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Some Inference Results for the Exponential
Autoregressive Process

Lynne Billard'

Abstract

After briefly describing the exponential autoregressive model of order p, EAR(p),
introduced by Gaver and Lewis (1980) and Lawrance and Lewis (1980), we give
conditional least squares estimators of the model parameters . Then, we obtain two
predictors for the model for optimality with respect to the squared error loss function
and the absolute loss function, respectively, and compare their relative merits .

1 Introduction

Standard Gaussian time series models have been studied extensively and are well de-

veloped for use in a variety of settings (see, for example, Box and Jenkins, 1976) . In
particular, the autoregressive model of order p, AR(p), is given by

1't=Oll't-1+ . . .+OpYt-p+ft

	

(1 .1)

where {Yt } is a sequence of observations at time t = 1, . . ., n, and {ft } is the error se-
quence, or white noise process, of standard normal N(0, 02) variates . Thus, the marginal
distribution of the observations Yt is also that of a normal distribution . There are many
situations in practice however in which the observations Yt are not normally distributed .
Specifically, we wish to consider the case in which the marginal distribution of the obser-
vations follows an exponential distribution . Direct analogues of (1 .1) for exponentially
distributed {Yt } are not feasible . However, there is rich class of models which address

this question . We will focus herein on the basic class of exponential models developed by
Gaver and Lewis (1980) and Lawrance and Lewis (1980) ; see Section 2 .

In Section 3, we review briefly work on estimating the model parameters, and in

Section 4, we consider prediction for the basic model .
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2 The EAR(p) model

Following Gaver and Lewis (1980) and Lawrance and Lewis (1980), we define the expo-
nential autoregressive model of order p, EAR(p), by

a jYt_ 1 with probability a1
a 2Yt_2 with probability a2

t =

	

+ et ,

	

(2.1)

a,Yt_, with probability aP

where 0 < a, . < 1, r = 1, . . ., p, and where the probabilities can be written as functions of
the parameters {aj , j = 1, . . ., p} as

a 1 = 1 - a2 ,
r

a r = r11 aj (1 - aj_ 1 ), r = 2, . . ., p - 1,

	

(2.2)
j=2
~P

a,, = 11 aj .
j=2

We are given that the marginal distribution of Yt is an exponential distribution with
mean p, Et say . Then, by using the Laplace transforms of Yt and e t , Gaver and Lewis
(1980) showed that, for the EAR(1) model when p = 1,

0 with probability a 1 = a,
et =

	

(2.3)
Et with probability 1 - a .

For general p, Lawrance and Lewis (1980) showed that the distribution of the error
terms e t is a mixture of a zero discrete component and p different exponential distributions
whose means are a function of the model parameters p and a,., r = 1, . . ., p . For example,
for the EAR(2) model, we have

0

	

with probability 7r o ,

et =

	

Et with probability 7 1 ,

	

(2.4)
Et with probability 7r2

where Et is an exponential variate with mean p* = µa2(1 + a1 - a 2 ), and where

7o = al/), Tt = (1 - a1 )(1 - a2)/(1 - a2 .\),

72 = [a, - a 1/A - a2(al - a2)[/(1 - a2A),

with A=1+a1- a2 .
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While it is clear that the structures mathematically of the Gaussian autoregressive
model of (l .1) and the exponential autoregressive model of (2.1) are different, the prop-
erties of these two models have many similarities . For example, the autocorrelation func-
tions have the same format . For the EAR(l) model, the autocorrelation function at lag k,
Pk, is Pk = a k which compares with AR(l)'s Pk = Y'k, k = 0, ±1, . . . . For the EAR(2)
model, Pk satisfies the Yule-Walker equations

Pk = a1(1 - a2 )p k _ 1 + a2pk _ 2i k = ±1, 2 ± 2, . . .,

	

(2.5)

and po = 1, which is analogous to the AR(2) Yule-Walker equations

Pk = Y'1Pk-1 + ¢2Pk-2, k + 1, ±2, . . . .

