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Missing Binary Covariate Data and Imputation
in Regression Models

Georg Heinze'

Abstract

This paper presents a simple way to handle missing values in categorical
covariates, namely conditional probability imputation. Properties of this
technique are given for various patterns of missing data in regression studies.
An example shows its use in the proportional hazards model. The probability
imputation technique is furthermore compared with multiple imputation and
model-based approaches. It can be concluded that for certain patterns of
missing data occuring typically in prognostic factor studies, the probability
imputation technique has properties not inferior to more sophisticated but also
more difficult-to-implement methods, and is outperforming standard techniques
like complete case analysis or omission of covariates with missing values.

1 Introduction

1.1 A practical example

Suppose we are confronted with the following survival time data set (taken and
modified from Andrews and Herzberg, 1985): We have 483 observations, each
consisting of survival time and a censoring indicator as well as eight dichotomous
covariates. Three of the covariates, HX, SG, and WT, have about 1/3 of their values
missing independently from each other, leading to an effective sample size of 128,
which is not much more than one fourth of the original sample.

The clinical partners expect all eight covariates to be strong prognostic factors,
independently from each other, and we are forced to analyse all of them with respect
to their effect on survival, e. g. using the proportional hazards model as described by
Cox (1972). If we use a standard software package for statistical analysis and apply a
proportional hazards regression analysis on the data, we yield the univariate and
adjusted regression coefficients and significance levels presented in Table 1.
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Table 1: Regression coefficients (log hazard ratios) of a proportional hazards model fitted on
128 complete observations. Marginal coefficients refer to unadjusted models, partial
coefficients to the model involving all covariates. * denotes a p-value < 0.05, ** p < 0.01,
*** p <0.00], ¥¥** p < 0.0001.

Factors marginal partial
™ -0.20 -0.29
AG 0.56* 0.32
PF 0.58 0.39
HG 0.29 0.16
SZ 0.87** 0.64*
HX 0.59** 0.47*
SG 0.47* 0.28
WwT 0.11 0.15

We see that in spite of all factors supposed to be relevant, only two of them turn
out to be significant on the 5 %-level in the adjusted model, and none is significant
on the 1 %-level. Do the clinicians fail with their expectations or are we somehow
loosing power?

The standard software package uses information only from the 128 completely
observed cases. So the important thing is to exploit the information contained in the
other 75 % of the data set.

1.2 The Probability Imputation Technique (PIT)

A straightforward approach is to replace the missing values by plausible guesses. For
dichotomous 0-1 coded covariates, Schemper and Smith (1990) suggested to impute
the probability of a factor taking on the value 1 conditional on the values of the other
factors in the model. This probability could be estimated by applying a logistic
regression (Hosmer and Lemeshow, 1989) of the incomplete covariate on the
complete covariates. The dichotomous covariate becomes a continous one then. If we
have one factor subject to missing values, we estimate this probabilities from our
complete observations. If we have more than one factor subject to missing values,
several patterns of missing data can occur. Schemper and Heinze (1996) suggest an
iterative procedure:



Missing Binary Covariate Data and Imputation 93

Algorithm 1. Computing imputed values in a data set with more than one variable subject to
missing values.

for (each set of subjects with the same missingness pattern)
{
compute preliminary imputations for the factor to be imputed by
logistic regression on all other non-missing factors of this pattern
using all subjects of the dataset, where the factor to be imputed and
the non-missing factors of the pattern are observed
)
do
{
for (each variable subject to missing values)
{
compute imputations from logistic regression on all other variables,
where missing values are replaced by previous imputations
}
}

while {(convergence in the imputations not achieved);

Applying this algorithm to our data and using again standard software for
proportional hazards regression, we get the results presented in Table 2.

Table 2: Regression coefficients (log hazard ratios) of a proportional hazards model fitted on
483 observations imputed using PIT. Marginal coefficients refer to unadjusted models,
partial coefficients to the model involving all covariates.

* denotes p-value < 0.05, ** p < 0.01, *** p < 0.001, **** p <0.0001.

Factors marginal partial
™ -0.20 -0.14

AG 0.43%*** 0.29*

PF 0.75%**x 0.31

HG 0.5]1%%*x 0.27*

Sz 0.79%*** 0.61***
HX 0.60**** 0.54%%**
SG 0.65%*x* 0.48***
WT 0.39** 0.21

Now, in the adjusted model, five of the factors are significant, and all but one in
the unadjusted models. A question now arising is, how much can we trust in these
results?

