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Abstract

In many domains the units may be more complex than the standard ones due
to the fact that they have internal variation and may be structured. Their
description needs more complex data tables called “symbolic data tables”
which are described in this paper. The need to extend standard data analysis
methods (e.g., exploratory, clustering, factor analysis, discriminant analysis) to
the symbolic data table is growing due to the need of getting more accurate
information and to summarize extensive data sets. We call “Symbolic Data
Analysis” (SDA) the extension of standard Data Analysis to such tables.
“Symbolic objects” describe in an explanatory way classes of units described
by symbolic data. They constitute one of the main output of a SDA. A
symbolic object is “complete” if its “extent” covers exactly the class that
describes it. An illustrative example concerning the pollution of several
locations at different time points is given. This example yields to stochastic
concept lattices which are finally introduced.

1 Introduction

In order to obtain more accurate surveys, individuals may be allowed to give
multivalued answers. For instance, the answer to a query may be a set of categorical
values which expresses the doubt of an individual answer. '

All around the world, huge data sets are recorded in Official Statistics as well as
in Companies. Summarizing such information in smaller sets of new « statistical
units » is a question of increasing importance. In reducing the data set and losing the
least information possible, these statistical units yield more complex data tables called
« symbolic data tables », because the cells of such data tables may contain not only
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single numerical or categorical values, but much more complex information, such as:
subsets of categorical variable values, intervals of ordinal variable values, histograms,
probability distributions and dependencies, and need rules to be specified. These new
statistical units are called « symbolic objects » and there is a need for an extension of
standard Data Analysis to such objects, called « Symbolic Data Analysis » .

2 Main input of Symbolic Data Analysis algorithms:
« symbolic data tables »

Columns of the initial data table are « variables» and rows are « symbolic
descriptions ». Each cell of this « symbolic data table » may contain data of different
types:

a. Single quantitative value : for instance, if « weight » is a variable and w is
a unit : weight(w)=3.5.

- Single categorical value: for instance, Town(w)= London.

c. Multivalued: for instance, in the quantitative case: weight(w)={3.5, 2.1,
5}which means that the weight of w may be 3.5 or 2.1 or 5. In the categorical
case, color(w) = {blue, red, yellow} means that the color of w may be blue or
red or yellow. Notice that (a) and (b) are special cases of (c).

d. Interval: for instance weight(w)=[3, 5], which means that the weight of w
varies in the interval [3, 5].
e. Multivalued with weights: for instance a histogram or a membership

function (notice that (a) and (b) and (c) are special cases of (e) when the
weights are equal to 1).

Variables may be:

f Taxonomic: for instance, « the color is considered to be light if it is
yellow, white or pink ».
g Hierarchically dependent: for instance, we may describe the kind of

computer of a company only if it has a computer, hence the variable “does the
company have computers?“ and the variable “kind of computer” are
hierarchically linked.

h. With logical dependencies: for instance, « if age(w) is less than 2 months
then weight(w) is less than 10 ».
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3 Main output of Symbolic Data Analysis algorithms:
complete symbolic objects

Let Q be a set of units called «individuals » , D a set of descriptions, «y» a
mapping (called attribute or variable) defined from Q into D, which associates with
each w € Q a description d € D from a given symbolic data table. We denote by R, a
« comparison » operator between two descriptions such that [d’ R d] € L where L =
{true, false} or L=[0,1]. For instance R € {=, #, =, <, 2, C,, D, €, €, an implication,
a kind of matching, ...). A set of coherent descriptions (for instance, the description:
sex = male and number of deliveries = 1 is not coherent), constitutes the set
of objects to which any symbolic data analysis algorithm applies. That is why, we use
« object » to denote any coherent description . If it is the description of an individual,
we call it an «individual object ». It may be also the description of a class of
individuals, of a scenario, of a strategy, etc. In the case of a survey, an individual
object is a coherent answer of an individual to the set of queries in the survey.

A « symbolic object » is defined by an object, and a way of comparing it to
individual objects is defined by a recognition mapping. The advantages of «symbolic
objects» are of at least two kinds. First, they give a summary of the initial symbolic
data table in an explanatory way, (i.e. close to the initial language of the user) by
expressing descriptions based on the marginal distributions of the initial variables.
Secondly, by being independent of the initial symbolic data table, they are able to
identify any matching individual described in any data table. More formally, their
definition is: '

Definition of a symbolic object
A symbolic object is a triple s = (a, R, d) where R is a comparison operator, d is a
description and « a » is defined from Q2 in L such that a(w) = [ y(w) R d].

