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Some Notes on Evaluating the Prediction
Error for the Generalized Estimating

Equations

Dario Gregori!

Abstract

In spite of the frequent use of generalized estimating equations (Liang
and Zeger, 1986), in particular for modeling correlated binary data, there has
been devoted very small attention by the literature to arguments like model
checking, outliers detection and prediction accuracy evaluation. This paper
is intended to focus on the latter aspect, discussing the applicability of some
common methods to the generalized estimating equation model: (i) Appar-
ent error, naive or adjusted according to several criteria (C,, AIC, BIC); (%)
cross-validation; (i1i) bootstrap based methods. The main difficulty in using
cross-validation and bootstrap arises from the need of retaining the correla-
tion structure in the data. By sampling clusters instead of observations we
retain the correlation present in observations belonging to the same cluster.
An advantage of this technique over more model-dependent techniques like
bootstrapping residuals is that correlation remains a nuisance term, in line
with the spirit of the generalized estimating equations, for which a precise
assumption of correlation structure is not needed. Internal and external pre-
diction error are evaluated using the proposed methods with reference to a

case study of public health

1 Introduction

Generalized Estimating Equations, also known with the acronym GEE, are a com-

mon tool for the analysis of dependent data in medical and biological sciences. Their
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use is still increasing in popularity, both in reaching new fields, like ecology and so-
ciology, and in exploiting new ways of applicability in more traditional fields. There
are several reasons to this success: perhaps one of the most important is that GEE
allow people to think to situation in which data are dependent in some ways as if
they where not. There is no need for people to get involved in complicated mod-
eling of the covariance structure of the data if the main focus of the analysis is in
the regression parameters. Indeed, the regression coefficients are interpretable as
in the most common regression tools, like linear and (specially) logistic regression.
Models based on GEE are however not free of problems: the finite sample behavior
is not always well (Gregori and Carmeci, 1996), the model checking is complicated
by the introduction of a new levels of analysis, represented by the so-called clusters
of correlated observations, the correlation structure itself can lead to some compu-
tational problems, in particular with large and unequally sized clusters. In spite of
this potential pitfalls, very small attention has been given in the statistical literature
to the aspects related to model checking for the Generalized Estimating Equations.
Influence measures has been proposed by Preisse (Preisse and Qagish, 1996), miss-
ing data treatment has been discussed by Paik (Paik, 1992), but the use of GEE for

predictive purposes has not been discussed.

In Section 2 we review generalized Estimating equations introducing some nota-
tion. The definition of the relevant quantities for the evaluation of prediction error
for GEE models is discussed in Section 3, where cross-validation and bootstrap ap-
proach are illustrated in a dependent data framework. Computational aspects and
appropriate formulae are given in Section 2. In Section 4 the proposed measures are
discusses through an illustrative example on public health data.

2 Generalized estimating equations

Let Y; = (Yj1,...,Yi,,) be a vector of response values, and X; = (2;1,...,Zipn,)
a n; X p matrix of covariate values. Let 7« = 1,..., K index the cluster and let
j =1,...,n; index the observations. In the terminology of the generalized linear

models, the forms of the first two moments for the marginal distribution of Y;; are
E(Yy) = migs 9(pij) = nij = i B, var(Yi;) = Vi 0 (2.1)
where g(1;5) is the link function, V;;(j;) is a variance function of the mean, 3 is a

p x 1 vector of regression coefficients, and # is the scale parameter, either known or

to be estimated.
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Estimates of 3 are obtained by solving the generalized estimating equations

Kaﬂz‘l_. N1y
> (%) (i) = ) =0 22)

1
where %% is a n; X p matrix, A; = diag(V;?) is a n; x n; diagonal matrix and R;(«) is
a n; X n; working correlation matrix that depends on an unknown parameter vector

«.