From (2 .5), it follows that when 0 < P1 < 1/2, we have pi < P 2 < 1, and when
1/2 > pr < 1, we have p1 < [P2 < 2p r - 1 - (1 - 1/pr) 2] thus restricting the possible
range of (p r , p 2 ) values for the EAR(p) model . The parameters a1 and a2 can be expressed
in terms of the autocorrelations as

a1 = P1[1 + (Pz - Pi )/( 1 - P2)]112, a2 = [(P2 - Pi )/( 1 - P2)11/2 .

In general, the Yule-Walker equations for the EAR(p) model are

Pk = ala1Pk-1 + . . . + ap a p pk _ p , k = ±1, ±2, . . . .

	

(2.7)

Lawrance and Lewis (1980) also showed that the regression of Yt on all p previous
{Yt _ r , r = 1,...,p} is linear on these p {Y-r}, that is,

P

	

P
E(YtjYt_r, . . .,Yt p)=~aa,Yt-r+µ(1-~arar),

	

(2.8)
r=1

	

r=1

but that the regression of Yt on one of, not all, {Yt _r , r = 1, . . ., p} is not linear.

3 Parameter estimation

Because of discontinuities in the likelihood function, the general method of Billingsley
(1961) for obtaining maximum likelihood estimators cannot be applied to the EAR(p)
process . However, Billard and Mohamed ( 1991) obtained conditional least squares esti-
mators (CLS) of the parameters, and studied some properties of these estimators.

The CLS estimators &r of ar , r = 1, . . ., p, and µ of p, are those estimators which
minimize ~

	

n
` , =

	

[Yt-E(Y1[Y1_1, . . .,Yt-P)]2

	

(3.1)
t=p+1

(2 .6)
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for a given set of observations {Y, t = 1, . . ., n}, where E(Ytlyt_j	Yt_p ) was given in
(2 .8) . Hence, we can show that the &r , r = 1, . . ., p, are found from solving

Cro = A1Cr1 + . . . + ApCrp , r = 1, . . ., p,

	

(3.2)

where
n

	

n

	

n
Crs = (n - p) - '[ E Yt_rYt_ 6 - (n - p) -1 ( E Yt-r) ( Y_ Yt-B)],

t=p+1

	

t=p+1

	

t=p+1

for r, s = 1, . . ., p, and where, for r = 1, . . ., p,

Ar = arar

	

(3.4)

is the CLS estimator of A r = ara r ; and that the CLS estimator of µ is
n

	

p

	

n

	

p
A = [ E Yt->Ar Y_ Y-r]/[(71-p)(I-rAr)] .

t=p+1

	

r=1

	

t=p+1

	

r=1

It is noted that in the particular case p = 1, the sequencing of runs down allows a to be
determined directly, though it is still necessary to calculate & to obtain µ from (3 .5) .

Yule-Walker estimators (& r , µ) of the parameters (ar , µ) were suggested by Lawrance
and Lewis (1980) as those estimators satisfying

Cr -A1Cr_1 + . . .+ApCr_p, r=1, . .,P,

where Ar = d r ay and where

n-r
er = n-' (Yt - Y) (Yt+r -

t=1

and

(3 .3)

(3 .5)

(3 .6)

(3 .7)

n
u=Y=nI yY.

	

(3.8)
t=1

Billard and Mohamed (1991) obtained results for the asymptotic distributions for the
CLS estimators, as summarized in the following theorem .

Theorem :
Under certain regularity conditions, the CLS estimators ~3 = ( µ, a 1 i . . ., ap )' of /3 =

(µ, a l , . . ., ca p )' are strongly consistent and asymptotically normally distributed as n'/Z (/3-
0) v N(0, C) where

C = Var(c t)V- '

where V is a (p + 1) (p + 1) matrix with elements

Vrs=E(ayr , s),

	

p+1,
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where 9 - E(Yt JYt _ 1i . . .,Yt _p ) given in (2 .8) .