There are two kinds of symbolic objects:

-« boolean symbolic objects » if [y(w) R d] € L = {true, false}. In this case, the
y(w) are of type (a) to (d), defined in section 1.
Example: d = {red, blue, yellow}, color(w) = {red, yellow}, R=« < »,
a(w) = [color(w) c d} = true.
-« modal symbolic objects » if [ y(w) R d] € L =[0,1]. In this case, the y(w) are
of type (e). An example of choice for R is given hereunder.

Extent of a symbolic object s: in the boolean case, it is defined by Ext(s) = {w € Q
/ a(w) = true}. In the modal case, given a threshold a, it is defined by Ext(s) = {w €
Q/a(w)2a}.
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Tools for symbolic objects: tools between symbolic objects (Diday, 1995) may be
needed, such as similarities, matching, merging by generalisation where a « t-norm »
or a « t-conorm » (Schweizer and Sklar, 1983) or « capacities » (Diday and Emilion,
1997) may be used, splitting by specialization (Ciampi et al.,, 1996) . Let T be a
merging operator, which associates a description with a set of descriptions (for
instance, the « sup » or the « inf » of such a set). If the choice of R and T is coherent,
it may be shown that the underlying structure of a set of symbolic objects is a Galois
lattice (Polaillon and Diday, 1997), where the vertices are closed sets defined by
« complete symbolic objects ». More precisely, the associated Galois correspondence
(see e.g. Wille, 1983) is defined by two mappings:

- F: from P(Q) (the power set of Q) into S (the set of symbolic objects) such that

F(C)= s where s = (a, R,d) is defined by d = Tccc y(c) and so a(w) = [y(w) R
Teec y(c)], for a given R.
For example, if y(u) = {pink, blue}, C = {c, ¢’}, y(c)= {pink, red}, y(c’)=
{blue,red}, and if T({pink, red},{blue,red}})={pink, red, blue})and R = « c »,
then a(u)= true and ue Ext (s).

- G: from S into P(Q) such that: G(s) = Ext (s).

Complete symbolic object: A symbolic object s is a « complete symbolic object »
iff F(G(s)) =s.

These objects may be selected from the Galois lattice but also if the lattice is too
large, from a partitioning, a hierarchical or a pyramidal clustering, from the most
contributive individuals to a factorial axis, from a decision tree, etc. extended to have
symbolic objects as input and giving complete symbolic objects as output.

Syntax of symbolic objects: if the initial data table contains p variables we denote
y(wW) = (1i(w),..., ¥p (W)), D = (Dy,...,Dy), de D: d=(d;,..., d;) and R = (Ry,...,R,).
Then an « assertion » is a special case of a symbolic object defined by s = (a,R,d) and
written as follows: a(w) = Ai-1p [ ¥i(W) Ridi].

Individual symbolic objects, first and second order symbolic objects: any row
describing an individual « u » of a symbolic data table induces an assertion called an
« individual symbolic object » by setting: a(w) = A1, [ yi(w) R; yi(u) ] where R; =
« = » . Its extent is the set of individuals with the description defined in the
symbolic data table. Hence, if all the individuals have different descriptions, there is a
bijection between the set of individuals defined in a symbolic data table, and their
associated individual objects or their associated individual symbolic objects. That is
why sometimes a row of a symbolic data table is called a « symbolic object ». We
distinguish « first order symbolic objects » (associated with individuals) from
«second order symbolic objects » which are associated with the description
(obtained by generalization) of a class of symbolic objects. For example, a second
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order boolean assertion object where SPC means « socio-professional-category » is:
a(w) = [age(w) c {12, 20 ,28}] A [SPC(w) < {employee, worker}]. If the individual
u is described in the initial symbolic data table by y; (u)={12, 20 } and y, (u) =
{employee } then its associated individual symbolic object is:

u'(w) = [age(w) = {12, 20 }] A [SPC(w) = {employee }]. Now,

a(u) = [{12, 20 }c{12, 20 ,28}] A [{employee}c{employee, worker}]and
therefore a(u)=true.