Working correlation
The dependences among observations are specified in a variety of ways. The most

common specifications for the corr(Y;) are

1. Ri(a) = I, where [ is a n; X n; identity matrix. This corresponds to the

working independence assumption
2. corr(Ys, Vi) = «, with s # t is the so- called exchangeable correlation
3. corr(Yj,, Yy) = o7 with s # ¢ is the autoregressive form of the working
correlation function

2
wise correlations. This corresponds to the unstructured or pairwise working

4. corr(Ys, Yiy) = ag, where a is a x 1 vector containing all the pair-

correlation
Estimation

We define N = >, n;, the N x 1 vector Y = (Y/,...,Y})", the N x p matrix
X = (X!,...,X%), assumed to be of full rank and D = 22 a N x N diagonal

op
matrix with non zero elements d;; = g—:ﬁ%. Estimation of 3 is done with iteratively re-
ij

weighted least squares by regressing the working response vector M = X B+D(Y—ﬂ)
on X with block diagonal weight matrix W. The W; block corresponding to the i-th

cluster is the n; X n; matrix
W;=D;'A'R; Y (&)A;'D; ", D; = diag(dy,...,din,) (2.3)

Under some regularity conditions it has been shown (Liang and Zeger, 1986) that
as K —» o0, K 3 (ﬁ — () is asymptotically multivariate Gaussian with mean vector 0

and covariance matrix given by
Js = I}grcl)o KJ ' JJ ! (2.4)

where

Jy = é (%—’ﬁ)l [A;R;(c) A (%‘g) (2.5)
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Jp = é (g’g)' [A; Ri() Ai] " cov (Vi) [A; Ry (@) A;] " (g’g) (2.6)

The robust variance estimate of § is obtained by replacing cov(Y;) by (Y — i) (Y — 1)’
and 3, 0, a by their estimates in J; 'JyJ;'. The model is robust in the sense that
it consistently estimates J; even if R(«) is mis-specified.

The estimated adjusted residual vector is then
E=DY-p=M-n=UI-HM (2.7)

where H =QW, Q = Z(Z'WZ)~'Z' and i) = HM.

3 Evaluation of the prediction error

The main approach in estimating the prediction error rate is in the definition of a
prediction rule to be constructed from a training set of dependent data.

Dropping the cluster index, the training set is defined, as in Section 2, as Z =
(X1,...,X%)" as the N observations z;; = (2,5, y;;) with the z;; being the predictor
or feature vector and y;; being the response for the j-th observation in cluster . In
particular, we will use the notation Q[y,r| to indicate the discrepancy between a

predicted value r and the actual response y. The short notation

Q(20, Z) = Q[yo,72(70)] (3.1)

is commonly used to indicate the discrepancy between the predicted value and re-
sponse for a test point zy = (2o, o), when using the rule r; based on the training
set Z.

In the approach we are proposing the bootstrap is based on the idea of treating
clusters as the units on which bootstrap is performed. This implies that we will
assume that the clusters z; in the training set are a random sample from some
distribution F'. This assumption is quite general since it usually depends only on
the study design adopted. Notice also that only the information of independence
among clusters is required at this stage. The dependency structure within cluster is

not modeled, as in the the usual GEE setting.

3.1 Internal (apparent) and external error rate

The prediction error for 7z (xy) is defined by

err(Z, F) = E()F{Q[YE), Tz(.To)]} (32)
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where the notation Fyr indicates expectation over a new observation (zg, Yy) from
the population F'. This is also known as the estimate of the external error rate,
provided that a suitable set of new observations Yy, zy are available. This is however
a rather uncommon situation. More often, the error rate is estimated on the basis
of the training set (y, z).

Using the short notation g for the observation (7, j), so that ¢ = 1,..., N, the

apparent error rate is estimated by

=

1

err(z, F) = By {Q[Yo, 72(w0)]} = E_:l Qlyg: r2(x)] (3.3)

where the E; simply averages over the N observed cases (z4,y,).

Cross-validation

The K-cluster cross-validation estimate is
1 & “kg)
3 @l 77" ) (3.4)
9=1

where k(g) denote the cluster containing observation g, and r}k(g) (x) is the predicted
value at z, computed with the &(g)-th cluster removed.