Corollary :
If we write /3 = ( µ, a), then µ and a are asymptotically independent and normally

distributed according to

n1/2(µ - µ) - N(O, VarrtV '),

and
n1 / 2(& - a) - N(0, Varf1Vaz ),

respectively, where we write

and V 22 is the p x p matrix with elements

(V22)ii = E(
a9
-

ag
-), 2,~ = 1, . . .,p .

aat 09%

While Lawrance and Lewis (1980) did not derive properties of the Yule-Walker esti-
mators, it is clear from (3 .3) and (3 .7) that they have the same asymptotic distribution as
do the CLS estimators . Based on simulation studies (for p = 1) when the sample sizes are
small however, Billard and Mohamed (1991) showed that the CLS estimators consistently
outperform the Yule-Walker estimators as judged by criteria of bias and mean square er-
ror results . Furthermore, the CLS estimators tended to attain their asymptotic values by
n = 50, whereas the Yule-Walker estimators typically still had not reached the asymptotic
values by n = 100, for larger values of a .

4 Predictors

Let us now consider the question of predicting a future observation Y,;+h given {Yt , t =
1, . . ., n}, denoted by f (n, h) say. We derive two predictors, viz .,

f (ll(n, h) = E(Y.+hlY,,, . . ., Y1)

	

(4.1)

which is the "best" predictor when optimality is with respect to the squared loss function,
and

f"21 (n, h) = M,

	

(4.2)

V= \Vr1 V12

/V21 V22

where V11 is the 1 x 1 scalar

V11 = E(a9 )2 ,
µ

7
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with Mr , for 0 < r < 1, satisfying

= fT

	

CYF(2JIYn , . . .,Yl)

with F( I .) denoting the conditional distribution function, which for r = 1/2 is the "best"
predictor when optimality is taken with respect to the absolute loss function. We will
assess the merits of each predictor by obtaining both the prediction mean square error and
the prediction mean absolute error .

When the observations are normally distributed, both f (l) (n, h) and f,(2 ) (n, h) with
r = 1/2 lead to the same predictors . When the {Yt } are nonnormally distributed, there
are no theoretical grounds for always choosing f (l) (n, h), nor for selecting r = 1/2 in
f,(') (n, h) . Therefore, we derive both predictors herein for the exponential process and
compare them . We demonstrate the methodology for the EAR(1) case ; predictors for the
general EAR(p) model follow analogously .

The Predictor f 1 1 )(n, h)

For the EAR(1) process, Gaver and Lewis (1980) showed that

Y+h = ahYt + ah-l Et+1 + . . . + Et+h- (4 .3)

Since the general autoregressive process of order one, including the particular exponential
autoregressive model, is a Markov process of order one, we have

f (')(n, h) = E(Yn+hIY,, . . ., Yl) = E(Yn+hlY,) .

Therefore, from (4 .3), we can obtain

f(l)(n,h)=ahYn+µ)(1_oh), h=1,2, . . .

	

(4.4)

The prediction error of f ( 1 ) ( n, h) is

e(I) (n, h) = 1'"+h - a hYn - µ(1 - a h ), h

	

(4.5)

Clearly,
E[e(l)(n, h)IYn] = 0 = E[e(l)(n, h)] .

	

(4.6)

That is, f 11) (n, h) is an unbiased predictor of Yn+h .
To derive the mean square error of f 1 1 ) ( n, h), we first obtain the conditional mean

square error given Yn , E. [e(') (n, h)] 2 say . Thus, we can show that

En[e(l)(n,h)]2 = Var(Y,+hjY,)

/t 2 (1 - a 2h ) .
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Hence, the unconditional mean square error of the predictor f (') (n, h) is

E[e(') (n, y)] 2 = p 2 (1 - a2h ), h = 1, 2, . . . .

	

(4.7)

Likewise, for the mean absolute error of f ( 1 )(n, h), we first derive the conditional
mean absolute error given Y , En Ie(' ) (n, h)I . We can show

E„Ie(')(n,h)I =EI~-dl

where d = µ(1 - ah ), and

S
= ah

1 En+1 + ah 2En+2 + . . . + En+h •

From (2 .3), we can write

h
En lehl(n, h)I = ahEl - dl + o h- '(1 - a)FE la h-' En+i - dl

i=1
h

	

h
+ ah-2 (1 - a)2 E Y

Elah-'en+i + ah-j ( n+j - dl
i=1 3=1io)

(4 .8)

+ (1 - a) hElah-1 E n+1 + . . . + En+h - dl .