If the variables are multivalued and weighted, an example of an assertion is:

a(w) = [age(w) R; {(0.2)12, (0.8) [20 ,28]}] A [SPC(W) R: {(0.5)employee,
(0.5)worker}] where for instance the « matching of two probability distributions » is
defined for two discrete distributions r and q of k values by:

rRiq= Zrjqiey ™ e,

4 Surce of Symbolic Data

Symbolic data arise from many sources where there is a need to summarize huge sets
of data tables. They result from the probability distribution, the percentile or the
range of any random variable associated with each cell of such data tables. They
result also, from Relational Data Bases (in merging several relations or summarizing
the answer to a query), from surveys giving the possibility of multivalued answers,
from Data Analysis (factorial analysis, clustering, neural networks,...) of standard
data table, from expert knowledge (scenario of traffic accidents, type of
unemployed,...), from time series (in describing intervals of time), from confidential
data (in order to hide the initial data by less accuracy), etc.

Table 1: The initial data table

Y: POLLUTION Y;: ENVIRONMENT
i Yo zZ) Z

EIFFEL TOWER (T,)

EIFFEL TOWER (T,)

DAUPHINE (T))
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5 An illustrative example

The set of individuals € in this example, is a set of locations in Paris (Eiffel Tower,
Dauphine University, Place de I’Etoile,... ) considered at different times (T,,T,,...).
We have two sets of variables: the first, Yy, concerns pollution (rate of lead, of
CO,,....). The second, Yi, is a set of environment variables (density of cars,
direction of the wind, ... ). Hence,we have a huge initial data table which is described
in Table 1.

The question is expressed in the following way: find classes of locations which
have the same environment conditions, describe them in a humanly comprehensible
language, organize them in terms of this language, be able to allocate a new location
to these classes, and study the evolution of these classes when the number of
observations increases.

Table 2: Using a clustering algorithm, each location x time is assigned to a class

POLLUTION ENVIRONMENT
EIFFEL(T,) POL 9 ENV 4
EIFFEL(T,) POL 5 ENV 7
EIFFEL(T,) POL 11 ENV 9
DAUPHINE(T;) POL'S ENV 9
DAUPHINE(T,) POL 6 ENV 7

We propose the following method:

1. Partitioning (using a good clustering algorithm) the locations x times
described by the pollution variables. The K classes of this partition are
denoted: POL 1, POL 2, ....... , POL K.

2. Partitioning (with the same algorithm) the locations x times described by the
environmental conditions. We obtain L classes of locations x times denoted:
ENV1,ENV2, ... ,ENV L.

3. We build data table 2, which associates with each location at each time a class
characterized by the pollution variables and a class characterized by the
environment variables.
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4. We build the histogram of pollution behaviour for each location, for each class
of environmental conditions. For instance, in the following data table 3 |, we
have K=4 , L = 3 . The histogram contained in the first cell defines for each
class of pollution (POL 1, POL 2, POL 3, POL 4), the frequency of the Eiffel
Tower x time cases, in the first environmental class: ENV 1. In the graphical
representation of each histogram, each class POL i is associated with an
interval (see Figure 1).

Table 3: Location behavior in three classes of environmental conditions.

ENV1 ENV 2 ENV 3

DAUPHINE
UNIVERSITY

EIFFEL TOWER

PLACE DE LA

CONCORDE l D

3

Palt Pal2 Poll Pald

Figure 1: The level associated with the class Pol i of the histogram associated with a location
and an environment class Env j in Table 3, is the number of times (obtained from Tables 1
and 2) when this location is simultaneously in the class Pol i and in the class Env j.
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Having such a « context» defined by the triple: locations (the objects),
environment classes (the variables), histograms (the variable values), we are in the
« symbolic data analysis framework » where Q is a set of locations, y(w) = (h; (w),
hy (w), h; (w)) is an individual object which describes the individual w, by three
histograms, where h; corresponds to the variable y;. In other words, each individual
object is a row of the preceding data table of histograms. In order to describe a class
C of locations we can use for instance a t-norm denoted T such that:

T ceC y(C) = (Max ceC h] (C), Max ceC h2 (C), Max ceC h3 (C))

The comparison operator is then R; = « < », in order to be coherent with T.
Hence, by using the notations given in 2, we have F(C) = s where s = (a, R,d) is
defined by

d = Tecc y(c) and a(w) =Ai-1, [ Yi(W) Ri Teec i (0)].

In other words, a (W) = Ai-1p [ hi (W) € Maxccc h; (c)]. It follows that the
extension of s is

Gls)={w/a(w)=true } = { w/ Vi h;(w) < Maxcec hi(c) }.

As in this case R and T are coherent, F and G constitute a Galois
correspondence. Each node of the associated concept lattice corresponds to a
complete symbolic object s: F(G(s)) = s.

This lattice defines all the complete symbolic objects associated with F and G.