Bootstrap
To construct a bootstrap estimate of prediction error in the correlated data case,
we define as Z7* = {(z%,v7),..., (%, y%)} a bootstrap sample of clusters. Then the

estimate of the prediction error err(Z, F') is defined

ere(2°,F) = 52 3= @l v+ () (35)

where N* indicates the total sample size >~ n; for the bootstrap sample (z7, ;) and
g =1,...,N*. In this expression r}(z,) is the predicted value at x = z,, based
on the model estimated from the bootstrap data set x*. The notation N* indicates
that the number of observations on each bootstrap replication is not in general equal
to the total sample size N, unless of a design completely balanced among clusters.
There are several choices proposed to ”balance” the study design in order to have
approximately the same number of observations in each bootstrap replication (Efron
and Tibshirani, 1993). However, the usefulness of such a rounding strategy has not
been shown completely, and in any case the asymptotic argument for the convergence
of both the GEE estimator and the bootstrap is based on the number of clusters K
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tending to infinitum, independently from the cluster size. In addition, more than
this "one-shot” estimate, we will focus on the average prediction error

Eglerr(a*, F)] = By

% ;Q[yga Tz (xy)]:| (3.6)

where Ep is the expectation over data sets z with observations z, F'. Expression
3.6 is an ideal bootstrap estimate, corresponding to an infinite number of bootstrap
samples. With a finite number B of bootstrap samples, we approximate this letting
3 (z,4) be the predicted value at z, from the model estimated on the b-th bootstrap

sample, with b = 1,..., B. Then the approximation to E[err(z*, F)] is

3 181 %
Ejlerr(z*, F)| = 3 N7 > Qlyy, 72+ (24)] (3.7)
b=1 g=1

A more refined bootstrap approach estimates the bias in err(Z, F) as an estimator
of err(Z,F) and then corrects err(Z, F) by subtracting the estimated bias. The
average optimism is defined as

w(F) = Eglerr(Z, F) — err(Z, F)] (3.8)

This is nothing but the average difference between the true prediction error and the
apparent error, over data sets Z with observations Zgl*:’ ; notice that it is usually a
positive quantity, since the apparent error rate tends to underestimate the prediction
error. The bootstrap estimate of w(F') is obtained as

w(F) = Eglerr(Z*, F) — erx(Z*, F*)] (3.9)

Here F* is the empirical distribution function of the bootstrap sample Z*. A prac-

tical approximation is

S B PR R LA
O(F) = 512 37 2 Qlasrzee ()] = 3 57 2 Qlyges 20 (x5)] (3.10)
B b=1 Nb g=1 b=1 Nb g=1

In the above equation, ;.:(z,) is the predicted value at z; from the model estimated
on the b-th bootstrap sample b = 1,..., B and yy, is the response value of the g-th
observation for the b-th bootstrap sample. Then, the final estimate of the prediction

error is the apparent error plus the downward bias in the apparent error given by

A A

err(Z, F) + w(F). (3.11)
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3.2 The choice of Q[]

The choice of the discriminating function @ is quite difficult. The most common
option, based on the evaluation of the (quasi) deviance function is applicable only
under some specific conditions on the structure of the covariance matrix (McCullagh
and Nelder, 1989). Other options has been derived and presented in the literature
(Hanfelt and Liang, 1995), in particular to avoid problems related to the poor be-
havior of the Wald test and the known lack of some ad hoc goodness of fit tests.
An alternative approach could consists in referring to the classical functions used in
the literature related to the classification problem, like the residual sum of squares
(RSE) or the Pearson statistics. For instance, the latter is an estimate of the over-
dispersion parameter, and therefore in line with the spirit of the Regal’s approach
(Hook and Regal, 1992).

In addition, for the dichotomous case where both r and y are either 0 or 1, a very
common approach consists in determining the classification function as a rounding
up function, having
0 ifr=y
1 ifr#£y

Typically the rule r,(z) will predict y = 0 if = lies to the lower left of the dis-

Qly,r] = { (3.12)

criminating function, and y = 1 if x lies in the upper right (Efron and Tibshirani,
1996).