	

(4.9)

Thus, we can evaluate the expectation in (4 .9), though it is algebraically tedious . When
h = 1, we easily have

En lel' 1(n, l) = ad + (1 - a)[d - µ + 2µ exp(-d/µ)] .

Hence, the unconditional mean absolute error for the predictor f (')(n,1) is

El e ( ' ) (n,1)
I
= 2µ(l - a) exp[-(1 - a)] .

	

(4.10)

The Predictor f'12) (n, h)
From (4 .2), it is clear that to obtain the optimal absolute loss function predictor

f'(2) (n, h) we first need to derive the conditional distribution F(y n+hlYn , . . ., Y1 ) . When
h = 1, we have the conditional density function f(yn+i IYn ) from Gaver and Lewis (1980) .
Hence, using their result to derive f( 2 )(n,1) first for h = 1, we can then use induction to
derive the predictor for general h . Thus, we can show that

f (2) (n h) _

	

ahYn ,

	

r < a,

	

(4 .11)
ahYn + µ(1 - ah)(1 - a)- ' ln[(1 - a)/(1 - r)], r > a,

for h = 1, 2, . . . . Notice from (2.3) and (4 .11) that the structure of fr(2) (n, h) is similar to
the structure underlying the model itself .
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The prediction error of f,(') ( n, h) is, for h = 1, 2, . . .,

2

	

= {
(n, h)

	

n}h - ahyn - h(

	

h)()'[()),)l(

	

r < a 'e

	

-
Y

	

1-a 1-a - In 1-a 1-r r>a
(4.12)

which can be written as e r
II '( 1)(n, h) + C1 , r < a,z l (n h)

	

i,
c(l) (n, h) +C2 i r > a,

where

ci = µ(1 - ah), c2 = µ(1 - ah) - µ(1 - ah)(1 - a) -'l-[(I - a)/(1 - r)] .

Substituting from (4.6) into (4 .13), we have that

I

C

E[e(2)(n, h)] _

	

czi T < a,
c2i r > a .

(4 .13)

(4.14)

Hence, it follows that for a given a, 0 < a < 1, the predictor fr2) (n, h) is positively
biased for r in 0 < r < r*, is unbiased for r = r*, and is negatively biased for r in
r* < r < 1, where

r* = 1 - (1 - a) exp[-(1 - a)] .

	

(4.15)

Note that r* > a . Thus, the intuitive choice r* = 1/2 does not in fact give the unbiased
predictor; see also Table 1 .

The mean square error of this predictor follows according to

E[er21(n, h)]2 =

	

µ2(l - cs 2h ) + ci, r < a,

µ2(1 -a z h) + c2, r > a .

	

(4.16)

Note that E[e(2 ) (n, h)] 2 is minimized at r = r* and that

E[er~l (n, h)] 2 = E[ehl (n, h)] 2 .

To derive the mean absolute error of fr2) (n, h), as before, we first derive the condi-
tional mean absolute error given Y,,, viz .,

E.Ierzl (n h)~
= S Q1,

	

r
< a,

l E] - d'], r > a,

where ~ is given in (4 .8) and

d = µ(1 - ah )(1 - a) - '1n[(1 - a)/(1 - r)] .
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Again, this is tedious algebraically but otherwise straightforward to derive . In particular,
when h = 1, we can then show that the unconditional mean absolute error is

El42 (n,1)1= l
p{l + a)' 2r + ln[(1 - a)/(1 - r)]}, r > a .

	

(4.17)

The Two Predictors Compared
The predictor f (1) (n, h) is unbiased but fr(') (n, h) is not except at r = r* . The bias

for a = 0 .1(0 .2)0 .9 and r = 0.1(0 .2)0 .9 of f,(2 )(n, h) is shown in Table 1, for the case
that µ = 1 . Also given is the value of r* for given a . Thus, we observe that the bias is a
concave downward function of a .

