units as d(X;, X;) = z(w1dy, wads, . .. w,d,). For example the Gower dissimilar-
ity appropriate for mixture of variable types it has the form presented in Anderberg
(1973):

Z (X, X;)di (2, 29)

d(X;, X;) = (4.1)

Z (Xi, X;)

or Minkowski distance: d(X;, X;) = (Z(wk(X,-,Xj)dk(ac,(:),xg))f);,
k=1
where wy(X;, X;) > 0 is the weight for property Ly, usually not dependent on units.

The property weighting procedure should assign low weight to the contribution
of the property that provides little information in the prediction process and higher
weight to the property that provides more reliable information. We can distinguish

between two approaches to determine weights in a dissimilarity space:
e global: the weights are constant over the entire dissimilarity space;

e [ocal: the weights may differ among the regions of the dissimilarity space. Two
types of local weighting procedure are popular. In the first approach we assign
a different weight to each value of a property, so the weights are identical for

all units with the value. In the second property weights are a function of the
units, w = f(X;), see Wettschereck, Aha, and Mohri (1997).

In this paper we will talk only about the weights defined globally. On the other
hand we distinguish between property selection and property weighting methods. In
property selection algorithms we assign binary weights, so the property is deleted
or accepted. These algorithms reduce the dimensionality of the space and perform
best when the description properties are either highly correlated with the prediction
or completely irrelevant.

Weights can be determined on the basis of:

e specific knowledge: the relative importance of the description properties is

known in advance;

e optimization methods on learning set to improve prediction accuracy;
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e information theory: using entropy and information between description vari-
ables and prediction.

The last two methods are briefly discussed here.

4.1 Optimization methods

One of the possible ways to determine appropriate weights in the dissimilarity func-
tion is the optimization procedure. In this procedure we want to minimize the
difference between the known (measured) y and the predicted values ¢ on a training
set. Prediction of the unknown value is based only on the dissimilarities between
units and the optimization method using only the informations of the predicted
values and dissimilarities of the units in the learning set L.

As a measure of accuracy of prediction we usually use:

e variance - the average squared error:

3 (X)) —9(X; £ — {X D) (4.2)

IEI et

e mean absolute distance - the average error of prediction:

e= 1 X W) ~5(X; £~ {X}) (43)

XeL
where the expression §(X; L — {X}) denotes the prediction for the unit X based
only on the rest of the units in our learning set.

In the experiments, see paragraph 7, we used leave-one-out method on the learn-
ing set to minimize the prediction error. We used one of the direct search methods
named the method of Hooke and Jeeves, which can be found in any book of the
optimization, see for example Burday and Garside (1987). The initial weights in
the procedure are all the same. On each step of the procedure we calculate the
prediction for every unit in the learning set using weights in dissimilarity function,
9(X; L — {X}) = f(widy, wads, ... wydy,), and the prediction accuracy, e. If the
accuracy reduced, we have new weights and we search the new one in the direction

according to the algorithm of Hooke and Jeeves method.

4.2 Information theory and weights

This group of weights are motivated by the information theory and are most ap-
propriate for categorical (nominal, ordinal scale types) variables, or using the dis-

cretization methods, they are also able to deal with continuous (interval, ratio scale
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types) variables. We could separate the data into equal-lenght intervals or we could

use one of the discretization algorithm, see for example Doughtery et al. (1995).
Let p(U) = (p(u;))¥_, is the probability distribution for the random discrete

variable U, where p(u;) is the probability that U takes on the u;-th value. The

entropy of the variable U is defined as

k

H({U) = —Ep(ui) log p(u;) (4.4)

where log = log, and 0log0 = 0. The entropy H(U) is a measure of randomness

of a random variable. The entropy is maximal when all p(u;) are equal (uniform
distribution) and is greater or equal to 0: 0 < H(U) < logk.

Information of two variables U and V is a measure of common information
shared between these two variables. Let p(U) = (p(u;))i=, and p(V) = (p(v;))i_,
are probability distributions for variables U and V' and p(UV) = (p(us,v;))5-,5—,
probability distribution for the pair of variables (U, V). The information of this two
variables is defined as:

p(ui, UJ)
p(us, v) log ——~ (4.5)
22721 7 plua)p(vg)
The information is greater or equal to 0 and the maximal value is limitted with the
entropies of the variables: 0 < I(U,V) < min(H(U), H(V)).
Here are some possibilities for the weighting factors in dissimilarity for the de-

scription property L;, see Wettschereck et al. (1997):

e Mutual information (Shanon, 1948): wy = I (Lo, Ly).
If L; provides no information about the Ly, the mutual information will be 0.