In particular, five measures of goodness of fit has been evaluated in the forth-
coming case-study: (i) the residual squared error, as defined in Section 3.2 (ii) the
Pearson’s x? (iii) the quasi-deviance function, constructed under the hypothesis of
independence and two round-off function as defined in equation 3.12(iv) based on
a threshold of 0.50 of the estimated probability of success, and (v) based on a .75
threshold.

4 TIllustration of the methods

Data from the VERO-Chest Study (University of Trieste, Italy) are used to illustrate

the use of the diagnostics presented in Section 3.

The data

The VERO-Chest is a prospective multicenter study conducted in 1996 to evaluate
the influence of preoperative chest radiography (POCR) on anaesthetic management
and to characterize the patient eligible for POCR. 6111 patients entered the study

and were submitted to elective surgery, abnormal POCRs were reported in 1116



114 Dario Gregori

patients (18.2%). POCR was considered useful for anaesthetic management in 226
patients(5.12%). Male sex, age >51 years, ASA classes >3, coexisting respiratory
diseases, and the presence of two or more coexisting diseases were significantly re-
lated with the probability of a useful POCR, with wide variations among hospitals.
Indeed, the study indicates that in healthy, female, >50-year-old patients, submitted
to standard operations, the probability of a useful POCR ranges from 0.2% to 3.5%
among hospitals. The probability increases differently in male or elderly subjects, or
in the presence of a coexisting respiratory disease, or in ASA classes >3, depending
on the particular hospital. For the purposes of illustration, we randomly selected a
subset of patients equal to 20% of the original sample size and used them as training
set. Other 10% of the patients were randomly selected from the VERO-Chest pop-
ulation and constitute the test set. The marginal distribution of both the training
and the test set are quite close each other (Tables 1-2). A major difference lies in the
distribution of 'Not useful’ x-rays among people with different co-morbidities (53%
of not useful x-rays in the training set had more than one co-morbidity whereas only
37% in the test set).

Table 1: Descriptive statistics by xray.

Yes (N =1027) No (N =53) Combined (N = 1080)

Sex : Male 46% (473) 58% (31) 47 % (504)

Age 39 56 69 6370 75 40 56 70
Intervention : Standard 7% (790) 4% ( 39) 77T % (829)
Minor 13% (37) 6% ( 3) 13 % (140

Major 10% (100) 21% (11) 10 % @)

ASA : 3-5 15% (152) 60% (32) 17% (184)
Co-morbidity : None 61% (630) 30% (16) 60 % (646)
Cardiac 6% (66) 6% ( 3) 6 % (69)
Respiratory 3% (35) 8% (4 4% (39
Other 16% (163) 4% ( 2 15 % (165)

Several 13% (133) 53% (28 15 % (61)

a b c represent the lower quartile a, the median b, and the upper quartile ¢ for continuous variables.
N is the number of non—missing values.

Numbers after percents are frequencies.

The distribution of observation among clusters (hospitals) is one of the quan-
tities that should always be explored before performing an analysis of correlated
(clustered) data (Louis, 1988). In our samples, the distribution tends to reflect that
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Table 2: Descriptive statistics by xray.

Yes (N =573) No (N =27) Combined (N = 600)

Sex : Male 45% (259) 59% (16) 46 % (275)

Age 38 56 69 59 64 79 38957 69
Intervention : Standard 2% (414) 81% (22) 73 % (436)
Minor 16% (93) 4% (1) 16 % (94

Major 12% (66) 15% ( 4 12 % (70

ASA : 3-5 14% ( 79) 52% (14) 16% (93)
Co-morbidity : None 61% (349) 30% ( s) 60 % (357)
Cardiac 6% (32) % (2 6 % (34
Respiratory 2% (10 19% ( s) 2% (15)
Other 16% (94) % ( 2 16 % (96)

Several 15% (89) 37% (10) 16 % (98)

a b c represent the lower quartile a, the median b, and the upper quartile ¢ for continuous variables.
N is the number of non—missing values.

Numbers after percents are frequencies.

of the original data set. It has to be noticed however, that the cluster number 15
is equally sized in the training and test set. Another fact is that clusters number
3 and 4 are made of very few observations in the test set. An obvious consequence
of this might be the reduction of the observed length of the bootstrap series due to
the presence of some not estimable models.