In Table 2, we compare the mean square errors of the two predictors for the one step
ahead predictor h = 1, taking a = 0 .1(0 .2)0 .9, r = 0 .1(0 .2)0 .9, and p = 1 . We observe
that as a increases, the prediction mean square error decreases . It also follows from (4 .7)
and (4 .16) that the corresponding predictor mean square errors are related as

E[e( 1 ) (n,h)] 2 < E[e(2)(n,h)]2

with equality at r = r* . The numerical values of Table 2 demonstrate this result . That
is, according to the mean square error criterion, the predictor f (1) (n, h) is always to be
preferred over the predictor f (') (n, h) .

In contrast, when judged by the mean absolute error criterion, the predictor f" 2 ) (n, h)
is generally preferred. In Table 3, the mean absolute errors for each predictor at h = 1 are
given for a = 0 .1(0 .2)0 .9, r = 0 .1(0 .2)0 .9, and p = 1 . Again, these errors decrease as a
increases . Also, though not true for all a and r values, it is generally the case that these
errors are smaller for fr2) (n, 1) than for f 0 l(n,1) . Further, unlike the mean square errors
for fr 2 ) (n,1) which were minimized at r = r*, the mean absolute errors for f'(2) (n, 1) are
minimized at r = 1/2 .

We can show from (4 .10) and (4 .17) that at r = 1/2,

EI et l l(n,1)1 > Elei/2(n,1 )1

suggesting a preference for f1~2(n,1) . Comparing the entries in Tables 2 and 3 for r =
0.5, we see that as a increases the gain by selecting f1~2(n,1) over f I l l(n,1) according
to the mean absolute loss criteria, exceeds the loss by selecting ft l l(n,1) over f1~,(n,1)
according to the mean square error criterian . This suggests a preference for the prediction
f1~2(n, h) in these cases .

Finally, when r = r*, both predictors are equivalent regardless of whether the pre-
dictor is selected according to the mean square error or mean absolute error criteria . The
important caveat here is that r* is a function of a and does not necessarily equal the
intuitive choice that r = 1/2 .
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More complete details can be found in Mohamed and Billard (1990).

TABLE 1

Bias of f4' 1 (n,1) in EAR (1) model, µ = 1

r

	

.3

	

.5

	

.7

	

.9
0.90 0.64 0 .31 -0 .19 -1 .29 .634

.3 0 .70 0.70 0.36 -0.14 -1 .24 652

.5 0 .50 0.50 0.50 -0 .01 -1 .10 .697

.7 0.30 0 .30 0.30 0.30 -0.79 .778

.9

	

0.10 0.10 0.10 0.10

	

0.10

	

.910

TABLE 2
Mean square errors of f (' ) ( n,1) and f'(2) (n, 1) in EAR(1) model, µ = 1

E[el l (n,1)] 2

	

E[e(2)(n,1)]2
a\r

	

.1

	

.3

	

.5

	

.7

	

.9
.1 0.99 1 .80 1 .16 1 .09 1 .03 2 .65
.3

	

0.91

	

1 .40 1 .40 1 .04 0.93 2 .45
.5

	

0.75

	

1 .00 1 .00 1 .00 0.75 1 .96
.7 0.51 0.60 0 .60 0 .60 0.60 1 .13
.9

	

0.19

	

0.20 0.20 0 .20 0 .20 0.20

TABLE 3
Mean absolute errors of fhl(n,1) and f'(2) (n,1) in EAR(1) model, µ = 1

E I e (l) (n,1)1

	

E l e (2) (n,1)1
a\r

	

.1

	

.3

	

.5

	

.7

	

.9
.1

	

0.73

	

0.90 0.75 0 .69 0.80 1 .50
.3

	

0.70

	

0.70 0.70 0.64 0.75 1 .45
.5

	

0.61

	

0.50 0.50 0.50 0 .61

	

1.31
.7

	

0.44

	

0.30 0.30 0 .30 0.30 1 .00
.9

	

0.18

	

0.10 0.10 0 .10 0.10 0.10
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