Nng no
e Information gain (Quinlan, 1986): wy = H(Lo) — > _p; > —pij log pi;.
=1 j=1
I(Lz, LO)
H (L)
Raiski coefficient is a measure of ”functional dependence” of the prediction

o Raiski coefficient (Ustinov and Felinger, 1973): R(L; — Lg) =

property Lo on description property L;. If R(L; — Lg) = 1, then L, is a
function of L;.

5 Dissimilarity based prediction

We will present the following two methods based on the dissimilarity for prediction

property:
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e k-nearest neighbors algorithm: the prediction is based on the values of the
k-nearest units in the learning set,

e neighborhood subspace approrimation: we define subspaces, such as line and
plane, in the (semi-)metric space induced by the selected dissimilarity. Then
we look for the most suitable subspace where the unit with the unknown value
is lying and use a (generalized) linear inter/extra-polation in this subspace for

approximation of the unknown property.

5.1 Prediction based on k-nearest neighbors

For the unit Z the unknown value y(Z) is approximated with the values y(X;) of
the k£ units in learning set £ that are closest to the unit Z with respect to the
chosen dissimilarity. N(Z,k) := {Xi,... Xy}, k-nearest neighbors. There are two

possibilities how to calculate the unknown value:

9(Z) = medianY {y(X) : X € N(Z,k)} (5.1)

Z Oéiy(Xi)
==L o, =h(d(Z, X)) (5.2)

<
Y
N
SN—
>

If h = ¢, any constant, then the estimate for unknown property for the unit 7 is

the mean value of the y values for the k-nearest neighbors

9(%) = y(X3) (5-3)

k
=1

| =

2

On the other hand the function A could be any function which is decreasing with

the dissimilarity between unit Z and the unit X; in the neighborhood, for example:

hd(Z, X)) = ﬁ pEN, (5.4)

or a common Gaussian function:

-d*(Z, X;) )

h(d(Z, X;)) = exp ( o (5.5)

where parameter K determines how quickly weights decline.
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5.2 Prediction using linear inter/extra-polation along line

in semimetric space

In the dissimilarity space (€, d) we define a ray from unit X; through unit X, as

[Xl,X2> = {Z : ‘d(Xl,XQ) — d(Xl,Z)| = d(XQ, Z)} (56)
and a line as a union of two rays
<X1,X2> = [Xl’X2> U [X25X1> (57)

Suppose that for the unit Z € £ \ L there exists a line such that unit Z lies on
it, Z € (X1,X5) , X1, Xy € L, then we can use linear inter/extra-polation of the

unknown property along this line to approximate y(Z2) :

[ y(X1)d(Z, Xo) + y(X2)d(Z, X1)

(X0, X,) for Z € C}
97 X0, Xp) = § VX2, f&; ;’g)ﬁ)d(z’ X)) wzeq, (5.8)
| —y(Xg)d(Z,d)((;gh—i— )é()Xl)d(Z, X) rzecs
Oy =1{Z|d(Z X)) < d(X1,Xs) and d(Z, Xz) < d(X1, X2)} (5.9)
Co=1{Z|Z¢C andd(Z X)) > d(Z X,)} (5.10)
Cy={Z|Z¢C and d(Z,X,) < d(Z, X2)} (5.11)

Usually there is no such line, but we can often find lines to which the unit 7 is close
and we choose one of these lines (usually first found) for property approximation.
Line for condition Cj:

If there is no appropriate line, we can generalize the prediction method to the

neighborhood subspaces of higher dimensions nearly containing the unit Z:

1
V(XL

k
Q(Z, Xl, e Xk:) = Xk) Z O'«Ly(XZ)V(Xl, e ;Xi—la Z, Xz'—l—l; ce ,Xk)
=1

(5.12)
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o; € {—1,1} and V(Xq,..., X}) is the volume of the polyhedron spanned by the
units Xy,..., Xy € L.
The procedure is explained in details by Gower and Legendre (1986).

Example: Generalized linear inter/extra-polation in a plane

(y(X)V(Z, X2, X3) +y(X2)V (X1, Z, X3) + y(X3)V (X4, Xp, Z)

Z €1l
V(Xi,X5,X3)
_y(Xl)V(Za XQ; X3) + y(X2)V(X15 Z: X3) + y(X3)V(X1aX2; Z) Z €2
9(Z; X1, X9, X3) = < V (X1, X5, X3)
_y(Xl)V(Za X?aX3) - y(X2)V(X1) Z: X3) + y(X3)V(X1aX2a Z) 7 €3
V (X1, X2, X3)
(5.13)

6 Experimental results

In this Section the results of the methods mentioned in previous Sections on two
selected data sets are presented.
We used the learning/test set methodology to evaluate the prediction accuracy

of the algorithms. Each data set was randomly divided into k£ subsamples - 7; test
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set, £\ 7; learning set:
E=ULT, TinTi=0;i#j (6.1)

and the same learning and test sets were used for each methods.
We measure the prediction accuracy by the relative error