2 Properties of Probability Imputation

Recent investigations (Heinze, 1995; Schemper and Heinze, 1997; Vach, 1994; Vach
and Schumacher, 1993) show that after applying PIT, regression coefficients cannot
be estimated consistently in logistic and proportional hazards models. The magnitude
of this asymptotic bias is strongly dependent on the distribution of the missing values.
Table 3 gives an impression of what we can expect in typical settings of a prognostic



94 Georg Heinze

factor study involving logistic regression. In this table, Y denotes the binary
outcome, X; denotes a completely observed binary variable, X, refers to a binary
variable subject to about 33 % missing values, and Z refers to factors not included -
and not correlated with any variables - in the model. ,,Small bias“ denotes situations
where the estimated asymptotic bias of the parameter estimation after applying PIT is
within an interval of [+/- 0.05] in all settings, ,,moderate bias“ means an estimated
asymptotic bias which at least once exceeds [+/- 0.05] but is still within [+/- 0.20],
,large bias* denotes a bias occuring in at least one setting that exceeds the ,moderate
bias* interval.

Table 3: Estimated asymptotic bias of regression coefficients in logistic regression after
using PIT based on a simulation study. Detailled specifications of the simulation study can
be found in the appendix.

Distribution of missing Estimation of complete Estimation of incomplete

values depending on factor (X)) factor (X;)
Z, X, small bias small bias
Xz small bias small bias
Y small bias moderate bias
Xyand Y moderate bias moderate bias
Xyand Y large bias large bias
X; and X, moderate bias small bias

As long as we are not concerned with a distribution of missing values depending
on the outcome Y, which we can expect from prognostic factor studies, we are not
confronted with large bias. However, in case-control studies, where the cases and the
controls are sampled from different sources, we should be aware of different
missingness generating processes, which causes more bias when PIT is applied.

Note that even if the distribution of the missing values is depending only on the
true unobservable values, this situation is denoted by ,,nonignorable missingness® in
the literature as compared to ,missing at random*, we have acceptable performance
of PIT.

In the simulation we also studied the effect of imputation on inference about the
parameter estimates. For the situations where Probability Imputation is reasonable
with respect to asymptotic bias, the results are in brief:

o the residual variance is increased by 2 - 3 % compared to full data (no
missingness) analysis

e 95 %-confidence intervals around a parameter estimated by PIT covers the
true value in 94 - 95 %, this means that tests are valid
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e tests on the effect of a complete variable achieve the power of full data
analysis if there is no correlation in the covariates, and some 5 % less power
than full data analysis if covariates are correlated

o tests on the effect of the imputed variable achieve 1 - 3 % less power than
analysis of the completely observed cases

The sensitivity of the analysis on the assumption about the distribution of the
missing values made by the Probability Imputation Technique can be examined by
several analyses with lower or higher imputation values. For our example, we could
decrease and increase the imputed values of HX to see the effect on, say, the
strongest factors SZ and SG.

Table 4: Analysis of sensitivity of different assumptions about the distribution of the missing
values of HX on parameter estimates of SZ and SG in the survival time data set.

Imputed value of Sz SG
HX increased by
-0.2 0.61366 0.45606
-0.1 0.61239 0.46978
+0.0 0.61186 0.48189
+0.1 © 0.61200 0.49126
+0.2 0.61288 0.49495

As we see, the adjusted parameter estimate of SZ does not change with different
imputed values of HX. The changes in the parameter estimate of SG indicate that a
misspecification of the distribution of the missing values of HX, if it occurred, would
have altered our conclusions on SG; but the changes are small, so we will not worry
about them.

3 Comparison with other approaches
3.1 Multiple Imputation

In Probability Imputation, we impute the expectation of the incomplete covariate
conditional on the other, independent factors. The imputed values can assume all
values between 0 and 1.

In Multiple Imputation as proposed by Rubin (1987), we impute draws from the
distribution of the incomplete covariate conditional on all other factors and the
dependent variable. These draws can assume the values 0 or 1 only.

Having completed the data set by draws, it is analysed, and the parameters
estimated are stored. The imputation/analysis procedure is repeated m times, where
m should lie between 3 and 10, say. After m steps, we compute the mean of the
parameter estimates over the analyses to get a multiple imputation estimate of the
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regression coefficients. The variance of the estimates can be computed by adding the
within-step variance W and the between-step variance B, corrected by 1+1/m. For
inference about the parameters, we use the t-distribution with (m-1)(1+m/(m+1))W/B
degrees of freedom.

As in PIT, we have to estimate the probability of the missing value being 1. This
probability now depends also on the outcome variable. Why not use the outcome
variable in PIT? Little (1992) states that when imputing means, including the
dependent variable in the computation of the conditional mean introduces bias. The
conditional expectation is then too related to the observed outcome data, leading to a
wrong direction in the estimation of the regression coefficients.