6 Stochastic concept lattices

6.1  Galois lattice of probability distributions

The basic framework of stochastic concept lattices is the following:

Q is a finite set of individuals ( for example, the set of « location x time »
described by a pollution class for each environment class). P is a probability measure
defined on P(Q2) the power set of Q. J is a finite set of indices (the variables: the
environment classes). Oj is a finite set (the pollution classes). {(X ijlieltisa
family of random variables from Q to 0j. For example, X ij (w) is the « class
pollution » of the i-th location at time w in the class environment j.

Let L; j be the probability distribution of X i,j- We define the following symbolic
object :
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F(C) = (a, R, d) where Rj =« € »,dc=[(Min¢ e CLcj)j Maxie CL ¢l
and a (W) = Aisip [Lwj € [((Mingce CLc,j)j ,(Maxce CLcjj)j}

In other words:
a(W)=ni-ip [ [(Minge CLg,j)j < Lwj<(MaxceCLej)jl

The following results may be shown (Diday and Emilion, 1997):

Theorem 1:

F and G are decreasing, h = GoF and k=FoG are increasing extensive and
idempotent, so that we get a concept lattice. In the case of a binary random variable
we get the usual binary concepts lattice.

6.2 Galois lattice of histograms

Suppose that the Lj; are unknown but that we have at our disposal frequency
histograms Hj;. We can define the same kind of symbolic objects by using Hij;
instead of Li,j- Then we have:

Theorem 2:
F and G yield a concept lattice and if morover the frequency histograms converge,
then the lattices defined by these histograms converge to that of Theorem 1.

6.3 Galois lattice of support measures
The closed support of the measure Ljj is denoted by Sij .We suppose that we have
got some observations of the random variables Xi,j such that the sequence of

vectors {Xijj Mier }n is independent and distributed like the vector {Xi,j iel}.
The mappings F and G are defined as follows:

F(C) = s such that s = (a, R, d) with
R=«g » d=(nie CSij)jand a (W) = Ai-p [Swj S Ni e C Sijl.
G(s) = {w/ Swjc Vjforallj}ifd=(Vj);,

We have then the following result:
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Theorem 3:
As n goes to infinity, the step n - lattices converge to the Galois lattice induced by F
and G.

As a consequence, Theorems 2 and 3 show that as the knowledge of the
individuals increases the concepts focus and converge.

7 An example of a lattice
The initial symbolic data table is given in Table 4. It may be obtained in a stochastic

lattice context, from the support of each probabilty distribution L ; ; or from a
histogram H;; or from a given percentile.

Table 4: The initial symbolic data table

yl {y2| y3
i1lab |D| g
2| @ @] gh
3 ¢ 1ef]gh,i
4labc| e h

With T= U and R = ¢, the complete symbolic objects denoted s; = (a;,c, d;)
and their extension obtained by using an extension of the Chein algorithm (Diday,
1996), Pollaillon and Diday, 1997) are the following:

a(W=lyi (W c 01 1Aly: (W) € 02] A [ys (W) € Os ], Ext(si ) = {1,2,3,4}
a(W)=[y2(W) < {e} 1n[ys(W) < {g.h} 1, Ext(s2) = {1, 2,4}

a3 (W) =[y1 (W) ¢ {c} ], Ext(ss) ={2,3}

aW) =[yiWc{ab}Inly(W)=D]1alys (W) c {gh} ], Ext(ss ) = {1,2}
as(w)=[y2 (W) c {e} ] Alys (W) c {h} ], Ext(ss) = {4} _
awW)=[y1Wc{ab} ]aly W= Jalys(W)c{g} ] Ext(ss)= {1}
a7 (W) =[y1 (W) ={D}1rly2 (W)= Tnlys(W)c {gh} ], Ext(s7)= {2}
(W) =[yW=F1Aaly(W) =D In[ys(W) =], Ext(ss)= { D}



Extracting Information from Multivalued Surveys... 33

Figure2: Galois Lattice of the symbolic objects defined in Table 1.

8 Conclusion

A general aim of a symbolic data analysis may be stated in the following way: having
as input: (Q, D, y, T, R), find complete symbolic objects. But, as in statistics, the
underlying lattice often becomes too large, and other methods which also provide
symbolic objects have to be used. The need to extend standard data analysis methods
(exploratory, clustering, factorial analysis, discrimination,...) to symbolic data tables
is growing due to the expansion of information technology. This need has led to a
European Community project called SODAS (Hebrail, 1996) for a « Symbolic
Official Data Analysis System» in which 15 institutions in 9 European countries are
involved.
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