(Z y WX ( )|)*@- (6.2)

i=1 X€T; |5|

Here we mention another possibility of using Raiski coefficient. In our exper-
iments we calculated the symmetric matrix of Raiski coefficients between pairs of
description variables

Rij = R(LZ < Lj) = H(LL)’
il

=1...n, (6.3)

measuring the functional dependencies between them. If the R;; is almost one, let
us say > 0.9, than we select only one of the description properties L; and L; for
the prediction procedure. So we can reduce the dimensionality of our dissimilarity
space. Afterwards we can use optimization methods to determine weights in the

dissimilarity and with this reduce the computational time.

6.1 Life expectancy

First example is taken from the World Almanac and Book of Facts 1993, New York:
Pharos Books and it could be found at the address
gopher://jse.stat.ncsu.edu/00/jse/data/televisions.dat. For each of the
38 selected countries we have four description variables: people per television, people
per physician, female life expectancy and male life expectancy (according to 1990
population figures). Life expectancy was chosen for the prediction variable.

For the estimation dissimilarities between units we used the weighted Manhattan
distance, d(X;, X;) Z wk|xk — xk | The prediction of the life expectancy were

calculated with the 1nterpolat10n lines in the neighborhood of six units. Data set
were randomly divided into five disjunct sets. On each step we used one of them as
test set and the others as learning set.

Prediction results are presented in Table 1. As we could see the predictions were
calculated without weights in a dissimilarity and with weights calculated in two
different processes. Here are the weights for the description variables calculated for

one of the five learning set:
Raiski coefficient R(L; — Lo), i =1...4:  0.12, 0.30, 0.67, 0.73

Optimization methods (Hooke and Jeeves): 0.08, 0.09, 0.41, 0.42
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Table 1: Relative error for life expectancy prediction.

Without Weights

weights | Raiski | Optimization
Lines - relative error (%) 5.54 4.00 1.23
5-NN - relative error (%) 7.49 6.52 1.24

6.2 QSAR

The property prediction problem is one of the basic problems of QSAR (quantitative
structure-activity relationship) studies. The interest in quantification of the simi-
larity between chemical structures arises from the expectation that molecules with
similar structures also have similar physicochemical properties and biological activ-
ities. The basic assumption is that the molecules with similar structures have also
similar biological activities. So it can be assumed that the property values change
smoothly over structurally similar compounds and this assumption leads us to test
the metric approach in the property prediction.

For the description of the molecules the graph-theoretical methods have been
largely applied in the QSAR. In this approach we use structural indices based on
molecular graphs, what express in numerical form the structure of molecular graph,
see for example Balaban et al. (1983). Usually compounds share the same molecular
skeleton on which different substituents are bonded. With the prediction procedure
we want to restrict the potential candidates for further analyzes.

Data base for the application of the QSAR can be found at
http://www.awod.com/netsci/Issues/Jan96/featurel.html
or in Journal of Medicinal Chemistry, 1988, 31 (11). There is 46 compounds. We
calculated 24 graph-theoretic descriptors and used 8 descriptions of atoms:

— the minimal path from attaching place of substituent to one chosen atom on the
basic compound;

— for each atom type (there are only 7 different types: Br, Cl, F, C, N, O, H), in
substituent we describe how many times it appears in substituent.

The prediction variable here is biological activity.

For dissimilarity we used combination of two distances, Euclidean and Manhat-

tan,

d(X;, X;) szk @ _ py2 +Zw|x 2] (6.4)
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The Euclidean distance was used for the variables getting from graph-theoretical
descriptors and the Mahhattan distance for the variables describing the number of
different atoms.

In this experiment we succeeded to reduce the number of description variables
with the procedure described at the beginning of this Section. We calculated the
Raiski coefficient between pairs of variables and than we rejected one description
variable in each pair where Raiski coefficient was > 0.9. After this procedure we got
sixteen description variables instead of thirty two at the beginning. The results of
prediction procedures under different conditions are represented in Table 2. In this

experiment we used 4-nearest neighbors algorithm.

Table 2: Relative error for QSAR.

All variables Selected variables
Without weights | Raiski | Without weights | Optimization
Relative error (%) 19.13 17.91 18.63 15.46

7 Conclusion

In the paper we reviewed several weighting methods in property prediction algo-
rithms based on dissimilarities with intention to improve the accuracy of predictions.
We represented some of our experimental results showing that a weighting steps in
methods could improve accuracy of the predictions, especially in combination with
selecting and weighting scheme.

Another important question which needs further study is the appropriateness of
a given prediction model for a given data set, and on the other hand, combination

of dissimilarities into new dissimilarity using in prediction model.
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