The models
The estimated models are presented in Table 4, assuming exchangeable and unstruc-
tured correlation structure for the R(a) matrix. Point estimates of the regression
coefficients and the adjusted standard errors do not differ much among the two
models. Coefficients significantly different from zero are those related to ASA phys-
ical status, co-morbidity (in particular cardiac vs none), intervention type (major
vs common) and age. All of them seem indicate an increase of the probability of
having some useful results form the x-ray according to the worsening scenario of the
patient. This conclusion agrees, beside some small differences not relevant from the
point of view of interpretation, with the model estimated on the total population of
611 patients.

Before evaluating the performance of each criterion, it is useful to highlight
the target of this kind of analysis: (i) the target of the analysis of the predictive
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Table 3: Cluster size in training and test set.

Training set

Hospital 1 2 3 4 5 6 7 8 9 10

n; 9 5 9 27 136 9 31 20 74 191

Hospital 11 12 13 14 15 16 17 18 19 20 21

n; 5 5 7 73 10 126 51 21 31 75 29

Testset

Hospital 1 2 3 4 5 6 7 8 9 10

n; 46 3 4 6 78 10 17 10 33 102

Hospital 11 12 13 14 15 16 17 18 19 20 21

n; 41 3 4 33 11 76 35 14 17 39 18

Table 4: GEE estimates of the model based on data in the training set.
Exchangeable correlation Unstructured correlation

Coefficients Estimate  Robust S.E. | Estimate Robust S.E.
(Intercept) -5.533 0.792 -5.789 0.802
ASA 1.307 0.461 1.439 0.501
Sex 0.139 0.316 0.121 0.327
Co-morbidity: Cardiac 0.51/ 0.302 0.579 0.310
Co-morbidity: Respiratory 0.596 0.643 0.598 0.654
Co-morbidity: Other -1.480 1.128 -1.730 1.301
Co-morbidity: Several 0.654 0.698 0.732 0.711
Intervention: Minor -0.696 0.612 -0.701 0.619
Intervention: Major 0.515 0.246 0.599 0.275
Age 0.031 0.013 0.029 0.011
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Table 5: Error rates estimates.

App. Err. Ext. Err.  CV#% B% B

Exchangeable correlation

RSE 0.042 0.102 0.081 0.099 0.182
Pearson 2.61 2.98 2.7 2.60 2.70
D% 342.703 298.776 390.5 392.7  390.887
C50 0.103 0.181 0.129 0.118 0.149
C75 0.237 0.310 0.198 0.210 0.245
Unstructured correlation

RSE 0.058 0.120 0.119 0.089 0.143
Pearson 2.61 2.86 2.78 2.64 2.67
D@ 349.745 312.889  352.329 360.943 599.781
C50 0.115 0.122 0.156 0.144 0.377
C75 0.241 0.290 0.222 0.237 0.487

capability of a model is the estimation of the error rate, for which the evaluation of
the apparent error rate provide only a biased information. The external error rate is,
on the other side, an unbiased estimator of this quantity, but it needs a test sample
which is not always available, and (ii) therefore, the need to have a procedure able
to reduce the bias in the apparent error is of great importance. Following this lines,
the estimates of the five criteria (Table 5) have been evaluated for the training set
and presented as an estimate of the true error rate. The external error rate has been
estimated on the test set of 600 observations.

The apparent error rate is half the size of the external error rate when measured
using the common measure of RSE. The same happens for the C'50 criterion. The
C75 and the Pearson criteria provide an estimate of the apparent error which is
closer to the estimate for the external error rate. It has to be noticed that the
quasi-deviance function provides an estimate of the apparent error which is more
conservative that the external error itself. This is not surprising since this is the
only measure incorporating information about the distribution function inside each
cluster. We the evaluated these measures using both the cross-validation and the

bootstrap criteria.