In the simulation study mentioned above, Multiple Imputation was compared to
Probability Imputation. We found that Multiple Imputation has little less power than
Probability Imputation, but it produces asymptotically unbiased estimates in all
missing at random situations. Therefore it is useful also in case-control studies. For
complex relationships between dependent and independent variables, e. g. in survival
studies, where there are censored outcomes, the conditional distribution of the
missing values is not easy to compute, and a satisfactory Multiple Imputation has not
been yet published.

3.2 Maximum Likelihood Estimation

Recent research (Vach and Schumacher, 1993; Vach, 1994) has concentrated on
building a model for the distribution of the missing values, and estimating the
parameters of this model along with the parameters of interest. In practise, the log-
likelihood function has summands refering to missing values of an incomplete
variable, and in these summands we integrate over the conditional distribution of this
variable. There are some special cases, where this procedure can be done ,quite
easily“, but in general software for ML-estimation with missing values is not yet
available.

Maximum Likelihood estimation in logistic regression with missing dichotomous
covariates is exhaustively studied in Vach (1994). If the distribution of the missing
values is independent of the outcome, as it is expected in prognostic factor studies,
Maximum Likelihood yields the same results as Probability Imputation, with the
advantage of estimating asymptotically unbiased. The bias of PIT, however, is very
small, and only relevant if the factor subject to missing values has a true regression
coefficient greater than 1.5. If the missing-at-random assumption is violated, PIT and
Maximum Likelihood show a comparable sensitivity.

Screening of marginal and partial effects is easily done in Probability Imputation
and Multiple Imputation, and the procedure to obtain marginal regression coefficients
in Maximum Likelihood estimation is not so intuitive.
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In case-control-studies, however, PIT is not recommended, and one should
consider Maximum Likelihood or Multiple Imputation, or estimate using the
completely recorded observations only.
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Appendix: Specifications of simulation study

Tables A.1 and A.2 show the constant and varied parameters, respectively, of the
simulation study. Table A.3 shows in detail the missing value distributions used.

Table A.1: Constant parameters of simulation study.

Simulation parameter Value

Number of simulation for each setting 1000

Number of observations per simulated data | 200

set

Distribution of X, binary, Pr(X;=0) = Pr(X;=1)=0.5

Distribution of X, binary, Pr(Xzme=0) = Pr(Xam.e~1)=0.5

Distribution of Y Pr(Y=1) = 1/(1+exp(-bo-b1Xi-b2X21rue)),
: Pr(Y=0) = 1-Pr(Y=1)

bo = Intercept of logistic regression model | -1

Table A.2: Varied parameters of simulation study.

Simulation parameter l Values
by = true logistic regression parameter value of X; 0,1

b, = true logistic regression parameter value of X, 0,1
Pearson correlation between X; and X; 0,06

Distribution of missing values of X, depending on Z, X4, Xotrue, Y, Xy and Y,
XZIrue and Y, X] and X2rrue
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Table A.3: Missing value generating mechanisms

Missing value distribution of X; depending | Missing value distribution of X,
on

Z Pr(X,=?)=0.33

X Pr(X;=7X,=0) = 0.17,
Pr(X:=7]X,=1) = 0.5

inue PT(XZZ?IXnm,:O) =0. 17,
Pr(X:=NX2me=1) = 0.5

Y Pr(X;=?|Y=0) = 0.17,
Pr(X=?Y=1)=0.5

Xyand Y Pr(X>=7X;=0 and Y=0) = 0.086,

Pr(X;=7X,=1 and Y=0) = 0.254,
Pr(X;=?|X,=0 and Y=1) = 0.254,
Pr(X;=?X;=1 and Y=1) = 0.746
Xomee and Y Pr(X=7X2=0 and Y=0) = 0.086,
Pr(X2=?X2me=1 and Y=0) = 0.254,
Pr(X>=?|X2me=0 and Y=1) = 0.254,
Pr(X:=?Xane=1 and Y=1) = 0.746
X, and Xaue Pr(X=71X,=0 and Xy/..=0) = 0.086,
Pr(X>=?|X,=1 and Xy.=0) = 0.254,
Pr(X>=7X;=0 and Xy;ne=1) = 0.254,
Pr(X2=71X,=1 and X3ir.=1) = 0.746

Each combination of the simulation parameters (there were 2*2*2*7 = 56) was
used to construct 1000 data sets each containing 200 observations. For each dataset,
in a first step feasible values of X, were generated and ir a second step they were set
to "missing" according to the distribution of missing values. In tables A.1, A.2 and
A 3, the preliminary values of X; are denoted by Xaie.
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