The re-sampling statistics
The bias corrected bootstrap has been calculated both using the resamplig-clusters

approach described in Section 3.1 and the naive bootstrap obtained re-sampling
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Figure 1: GEE model fit (exchangeable correlation). Cross validation versus model fit.

s933
\
\

X

020

010

3333
\
\

e m T3
= oz
E
S o1s
O y o1
o0s
00
T T
oo
ofs »
ofo /
ofs G ~
7 e
oz
/' 015
e S 2 o
”/ e o 005
= 00
1 0
ot
ofs
oo
ofs 5
00 01 02 03 04 00 01 02 03 04

Figure 2: GEE model fit (exchangeable correlation). Cross validation versus model fit
for each cluster.
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Figure 3: GEE model fit (unstructured correlation). Cross validation versus model fit.
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Figure 4: GEE model fit (unstructured correlation). Cross validation versus model fit
for each cluster.
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Figure 5: Bootstrap estimates of prediction error (apparent + optimism) for the GEE
model with exchangeable correlation. Cluster bootstrap (B=1000).

the N units as if they where independent. The cross-validation and the cluster
bootstrap perform always better than the simple apparent error estimates, in par-
ticular when using the common RSE criterion . The naive bootstrap seems unstable
and providing misleading information, getting worse as the the complexity of the
statistics increases. It has to be noticed, however, that all bootstrap models, but
in particular those based on an unstructured working correlation matrix, have a
high percentage of models not reaching convergence, for instance about one third of
them. Cross-validation seems in particular more stable than other approaches with
respect to different choices of the working correlation structure. The Figures 1-2
and 3-4 do not show any particular difference in the fit between the exchangeable
and the unstructured model.

The asymptotic distribution of the bootstrap estimates has been checked, both
for the B?! and the B™ with two working correlations, exchangeable and unstruc-
tured. The B?! has a distribution close to the gaussian curve for both correlation
structures (Figures 5 and 6). The same does not apply to the B", which is perform-
ing very poorly, in particular when the unstructured correlation is chosen (Figures
7 and 8).
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Figure 6: Bootstrap estimates of prediction error (apparent + optimism) for the GEE
model with exchangeable correlation. ”Naive” bootstrap (B=1000).
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model with unstructured correlation. Cluster bootstrap (B=1000).
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Figure 8: Bootstrap estimates of prediction error (apparent + optimism) for the GEE
model with unstructured correlation. ”Naive” bootstrap (B=1000).

5 Conclusive remarks

The question we had in mind in writing this paper was: is it possible to get more in-
formation about the appropriateness of a GEE model using re-sampling techniques?
In fact, it has been pointed out that cross-validation is not a panacea for estimating
the predicted value or to select a model (Cressie, 1991); indeed it cannot provide
information about the fact that the model is correct, but only that it is not clearly
incorrect. However, a critical use of this technique can provide an useful insight
in situations where the typical techniques fail to provide a valid indication (Schu-
macher, 1995). The classical criteria like for instance the AIC (Akaike, 1973) and
the BIC (Schwarz, 1978) are not applicable in situations where data are depen-
dent (Cressie, 1991). Alternative re-sampling schemes has been proposed for more
specific data structure, in particular for time-series sequences (Hesterberg, 1997).
Other ways of bootstrapping are based on the idea that a suitable model can be
written so that the resulting underlying structure is in terms of i.i.d. components.
This idea, proposed by several authors (Freedman and Peters, 1984; Solow, 1985) is
highly dependent on the estimation procedure used for the model and works fine in
case of no dependence of higher moments (Cressie, 1991) where the GEE (one) are
known to have troubles (Carmeci and Gregori, 1995). In case of the semi-parametric

model, the ideal method for estimating predictive accuracy should retain all the nice
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properties of GEE models. In fact, we observed that cross-validation in particular,
but also bootstrap methods can be of some help in evaluating models, especially
when no other samples are available to serve as test set. It is in addition evident
that retaining information about correlation is fundamental, as already stated in
previous studies (Freedman and Peters, 1984). How to choose among the various
criteria is not entirely clear. From the evidence coming out of this analysis, it seems
that simple methods, like Pearson over-dispersion estimate or round-off threshold
functions are the most suitable. In particular for the latter, a deeper analysis to

determine the sensitivity to the threshold used in rounding-off is needed.
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